Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse Representation
Abstract
:1. Introduction
2. Proposed Fusion Framework
2.1. LP Generation and Reconstruction
2.2. High-Frequency COMPONENTS Fusion
2.3. Low-Frequency Component Fusion
- (1)
- Patch generation. To make full use of the local information of source images, the sliding window technique is applied to divide the source images A and B into image patches of size , starting from the top-left to the bottom-right with a fixed step length .
- (2)
- Vectorization. Then, image patches are rearranged to vectors in a column-wise way. Each vector is normalized to zero-mean via subtracting the mean value according to the following Equation (3), and the mean values are stored for subsequent reconstruction process [47],
- (3)
- Sparse coding. Calculate the sparse coefficients of vectors and according to Equation (4) using the simultaneous orthogonal matching pursuit (SOMP) algorithm [48]. The SOMP algorithm is employed here for its high computing efficiency and suitability for image fusion,
- (4)
- Coefficient fusion. The activity level measurement and fusion rule are two important issues in image fusion tasks [47]. In this paper, the absolute value of the sparse coefficient is chosen to describe the activity level, and the popular max-absolute rule is selected as the fusion rule to combine the corresponding sparse coefficients. The detailed fusion process can be described by Equation (5):
- (5)
- Vector reconstruction. The fused sparse vector is obtained via the fused sparse coefficient multiplied by the same dictionary used in Step (3). The local mean subtracted in Step (2) is added back, and the final fused vector is obtained.
- (6)
- Final reconstruction. Every fused sparse vector is reshaped to a patch and placed in the corresponding position in the fused image F. As the patches may be overlapped, the same pixel in the source image may appear in multiple patches. In other words, one position in F may relate to multiple patches. Therefore, each pixel’s value in the fused image F is the average value of the corresponding elements in all related patches. Finally, the fused low-frequency component is obtained.
3. Experiments
3.1. Experiment Settings
3.1.1. Data Description
3.1.2. Evaluation Metrics
3.1.3. Comparison Methods
3.2. Experimental Results
4. Discussion
4.1. Adjustment Capability
4.2. Time Complexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pohl, C.; van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Zhu, X.X. Data fusion and remote sensing: An ever-growing relationship. IEEE Geosci. Remote Sens. Mag. 2016, 4, 6–23. [Google Scholar] [CrossRef]
- Pastorino, M.; Montaldo, A.; Fronda, L.; Hedhli, I.; Moser, G.; Serpico, S.B.; Zerubia, J. Multisensor and Multiresolution Remote Sensing Image Classification through a Causal Hierarchical Markov Framework and Decision Tree Ensembles. Remote Sens. 2021, 13, 849. [Google Scholar] [CrossRef]
- Tong, X.; Luo, X.; Liu, S.; Xie, H.; Chao, W.; Liu, S.; Liu, S.; Makhinov, A.; Makhinova, A.; Jiang, Y. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery. J. Photogramm. Remote Sens. 2018, 136, 144–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Bao, N.; Li, W.; Gu, X.; Liu, Y. Biomass Estimation for Semiarid Vegetation and Mine Rehabilitation Using Worldview-3 and Sentinel-1 SAR Imagery. Remote Sens. 2019, 11, 2855. [Google Scholar] [CrossRef] [Green Version]
- Samadhan, C.K.; Priti, P.R. Pixel Level Fusion Techniques for SAR and Optical Images: A Review. Inf. Fusion 2020, 59, 13–19. [Google Scholar]
- Nomura, R.; Oki, K. Downscaling of MODIS NDVI by Using a Convolutional Neural Network-Based Model with Higher Resolution SAR Data. Remote Sens. 2021, 13, 732. [Google Scholar] [CrossRef]
- Kong, Y.; Hong, F.; Leung, H.; Peng, X. A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and Gram–Schmidt Transformation. Remote Sens. 2021, 13, 4274. [Google Scholar] [CrossRef]
