Deep Learning-Based Change Detection in Remote Sensing Images: A Review
Abstract
:1. Introduction and Background
1.1. Contribution of This Study
1.2. Organization of This Work
2. Research Inclusion/Exclusion Criteria
3. Remote Sensing Datasets for Change Detection
3.1. Sensors for Collecting Change Detection Datasets
3.2. Datasets for Change Detection
3.2.1. SAR Images
- Bern dataset open source: https://github.com/yolalala/RS-source (accessed on 22 December 2021).
- San Francisco dataset open source: https://github.com/yolalala/RS-source (accessed on 22 December 2021).
- Farmland dataset open source: https://share.weiyun.com/5M2gyVd (accessed on 22 December 2021).
3.2.2. Multi-Spectral Images
3.2.3. Wide-Area Datasets
- Southwest U. S. dataset open source: https://geochange.er.usgs.gov/sw/changes/anthropogenic/vegas (accessed on 22 December 2021).
- MtS-WH dataset open source: Open source: http://sigma.whu.edu.cn/newspage.php?q=2019-03-26 (accessed on 22 December 2021).
- NASA Earth Observatory dataset open source: https://earthobservatory.nasa.gov/images/146194/how-cancun-grew-into-a-major-resort (accessed on 22 December 2021).
- Onera Satellite dataset open source: https://ieee-dataport.org/open-access/oscd-onera-~satellite-change-detection (accessed on 22 December 2021).
3.2.4. Local Area Datasets
- HRSCD dataset open source: https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset.
- SZTAKI dataset open source: http://web.eee.sztaki.hu/remotesensing/airchange~benchmark.htm (accessed on 22 December 2021).
- Season changes dataset open source: https://drive.google.com/file/d/1GX656JqqOyBi-Ef0w65kDGVto-nHrNs9 (accessed on 22 December 2021).
- Building change dataset open source: https://study.Rsgis.whu.edu.cn/pages/download/building-dataset.html (accessed on 22 December 2021).
3.2.5. Hyperspectral Images
3.2.6. Limited Labeled Data
3.2.7. High-Dimensionality
3.2.8. Mixed Pixels Problem
3.3. Very High Spatial Resolution (VHR) Images
3.3.1. Limited Spectral Information
3.3.2. Spectral Variability
3.3.3. Information Loss
3.3.4. Heterogeneous Datasets
4. Change Detection Architecture
4.1. Pre-Processing
4.2. Data Collection
4.3. Geometric Cegistration
4.4. Radiometric Correction
4.5. Despeckling
4.6. Denoising
5. Change Detection in Remote Sensing Datasets by Using DL-Based Networks
5.1. SAR Image Change Detection by Using Deep Learning
5.1.1. Deep Learning-Based Supervised Methods for SAR Image
5.1.2. Deep Learning-Based Unsupervised Methods for SAR Image
5.1.3. Deep Learning-Based Semi-Supervised Methods for SAR Image
Author | Year | Techniques | Mode | Advantage | Disadvantage |
---|---|---|---|---|---|
Planinsic et al. [120] | 2018 | Stacked autoencoder | Unsupervised | High accuracy | Model complexity |
Gong et al. [116] | 2015 | DNN | Supervised | High accuracy | High computational complexity |
Ma et al. [117] | 2019 | gcForest | Supervised | Suppress noise | Rely heavily on the quality of a DI |
Samadi et al. [118] | 2019 | DBN | Supervised | Time reduction | Limited Label data |
Gao et al. [119] | 2017 | NMF SVD | Unsupervised | High performance | Non-efficient samples |
Lv et al. [121] | 2018 | Contractive autoencoder | Unsupervised | High performance | Loss of spatial information |
Xiao et al. [122] | 2018 | DNN | Unsupervised | Lower missed detection rate | Limited training data |
Bergamasco et al. [124] | 2019 | CAE | Unsupervised | Doesnot require label data | Not fully suitable |
Geng et al. [125] | 2019 | DNN | Unsupervised | High performance | Lack of annotation data |
Farahani, M et al. [126] | 2020 | DA Approach | Unsupervised | Novel | Not used for SAR and optical feature fusion |
Saha et al. [127] | 2020 | LSTM | Unsupervised | Not require any labeled training sample | Complex |
Shu et al. [128] | 2021 | U-Net | Unsupervised | High accuracy | Limited training sample |
Qu et al. [129] | 2021 | DDNet | Unsupervised | effective and Robust | Lack of spatial feature |
Gao et al. [130] | 2019 | CWNN | Semi-Supervised | Novel method for training data | Potential of the network learning is not fully released |
Wang et al. [131] | 2021 | LCS-EnsemNet | Semi-Supervised | High efficiency | Computational burden. |
Dong et al. [123] | 2018 | Siamese samples | Preclassification | Strong speckle noise canceler | High dependency on labeled data |
5.2. Multispectral Images Change Detection Using Deep Learning
5.2.1. Deep Learning-Based Supervised Methods for Multispectral Images
5.2.2. Deep Learning-Based Unsupervised Methods for Multispectral Images
5.2.3. Deep Learning-Based Semi-Supervised Method for Multispectral Images
5.3. Hyperspectral Images Change Detection by Using Deep Learning
5.3.1. Deep Learning-Based Supervised Methods in Hyperspectral Images
5.3.2. Deep Learning-Based Unsupervised Methods in Hyperspectral Images
5.3.3. Deep Learning Based Semi-Supervised Methods in Hyperspectral Images
5.4. VHR Images Change Detection Using Deep Learning
5.4.1. Deep Learning-Based Supervised Methods for VHR Images
5.4.2. Deep Learning-Based Unsupervised Methods for VHR Images
5.4.3. Deep Learning-Based Semi-Supervised Methods for VHR Images
5.5. Heterogeneous Images Change Detection by Using Deep Learning
5.5.1. Deep Learning-Based Supervised Methods for Heterogeneous Images
5.5.2. Deep Learning-Based Unsupervised Methods for Heterogeneous Images
5.5.3. Deep Learning-Based Semi-Supervised Methods for Heterogeneous Images
6. Evaluation Metrics
Quantitative Results
7. Discussion
7.1. Training Sample
7.2. Prior Knowledge
7.3. Image Registration
7.4. Rs Image Complexity
7.5. Multiple Change Maps
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RPC | rational polynomial coefficient |
DTM | digital terrain model |
SIFT | scale-invariant feature transform |
PSOSAC | particle swarm optimization sample consensus |
CACO | continuous ant colony optimization |
RANSAC | random sample consensus |
DCGAN | Deep convolutional generative adversarial network |
SSJLN | spectral–spatial joint learning network |
HRMS | high-resolution multispectral |
SCCN | symmetric convolutional coupling network |
DHFF | deep homogeneous feature fusion |
MFCU | multiscale feature convolution unit |
DSMS-CN | deep Siamese multiscale convolutional network |
FCN | fully convolutional network |
DLSF | dual learning-based Siamese framework |
FC–CRF | fully connected conditional random field |
KCCA | kernel canonical correlation analysis |
DCV | deep change vector |
IST | image style transfer |
DHFF | deep homogeneous feature fusion |
SSPCN | spatially self-paced convolutional network |
SPL | self-paced learning |
TPR | true positive rate |
TNR | true negative rate |
ROC | receiver operating characteristic |
References
- Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A deep learning architecture for visual change detection. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Si Salah, H.; Goldin, S.E.; Rezgui, A.; Nour El Islam, B.; Ait-Aoudia, S. What is a remote sensing change detection technique? Towards a conceptual framework. Int. J. Remote Sens. 2020, 41, 1788–1812. [Google Scholar] [CrossRef]
- Liu, R.; Kuffer, M.; Persello, C. The temporal dynamics of slums employing a CNN-based change detection approach. Remote Sens. 2019, 11, 2844. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Cao, Y.; Li, J. An automatic change detection method for monitoring newly constructed building areas using time-series multi-view high-resolution optical satellite images. Remote Sens. Environ. 2020, 244, 111802. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Rußwurm, M.; Korner, M. Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 11–19. [Google Scholar]
- Boyd, D.S.; Foody, G.M. An overview of recent remote sensing and GIS based research in ecological informatics. Ecol. Inform. 2011, 6, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Sumaiya, M.; Kumari, R.S.S. Gabor filter based change detection in SAR images by KI thresholding. Optik 2017, 130, 114–122. [Google Scholar] [CrossRef]
- Shang, R.; Yuan, Y.; Jiao, L.; Meng, Y.; Ghalamzan, A.M. A self-paced learning algorithm for change detection in synthetic aperture radar images. Signal Process. 2018, 142, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Liu, S.; Bruzzone, L.; Bovolo, F.; Du, P. Hierarchical unsupervised change detection in multitemporal hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2014, 53, 244–260. [Google Scholar]
- Ferraris, V.; Dobigeon, N.; Wei, Q.; Chabert, M. Detecting changes between optical images of different spatial and spectral resolutions: A fusion-based approach. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1566–1578. [Google Scholar] [CrossRef]
- Liu, S.; Du, Q.; Tong, X.; Samat, A.; Bruzzone, L.; Bovolo, F. Multiscale morphological compressed change vector analysis for unsupervised multiple change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4124–4137. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, L.; Wang, J.; Mei, J. Change detection in remote sensing images of damage areas with complex terrain using texture information and SVM. In Proceedings of the International Conference on Circuits and Systems (CAS 2015), Paris, France, 9–10 August 2015; pp. 9–10. [Google Scholar]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L.; Marconcini, M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2070–2082. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S., Sr. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021, 63, 101310. [Google Scholar] [CrossRef]