- Jiang, M.; Shen, H.; Li, J.; Zhang, L. An Integrated Framework for the Heterogeneous Spatio-Spectral-Temporal Fusion of Remote Sensing Images. arXiv 2021, arXiv:2109.00400. [Google Scholar]
- Lin, J.; Zhao, L.; Wang, Q.; Ward, R.; Wang, Z.J. DT-LET: Deep transfer learning by exploring where to transfer. Neurocomputing 2020, 390, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Mou, L.; Yu, T.; Zhu, X.; Wang, Z.J. Dual Adversarial Network for Unsupervised Ground/Satellite-To-Aerial Scene Adaptation. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020. [Google Scholar]
- Lin, J.; Yu, T.; Mou, L.; Zhu, X.; Wang, Z.J. Unifying top–down views by task-specific domain adaptation. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4689–4702. [Google Scholar] [CrossRef]
- Harris, J.R.; Murray, R.; Hirose, T. IHS transform for the integration of radar imagery with other remotely sensed data. Photogramm. Eng. Remote Sens. 1990, 56, 1631–1641. [Google Scholar]
- Yonghong, J.; Deren, L. Comparison of IHS transformation for integrating SAR and TM images. J. Remote. Sens. Land Res. 1997, 9, 34–39. [Google Scholar]
- Shettigara, V.K. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm. Eng. Remote Sens. 1992, 58, 561–567. [Google Scholar]
- Yonghong, J. Fusion of landsat TM and SAR images based on principal component analysis. Remote Sens. Technol. Appl. 2012, 13, 46–49. [Google Scholar]
- Laben, C.; Brower, B. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent Application 6,011,875, 4 January 2000. [Google Scholar]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sens. Environ. 1986, 20, 209–235. [Google Scholar] [CrossRef]
- Garzelli, A. Wavelet-based fusion of optical and SAR image data over urban area. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 59–62. [Google Scholar]
- Tateishi, R.; Wikantika, K.; Munadi, K.; Aslam, M. Study on the spectral quality preservation derived from multisensor image fusion techniques between JERS-1 SAR and Landsat TM data. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’03, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Abdikan, S. Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area. Geocarto Int. 2018, 33, 21–37. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. Merging images through pattern decomposition. Proc. SPIE Appl. Digit. Image Process. 1985, 575, 173–181. [Google Scholar]
- Liu, Y.; Liu, S.; Wang, Z. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, H.; Liu, T.; Wang, F.; Li, H. Remote sensing image fusion via wavelet transform and sparse representation. ISPRS J. Photogramm. Remote Sens. 2015, 104, 158–173. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, L. SAR and Landsat ETM+ image fusion using variational model. In Proceedings of the 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, Chengdu, China, 12–13 June 2010. [Google Scholar]
- Huang, B.; Li, Y.; Han, X.; Cui, Y.; Li, W.; Li, R. Cloud removal from optical satellite imagery with SAR imagery using sparse representation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1046–1050. [Google Scholar] [CrossRef]
- Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. Landsat ETM+ and SAR image fusion based on generalized intensity modulation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2832–2839. [Google Scholar] [CrossRef]
- Chibani, Y. Additive integration of SAR features into multispectral SPOT images by means of the à trous wavelet decomposition. J. Photogramm. Remote Sens. 2006, 60, 306–314. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, Y.; Mercer, B. A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images. Photogramm. Eng. Remote Sens. 2009, 75, 1213–1223. [Google Scholar] [CrossRef]
- Yin, Z. Fusion algorithm of optical images and SAR with SVT and sparse representation. Int. J. Smart Sens. Intell. Syst. 2015, 8, 1123–1141. [Google Scholar]