- Kwan, C. Methods and challenges using multispectral and Hyperspectral images for practical change detection applications. Information 2019, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Coppin, P.; Lambin, E.; Jonckheere, I.; Muys, B. Digital change detection methods in natural ecosystem monitoring: A review. Anal.-Multi-Temporal Remote Sens. Images 2002, 3–36. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; Carvalho, L.M.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- Qin, R.; Tian, J.; Reinartz, P. 3D change detection–approaches and applications. ISPRS J. Photogramm. Remote Sens. 2016, 122, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Zhong, Y.; Ma, A.; Soon-Ong, Y.; Zhu, Z.; Zhang, L. Computational intelligence in optical remote sensing image processing. Appl. Soft Comput. 2018, 64, 75–93. [Google Scholar] [CrossRef]
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A review of change detection in multitemporal hyperspectral images: Current techniques, applications, and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Tsagkatakis, G.; Aidini, A.; Fotiadou, K.; Giannopoulos, M.; Pentari, A.; Tsakalides, P. Survey of deep-learning approaches for remote sensing observation enhancement. Sensors 2019, 19, 3929. [Google Scholar] [CrossRef] [Green Version]
- Giardino, M.J. A history of NASA remote sensing contributions to archaeology. J. Archaeol. Sci. 2011, 38, 2003–2009. [Google Scholar] [CrossRef] [Green Version]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Liu, S.; Du, Q.; Tong, X.; Samat, A.; Bruzzone, L. Unsupervised change detection in multispectral remote sensing images via spectral-spatial band expansion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3578–3587. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Ortenberg, F. Hyperspectral sensor characteristics: Airborne, spaceborne, hand-held, and truck-mounted; integration of hyperspectral data with Lidar. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation; CRC Press: Boca Raton, FL, USA, 2018; pp. 41–69. [Google Scholar]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M. Sensitivity analysis of pansharpening in hyperspectral change detection. Appl. Geomat. 2018, 10, 65–75. [Google Scholar] [CrossRef]
- Zhu, L.; Suomalainen, J.; Liu, J.; Hyyppä, J.; Kaartinen, H.; Haggren, H. A review: Remote sensing sensors. In Multi-Purposeful Application of Geospatial Data; IntechOpen: London, UK, 2018; pp. 19–42. [Google Scholar]
- Ji, C.; Li, X.; Wei, H.; Li, S. Comparison of different multispectral sensors for photosynthetic and non-photosynthetic vegetation-fraction retrieval. Remote Sens. 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Kirscht, M.; Rinke, C. 3D Reconstruction of Buildings and Vegetation from Synthetic Aperture Radar (SAR) Images. In Proceedings of the MVA, Chiba, Japan, 17–19 November 1998; pp. 228–231. [Google Scholar]
- Ferro-Famil, L.; Pottier, E. Synthetic Aperture Radar Imaging. In Microwave Remote Sensing of Land Surface; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–65. [Google Scholar]
- Chatterjee, A.; Mukherjee, J.; Aikat, S.; Misra, A. Semi-supervised Classification of Paddy Fields from Dual Polarized Synthetic Aperture Radar (SAR) images using Deep Learning. Int. J. Remote Sens. 2021, 42, 1867–1892. [Google Scholar] [CrossRef]
- Liu, L.; Jia, Z.; Yang, J.; Kasabov, N.K. SAR image change detection based on mathematical morphology and the K-means clustering algorithm. IEEE Access 2019, 7, 43970–43978. [Google Scholar] [CrossRef]
- Gao, F.; Dong, J.; Li, B.; Xu, Q.; Xie, C. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine. J. Appl. Remote Sens. 2016, 10, 046019. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hagen, N.A.; Kudenov, M.W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901. [Google Scholar] [CrossRef] [Green Version]
- Anees, A.; Aryal, J.; O’Reilly, M.M.; Gale, T.J.; Wardlaw, T. A robust multi-kernel change detection framework for detecting leaf beetle defoliation using Landsat 7 ETM+ data. ISPRS J. Photogramm. Remote Sens. 2016, 122, 167–178. [Google Scholar] [CrossRef]
- Dai, X.L.; Khorram, S. Remotely sensed change detection based on artificial neural networks. Photogramm. Eng. Remote Sens. 1999, 65, 1187–1194. [Google Scholar]
- Wu, C.; Du, B.; Zhang, L. Slow feature analysis for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2858–2874. [Google Scholar] [CrossRef]
- Bruzzone, L.; Cossu, R. RBF neural network approach for detecting land-cover transitions. In Image and Signal Processing for Remote Sensing VII; SPIE: Bellingham, WA, USA, 2002; Volume 4541, pp. 223–231. [Google Scholar]
- Abuelgasim, A.A.; Ross, W.; Gopal, S.; Woodcock, C. Change detection using adaptive fuzzy neural networks: Environmental damage assessment after the Gulf War. Remote Sens. Environ. 1999, 70, 208–223. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Kamarudin, M.K.A.; Gidado, K.A.; Toriman, M.E.; Juahir, H.; Umar, R.; Abd Wahab, N.; Ibrahim, S.; Awang, S.; Maulud, K.N.A. Classification of land use/land cover changes using GIS and remote sensing technique in Lake Kenyir Basin, Terengganu, Malaysia. Int. J. Eng. Technol. 2018, 7, 12–15. [Google Scholar] [CrossRef]
- Feldberg, I.; Netanyahu, N.S.; Shoshany, M. A neural network-based technique for change detection of linear features and its application to a Mediterranean region. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2002; Volume 2, pp. 1195–1197. [Google Scholar]
- Ghosh, A.; Subudhi, B.N.; Bruzzone, L. Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE Trans. Image Process. 2013, 22, 3087–3096. [Google Scholar] [CrossRef]
- Ghosh, S.; Patra, S.; Ghosh, A. An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural network. Int. J. Approx. Reason. 2009, 50, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Zhang, C.; Zhou, Y. Object-wise joint-classification change detection for remote sensing images based on entropy query-by fuzzy ARTMAP. GISci. Remote Sens. 2018, 55, 265–284. [Google Scholar] [CrossRef]
- Pomente, A.; Picchiani, M.; Del Frate, F. Sentinel-2 change detection based on deep features. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6859–6862. [Google Scholar]
- Arabi, M.E.A.; Karoui, M.S.; Djerriri, K. Optical remote sensing change detection through deep siamese network. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5041–5044. [Google Scholar]
- Chang, N.B.; Han, M.; Yao, W.; Chen, L.C.; Xu, S. Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine. J. Appl. Remote Sens. 2010, 4, 043551. [Google Scholar]
- Nemmour, H.; Chibani, Y. Neural network combination by fuzzy integral for robust change detection in remotely sensed imagery. EURASIP J. Adv. Signal Process. 2005, 2005, 413784. [Google Scholar] [CrossRef] [Green Version]
- Nemmour, H.; Chibani, Y. Fuzzy neural network architecture for change detection in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 705–717. [Google Scholar] [CrossRef]
- Fan, J.; Lin, K.; Han, M. A novel joint change detection approach based on weight-clustering sparse autoencoders. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 685–699. [Google Scholar] [CrossRef]
- Bai, T.; Sun, K.; Deng, S.; Chen, Y. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery. In MIPPR 2017: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications; SPIE: Bellingham, WA, USA, 2018; Volume 10611, p. 106110G. [Google Scholar]
- Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.; Nandi, A.K. Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 982–986. [Google Scholar] [CrossRef]
- Han, P.; Ma, C.; Li, Q.; Leng, P.; Bu, S.; Li, K. Aerial image change detection using dual regions of interest networks. Neurocomputing 2019, 349, 190–201. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, L.; Du, B. Kernel slow feature analysis for scene change detection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2367–2384. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A.; Gousseau, Y. Urban change detection for multispectral earth observation using convolutional neural networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2115–2118. [Google Scholar]
- Gong, M.; Zhan, T.; Zhang, P.; Miao, Q. Superpixel-based difference representation learning for change detection in multispectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2658–2673. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Lebedev, M.; Vizilter, Y.V.; Vygolov, O.; Knyaz, V.; Rubis, A.Y. Change detection in remote sensing images using conditional adversarial networks. In Proceedings of the 2018 SPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, Riva del Garda, Italy, 4–7 June 2018; Volume 42. [Google Scholar]
- Benedek, C.; Szirányi, T. Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3416–3430. [Google Scholar] [CrossRef] [Green Version]
- Bazi, Y.; Melgani, F.; Al-Sharari, H.D. Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3178–3187. [Google Scholar] [CrossRef]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Optimal clustering framework for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5910–5922. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [Google Scholar] [CrossRef] [Green Version]
- Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and opportunities of multimodality and data fusion in remote sensing. Proc. IEEE 2015, 103, 1585–1601. [Google Scholar] [CrossRef] [Green Version]