- Shao, Z.; Wu, W.; Guo, S. IHS-GTF: A Fusion Method for Optical and Synthetic Aperture Radar Data. Remote Sens. 2020, 12, 2796. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 210–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Olshausen, B.A.; Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996, 381, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Bruckstein, A.M.; Donoho, D.L.; Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009, 51, 34–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Li, S. Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 2009, 59, 884–892. [Google Scholar] [CrossRef]
- Yu, N.; Qiu, T.; Bi, F.; Wang, A. Image features extraction and fusion based on joint sparse representation. IEEE J. Sel. Top. Signal Process. 2011, 5, 1074–1082. [Google Scholar] [CrossRef]
- Li, S.; Yin, H.; Fang, L. Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans. Biomed. Eng. 2012, 59, 3450–3459. [Google Scholar] [CrossRef]
- Zhu, X.X.; Bamler, R. A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2827–2836. [Google Scholar] [CrossRef]
- Zhu, Z.; Yin, H.; Chai, Y.; Li, Y.; Qi, G. A novel multi-modality image fusion method based on image decomposition and sparse representation. Inf. Sci. 2018, 432, 516–529. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Huang, X.; Qi, G.; Zheng, M.; Zhu, Z. An Image Fusion Method Based on Sparse Representation and Sum Modified-Laplacian in NSCT Domain. Entropy 2018, 20, 522. [Google Scholar] [CrossRef] [Green Version]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Wang, W.; Chang, F. A Multi-focus Image Fusion Method Based on Laplacian Pyramid. J. Comput. 2011, 6, 2559–2566. [Google Scholar] [CrossRef]
- Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Yang, B.; Li, S. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf. Fusion 2012, 13, 10–19. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C.; Strauss, M.J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 2006, 86, 572–588. [Google Scholar] [CrossRef]
- Hellwich, O.; Reigber, A.; Lehmann, H. Sensor and data fusion contest: Test imagery to compare and combine airborne SAR and optical sensors for mapping. In Proceedings of the IEEE International Geosciences and Remote Sensing Symposium and the 24th Canadian Symposium on Remote Sensing, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Zhang, J.; Yang, J.; Zhao, Z.; Li, H.; Zhang, Y. Block-regression based fusion of optical and SAR imagery for feature enhancement. Int. J. Remote Sens. 2010, 31, 2325–2345. [Google Scholar] [CrossRef]
- Ma, X.; Shen, H.; Zhao, X.; Zhang, L. SAR image despeckling by the use of variational methods with adaptive nonlocal functionals. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3421–3435. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination Among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm. In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop; JPL Publication: Washington, DC, USA; NASA: Washington, DC, USA, 1992; pp. 147–149. [Google Scholar]
- Zhou, J.; Civco, D.L.; Silander, J. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, M.B.A.; Aghagolzadeh, A.; Seyedarabi, H. A non-reference image fusion metric based on mutual information of image features. Comput. Electr. Eng. 2011, 37, 744–756. [Google Scholar] [CrossRef]
- Lolli, S.; Alparone, L.; Garzelli, A.; Vivone, G. Haze correction for contrast-based multispectral pansharpening. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2255–2259. [Google Scholar] [CrossRef]
- Alparone, L.; Garzelli, A.; Vivone, G. Intersensor statistical matching for pansharpening: Theoretical issues and practical solutions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4682–4695. [Google Scholar] [CrossRef]
- Meng, X.; Li, J.; Shen, H.; Zhang, L.; Zhang, H. Pansharpening with a guided filter based on three-layer decomposition. Sensors 2016, 16, 1068. [Google Scholar] [CrossRef] [PubMed]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
Indexes | IHS | BTH | LP | AWLPR | IW | GFTD | LPSR | Ideal |