- Momeni, R.; Aplin, P.; Boyd, D.S. Mapping complex urban land cover from spaceborne imagery: The influence of spatial resolution, spectral band set and classification approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Liu, C.; Huang, X. Advances in urban information extraction from high-resolution remote sensing imagery. Sci. China Earth Sci. 2020, 63, 463–475. [Google Scholar] [CrossRef]
- Liu, D.; Toman, E.; Fuller, Z.; Chen, G.; Londo, A.; Zhang, X.; Zhao, K. Integration of historical map and aerial imagery to characterize long-term land-use change and landscape dynamics: An object-based analysis via Random Forests. Ecol. Indic. 2018, 95, 595–605. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.; Li, J.; Qin, R. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Bruzzone, L.; Bovolo, F. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc. IEEE 2012, 101, 609–630. [Google Scholar] [CrossRef]
- Lu, M.; Chen, J.; Tang, H.; Rao, Y.; Yang, P.; Wu, W. Land cover change detection by integrating object-based data blending model of Landsat and MODIS. Remote Sens. Environ. 2016, 184, 374–386. [Google Scholar] [CrossRef]
- Ye, S.; Chen, D.; Yu, J. A targeted change-detection procedure by combining change vector analysis and post-classification approach. ISPRS J. Photogramm. Remote Sens. 2016, 114, 115–124. [Google Scholar] [CrossRef]
- Tatar, N.; Saadatseresht, M.; Arefi, H.; Hadavand, A. A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies. Adv. Space Res. 2018, 61, 2787–2800. [Google Scholar] [CrossRef]
- Movia, A.; Beinat, A.; Crosilla, F. Shadow detection and removal in RGB VHR images for land use unsupervised classification. ISPRS J. Photogramm. Remote Sens. 2016, 119, 485–495. [Google Scholar] [CrossRef]
- Liasis, G.; Stavrou, S. Satellite images analysis for shadow detection and building height estimation. ISPRS J. Photogramm. Remote Sens. 2016, 119, 437–450. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [Google Scholar] [CrossRef]
- Song, H.; Huang, B.; Zhang, K. Shadow detection and reconstruction in high-resolution satellite images via morphological filtering and example-based learning. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2545–2554. [Google Scholar] [CrossRef]
- Mercier, G.; Moser, G.; Serpico, S.B. Conditional copulas for change detection in heterogeneous remote sensing images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1428–1441. [Google Scholar] [CrossRef]
- Prendes, J. New Statistical Modeling of Multi-Sensor Images with Application to Change Detection. Ph.D. Thesis, Université Paris-Saclay, Saclay, France, 2015. [Google Scholar]
- Prendes, J.; Chabert, M.; Pascal, F.; Giros, A.; Tourneret, J.Y. A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors. IEEE Trans. Image Process. 2014, 24, 799–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz-Neto, J.P.; Campos, M.F.M.; Nelson, B.W.; de Souza Pio, J.L. Automatic Geometric and Radiometric Registration of Landsat-TM Images Using Mutual Information. In Proceedings of the GeoInfo, São Paulo, Brazil, 22–24 November 2004; pp. 343–360. [Google Scholar]
- Wu, Y.; Ma, W.; Gong, M.; Su, L.; Jiao, L. A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geosci. Remote Sens. Lett. 2014, 12, 43–47. [Google Scholar] [CrossRef]
- Fytsilis, A.L.; Prokos, A.; Koutroumbas, K.D.; Michail, D.; Kontoes, C.C. A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 165–186. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, W.; Miao, Q.; Wang, S. Multimodal continuous ant colony optimization for multisensor remote sensing image registration with local search. Swarm Evol. Comput. 2019, 47, 89–95. [Google Scholar] [CrossRef]
- Zhang, X.; Leng, C.; Hong, Y.; Pei, Z.; Cheng, I.; Basu, A. Multimodal Remote Sensing Image Registration Methods and Advancements: A Survey. Remote Sens. 2021, 13, 5128. [Google Scholar] [CrossRef]
- Cao, G.; Zhou, L.; Li, Y. A new change-detection method in high-resolution remote sensing images based on a conditional random field model. Int. J. Remote Sens. 2016, 37, 1173–1189. [Google Scholar] [CrossRef]
- Franklin, S.E.; Giles, P.T. Radiometric processing of aerial and satellite remote-sensing imagery. Comput. Geosci. 1995, 21, 413–423. [Google Scholar] [CrossRef]
- Ajadi, O.A.; Meyer, F.J.; Webley, P.W. Change detection in synthetic aperture radar images using a multiscale-driven approach. Remote Sens. 2016, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Iino, S.; Ito, R.; Doi, K.; Imaizumi, T.; Hikosaka, S. CNN-based generation of high-accuracy urban distribution maps utilising SAR satellite imagery for short-term change monitoring. Int. J. Image Data Fusion 2018, 9, 302–318. [Google Scholar] [CrossRef]
- Nasri, M.; Nezamabadi-pour, H. Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing 2009, 72, 1012–1025. [Google Scholar] [CrossRef]
- Golilarz, N.A.; Gao, H.; Demirel, H. Satellite image de-noising with harris hawks meta heuristic optimization algorithm and improved adaptive generalized gaussian distribution threshold function. IEEE Access 2019, 7, 57459–57468. [Google Scholar] [CrossRef]
- Feng, W.; Chen, Y. Speckle reduction with trained nonlinear diffusion filtering. J. Math. Imaging Vis. 2017, 58, 162–178. [Google Scholar] [CrossRef] [Green Version]
- Devapal, D.; Kumar, S.; Jojy, C. A novel approach of despeckling SAR images using nonlocal means filtering. J. Indian Soc. Remote Sens. 2017, 45, 443–450. [Google Scholar] [CrossRef]
- Reich, S.; Wörgötter, F.; Dellen, B. A Real-Time Edge-Preserving Denoising Filter. In Proceedings of the VISIGRAPP (4: VISAPP), Madeira, Portugal, 27–29 January 2018; pp. 85–94. [Google Scholar]
- Alisha, P.; Sheela, K.G. Image denoising techniques-an overview. IOSR J. Electr. Commun. Eng. 2016, 11, 78–84. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 125–138. [Google Scholar] [CrossRef]
- Ma, W.; Yang, H.; Wu, Y.; Xiong, Y.; Hu, T.; Jiao, L.; Hou, B. Change detection based on multi-grained cascade forest and multi-scale fusion for SAR images. Remote Sens. 2019, 11, 142. [Google Scholar] [CrossRef] [Green Version]
- Samadi, F.; Akbarizadeh, G.; Kaabi, H. Change detection in SAR images using deep belief network: A new training approach based on morphological images. IET Image Process. 2019, 13, 2255–2264. [Google Scholar] [CrossRef]
- Gao, F.; Liu, X.; Dong, J.; Zhong, G.; Jian, M. Change detection in SAR images based on deep semi-NMF and SVD networks. Remote Sens. 2017, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Planinšič, P.; Gleich, D. Temporal change detection in SAR images using log cumulants and stacked autoencoder. IEEE Geosci. Remote Sens. Lett. 2018, 15, 297–301. [Google Scholar] [CrossRef]
- Lv, N.; Chen, C.; Qiu, T.; Sangaiah, A.K. Deep learning and superpixel feature extraction based on contractive autoencoder for change detection in SAR images. IEEE Trans. Ind. Inform. 2018, 14, 5530–5538. [Google Scholar] [CrossRef]
- Xiao, R.; Cui, R.; Lin, M.; Chen, L.; Ni, Y.; Lin, X. SOMDNCD: Image change detection based on self-organizing maps and deep neural networks. IEEE Access 2018, 6, 35915–35925. [Google Scholar] [CrossRef]
- Dong, H.; Ma, W.; Wu, Y.; Gong, M.; Jiao, L. Local descriptor learning for change detection in synthetic aperture radar images via convolutional neural networks. IEEE Access 2018, 7, 15389–15403. [Google Scholar] [CrossRef]
- Bergamasco, L.; Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised change-detection based on convolutional-autoencoder feature extraction. In Proceedings of the Image and Signal Processing for Remote Sensing XXV International Society for Optics and Photonics, Strasbourg, France, 7 October 2019; Volume 11155, p. 1115510. [Google Scholar]
- Geng, J.; Ma, X.; Zhou, X.; Wang, H. Saliency-guided deep neural networks for SAR image change detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7365–7377. [Google Scholar] [CrossRef]
- Farahani, M.; Mohammadzadeh, A. Domain adaptation for unsupervised change detection of multisensor multitemporal remote-sensing images. Int. J. Remote Sens. 2020, 41, 3902–3923. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Change detection in image time-series using unsupervised lstm. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Shu, Y.; Li, W.; Yang, M.; Cheng, P.; Han, S. Patch-Based Change Detection Method for SAR Images with Label Updating Strategy. Remote Sens. 2021, 13, 1236. [Google Scholar] [CrossRef]
- Qu, X.; Gao, F.; Dong, J.; Du, Q.; Li, H.C. Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain Network. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wei, X.; Chen, J.W.; Jiao, L. Dynamic Graph-Level Neural Network for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Mou, L.; Zhu, X.X. A recurrent convolutional neural network for land cover change detection in multispectral images. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4363–4366. [Google Scholar]
- Zhang, W.; Lu, X. The spectral-spatial joint learning for change detection in multispectral imagery. Remote Sens. 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Li, S.; Fang, L.; Ghamisi, P. Multispectral change detection with bilinear convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1757–1761. [Google Scholar] [CrossRef]
- Cao, G.; Wang, B.; Xavier, H.C.; Yang, D.; Southworth, J. A new difference image creation method based on deep neural networks for change detection in remote-sensing images. Int. J. Remote Sens. 2017, 38, 7161–7175. [Google Scholar] [CrossRef]
- Atluri, M.N.S.A.; Kudipudi, S. MAU-Net: Change Detection from Multi Spectral High Resolution Satellite Images.