---|---|---|---|---|---|---|---|---|
CC 1 | 0.0418 | 0.4210 | 0.9620 | 0.9753 | 0.9608 | 0.9751 | 0.9235 | 1 |
0.0247 | 0.3566 | 0.8663 | 0.8917 | 0.8598 | 0.8964 | 0.8238 | 1 | |
SAM 2 | 4.7668 | 2.9880 | 1.3685 | 1.0067 | 1.2048 | 1.0249 | 1.9790 | 0 |
7.5331 | 5.6051 | 5.1160 | 4.3680 | 4.7799 | 4.3835 | 5.5635 | 0 | |
SCC | 0.9746 | 0.6436 | 0.9504 | 0.9506 | 0.9531 | 0.8714 | 0.9560 | 1 |
SSIM | 0.8998 | 0.6862 | 0.7023 | 0.6632 | 0.6656 | 0.6572 | 0.7340 | 1 |
AG | 20.452 | 19.7403 | 21.0458 | 20.6936 | 21.0910 | 16.1392 | 20.8458 | +∞ |
FMI | 0.5161 | 0.4061 | 0.4794 | 0.4678 | 0.4803 | 0.4652 | 0.5096 | 1 |
Indexes | IHS | BTH | LP | AWLPR | IW | GFTD | LPSR | Ideal |
---|---|---|---|---|---|---|---|---|
CC 1 | −0.1951 | 0.0304 | 0.8679 | 0.9288 | 0.8582 | 0.9044 | 0.7401 | 1 |
−0.1832 | −0.0142 | 0.6846 | 0.8029 | 0.6598 | 0.7267 | 0.5603 | 1 | |
SAM 2 | 6.4627 | 3.3283 | 3.8941 | 2.6314 | 3.7114 | 2.7748 | 4.6309 | 0 |
14.2631 | 9.6311 | 10.4075 | 9.0525 | 10.2610 | 9.4752 | 10.8905 | 0 | |
SCC | 0.9842 | 0.5734 | 0.8498 | 0.5453 | 0.8821 | 0.8571 | 0.9150 | 1 |
SSIM | 0.9681 | 0.7428 | 0.4046 | 0.1429 | 0.3466 | 0.3242 | 0.5777 | 1 |
AG | 24.6415 | 33.3441 | 25.7552 | 19.4118 | 24.7351 | 26.2544 | 23.4259 | +∞ |
FMI | 0.5130 | 0.3785 | 0.4033 | 0.3974 | 0.4071 | 0.4217 | 0.4525 | 1 |
Indexes | IHS | BTH | LP | AWLPR | IW | GFTD | LPSR | Ideal |
---|---|---|---|---|---|---|---|---|
CC 1 | −0.1942 | 0.2846 | 0.8796 | 0.9335 | 0.8411 | 0.9212 | 0.7690 | 1 |
−0.1923 | 0.2008 | 0.6712 | 0.7926 | 0.6151 | 0.7481 | 0.5668 | 1 | |
SAM 2 | 4.1220 | 2.1920 | 2.3637 | 1.5717 | 2.0341 | 1.6525 | 3.0498 | 0 |
7.5990 | 5.6608 | 6.3445 | 4.9756 | 5.8844 | 5.1918 | 6.9901 | 0 | |
SCC | 0.9972 | 0.9199 | 0.9138 | 0.6163 | 0.9458 | 0.9139 | 0.9629 | 1 |
SSIM | 0.9583 | 0.7920 | 0.4885 | 0.2115 | 0.4376 | 0.3468 | 0.6534 | 1 |
AG | 16.9149 | 17.2255 | 17.8394 | 11.6247 | 17.1778 | 13.91111 | 16.9217 | +∞ |
FMI | 0.5164 | 0.4536 | 0.4347 | 0.4223 | 0.4326 | 0.4369 | 0.4873 | 1 |
Methods | CC 1 | SAM 2 | SCC | SSIM | AG | FMI |
---|---|---|---|---|---|---|
IHS | −0.1263 ± 0.2300 | 7.7138 ± 5.9478 | 0.9551 ± 0.0563 | 0.8416 ± 0.1150 | 18.5431 ± 8.5031 | 0.5029 ± 0.0314 |
BTH | 0.1577 ± 0.2531 | 6.8539 ± 4.2926 | 0.6217 ± 0.2489 | 0.5792 ± 0.1902 | 28.9911 ± 12.5180 | 0.3723 ± 0.0569 |
LP | 0.6617 ± 0.1131 | 6.1318 ± 4.1853 | 0.8661 ± 0.0597 | 0.5488 ± 0.1319 | 20.1218 ± 8.7419 | 0.4266 ± 0.0342 |
AWLPR | 0.6933 ± 0.1120 | 5.4492 ± 3.5053 | 0.8731 ± 0.0581 | 0.5031 ± 0.1308 | 21.7485 ± 9.7197 | 0.4326 ± 0.0228 |
IW | 0.6235 ± 0.1338 | 5.9936 ± 4.1849 | 0.8851 ± 0.0528 | 0.5375 ± 0.1205 | 19.3256 ± 8.5587 | 0.4315 ± 0.0355 |
GFTD | 0.6707 ± 0.1356 | 5.6733 ± 3.8064 | 0.7607 ± 0.1582 | 0.4773 ± 0.1363 | 21.2761 ± 12.0001 | 0.4188 ± 0.0317 |
LPSR | 0.5696 ± 0.1320 | 6.6137 ± 4.5335 | 0.9070 ± 0.0493 | 0.6399 ± 0.1134 | 18.9086 ± 8.1401 | 0.4699 ± 0.0315 |
Ideal | 1 | 0 | 1 | 1 | +∞ | 1 |
SR | LPSR-1 | LPSR-2 | LPSR-3 | LPSR-4 | LPSR-5 | GFTD | IW | AWLPR | LP | BTH | IHS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time/s | 9308.66 | 2226.38 | 536.63 | 119.59 | 23.36 | 2.95 | 0.2896 | 0.1137 | 0.2047 | 0.0830 | 0.1362 | 0.0234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Shen, H.; Yuan, Q.; Guan, X. Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse Representation. Remote Sens. 2022, 14, 870. https://doi.org/10.3390/rs14040870
Zhang H, Shen H, Yuan Q, Guan X. Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse Representation. Remote Sensing. 2022; 14(4):870. https://doi.org/10.3390/rs14040870
Chicago/Turabian StyleZhang, Hai, Huanfeng Shen, Qiangqiang Yuan, and Xiaobin Guan. 2022. "Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse Representation" Remote Sensing 14, no. 4: 870. https://doi.org/10.3390/rs14040870
APA StyleZhang, H., Shen, H., Yuan, Q., & Guan, X. (2022). Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse Representation. Remote Sensing, 14(4), 870. https://doi.org/10.3390/rs14040870