- Gong, M.; Yang, Y.; Zhan, T.; Niu, X.; Li, S. A generative discriminatory classified network for change detection in multispectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 321–333. [Google Scholar] [CrossRef]
- Saha, S.; Mou, L.; Qiu, C.; Zhu, X.X.; Bovolo, F.; Bruzzone, L. Unsupervised deep joint segmentation of multitemporal high-resolution images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8780–8792. [Google Scholar] [CrossRef]
- Wiratama, W.; Lee, J.; Sim, D. Change detection on multi-spectral images based on feature-level U-Net. IEEE Access 2020, 8, 12279–12289. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M. A new end-to-end multi-dimensional CNN framework for land cover/land use change detection in multi-source remote sensing datasets. Remote Sens. 2020, 12, 2010. [Google Scholar] [CrossRef]
- Luo, X.; Li, X.; Wu, Y.; Hou, W.; Wang, M.; Jin, Y.; Xu, W. Research on Change Detection Method of High-Resolution Remote Sensing Images Based on Subpixel Convolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1447–1457. [Google Scholar] [CrossRef]
- Holgado Alvarez, J.L.; Ravanbakhsh, M.; Demir, B. S2-cGAN: Self-Supervised Adversarial Representation Learning for Binary Change Detection in Multispectral Images. arXiv 2020, arXiv:2007.02565. [Google Scholar]
- Zhang, M.; Shi, W. A feature difference convolutional neural network-based change detection method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7232–7246. [Google Scholar] [CrossRef]
- Alvarez, J.L.H.; Ravanbakhsh, M.; Demir, B. S2-cGAN: Self-supervised adversarial representation learning for binary change detection in multispectral images. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2515–2518. [Google Scholar]
- Seydi, S.T.; Hasanlou, M. A new land-cover match-based change detection for hyperspectral imagery. Eur. J. Remote Sens. 2017, 50, 517–533. [Google Scholar] [CrossRef]
- López-Fandiño, J.; Garea, A.S.; Heras, D.B.; Argüello, F. Stacked autoencoders for multiclass change detection in hyperspectral images. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1906–1909. [Google Scholar]
- Hou, B.; Liu, Q.; Wang, H.; Wang, Y. From W-Net to CDGAN: Bitemporal change detection via deep learning techniques. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1790–1802. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, M.S.; Mohamed, S.A.; Ahmed, S.; Nasr, A.H. Hyperspectral change detection based on modification of UNet neural networks. J. Appl. Remote Sens. 2021, 15, 028505. [Google Scholar] [CrossRef]
- Tong, X.; Pan, H.; Liu, S.; Li, B.; Luo, X.; Xie, H.; Xu, X. A novel approach for hyperspectral change detection based on uncertain area analysis and improved transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2056–2069. [Google Scholar] [CrossRef]
- Song, A.; Kim, Y.; Han, Y. Uncertainty analysis for object-based change detection in very high-resolution satellite images using deep learning network. Remote Sens. 2020, 12, 2345. [Google Scholar] [CrossRef]
- Saha, S.; Kondmann, L.; Song, Q.; Zhu, X.X. Change Detection in Hyperdimensional Images Using Untrained Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11029–11041. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M. A New Structure for Binary and Multiple Hyperspectral Change Detection Based on Spectral Unmixing and Convolutional Neural Network. Measurement 2021, 186, 110137. [Google Scholar] [CrossRef]
- Yuan, Y.; Lv, H.; Lu, X. Semi-supervised change detection method for multi-temporal hyperspectral images. Neurocomputing 2015, 148, 363–375. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A general end-to-end 2-D CNN framework for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Yu, Y.; Feng, T. Hyperspectral remote sensing image change detection based on tensor and deep learning. J. Vis. Commun. Image Represent. 2019, 58, 233–244. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Pan, L.; Kou, R. Dual learning-based siamese framework for change detection using bi-temporal VHR optical remote sensing images. Remote Sens. 2019, 11, 1292. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2848–2864. [Google Scholar] [CrossRef]
- Jing, R.; Liu, S.; Gong, Z.; Wang, Z.; Guan, H.; Gautam, A.; Zhao, W. Object-based change detection for VHR remote sensing images based on a Trisiamese-LSTM. Int. J. Remote Sens. 2020, 41, 6209–6231. [Google Scholar] [CrossRef]
- Javed, A.; Jung, S.; Lee, W.H.; Han, Y. Object-based building change detection by fusing pixel-level change detection results generated from morphological building index. Remote Sens. 2020, 12, 2952. [Google Scholar] [CrossRef]
- Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L. An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors. Remote Sens. 2018, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Ge, X.; Chen, J. Using adversarial network for multiple change detection in bitemporal remote sensing imagery. IEEE Geosc. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Saha, S.; Mou, L.; Zhu, X.X.; Bovolo, F.; Bruzzone, L. Semisupervised change detection using graph convolutional network. IEEE Geosci. Remote Sens. Lett. 2020, 18, 607–611. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, A.; Hao, J.; Liu, F.; Chen, J. SCA-CDNet: A robust siamese correlation-and-attention-based change detection network for bitemporal VHR images. Int. J. Remote Sens. 2021, 1–22. [Google Scholar] [CrossRef]
- Papadomanolaki, M.; Vakalopoulou, M.; Karantzalos, K. A Deep Multitask Learning Framework Coupling Semantic Segmentation and Fully Convolutional LSTM Networks for Urban Change Detection. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Ji, S.; Shen, Y.; Lu, M.; Zhang, Y. Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples. Remote Sens. 2019, 11, 1343. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhou, Y.; Cao, Y.; Feng, L. Heterogeneous image change detection using deep canonical correlation analysis. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2917–2922. [Google Scholar]
- Wang, M.; Tan, K.; Jia, X.; Wang, X.; Chen, Y. A deep siamese network with hybrid convolutional feature extraction module for change detection based on multi-sensor remote sensing images. Remote Sens. 2020, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Ebel, P.; Saha, S.; Zhu, X.X. Fusing multi-modal data for supervised change detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 243–249. [Google Scholar] [CrossRef]
- Liu, J.; Gong, M.; Qin, K.; Zhang, P. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 545–559. [Google Scholar] [CrossRef]
- Niu, X.; Gong, M.; Zhan, T.; Yang, Y. A conditional adversarial network for change detection in heterogeneous images. IEEE Geosci. Remote Sens. Lett. 2018, 16, 45–49. [Google Scholar] [CrossRef]
- Zhan, T.; Gong, M.; Jiang, X.; Li, S. Log-based transformation feature learning for change detection in heterogeneous images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1352–1356. [Google Scholar] [CrossRef]
- Touati, R.; Mignotte, M.; Dahmane, M. Anomaly feature learning for unsupervised change detection in heterogeneous images: A deep sparse residual model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 588–600. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Liu, Y.; Zhang, X.P.; He, Y. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1551–1566. [Google Scholar] [CrossRef] [Green Version]
- Prexl, J.; Saha, S.; Zhu, X.X. Mitigating spatial and spectral differences for change detection using super-resolution and unsupervised learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Virtual, 11–16 July 2021; pp. 3113–3116. [Google Scholar]
- Sun, Y.; Lei, L.; Li, X.; Sun, H.; Kuang, G. Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern Recognit. 2021, 109, 107598. [Google Scholar] [CrossRef]
- Li, H.; Gong, M.; Zhang, M.; Wu, Y. Spatially Self-Paced Convolutional Networks for Change Detection in Heterogeneous Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4966–4979. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, L.; Hou, B.; Liu, F.; Yang, S. Selective Adversarial Adaptation-Based Cross-Scene Change Detection Framework in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2188–2203. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H.; Fu, R.; Sun, Y. A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102615. [Google Scholar] [CrossRef]
- Saha, S.; Ebel, P.; Zhu, X.X. Self-supervised Multisensor Change Detection. arXiv 2021, arXiv:2103.05102. [Google Scholar] [CrossRef]
- Kerner, H.R.; Wagstaff, K.L.; Bue, B.D.; Gray, P.C.; Bell, J.F.; Amor, H.B. Toward generalized change detection on planetary surfaces with convolutional autoencoders and transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3900–3918. [Google Scholar] [CrossRef]
- Saha, S.; Zhu, X.X. Patch-level unsupervised planetary change detection. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Lim, K.; Jin, D.; Kim, C.S. Change detection in high resolution satellite images using an ensemble of convolutional neural networks. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 509–515. [Google Scholar]
- Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geosci. Remote Sens. Lett. 2015, 13, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Y.; Chan, J.C.W.; Yi, C. Hyperspectral image classification using two-channel deep convolutional neural network. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5079–5082. [Google Scholar]
- Risojević, V.; Momić, S.; Babić, Z. Gabor descriptors for aerial image classification. In International Conference on Adaptive and Natural Computing Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 51–60. [Google Scholar]
- Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. arXiv 2014, arXiv:1405.3531. [Google Scholar]
- Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [Google Scholar] [CrossRef]
- Lee, S.H.; Chan, C.S.; Mayo, S.J.; Remagnino, P. How deep learning extracts and learns leaf features for plant classification. Pattern Recognit. 2017, 71, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Chan, C.S.; Wilkin, P.; Remagnino, P. Deep-plant: Plant identification with convolutional neural networks. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 452–456. [Google Scholar]
- Tao, C.; Pan, H.; Li, Y.; Zou, Z. Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438–2442. [Google Scholar]
- Saha, S.; Banerjee, B.; Zhu, X.X. Trusting small training dataset for supervised change detection. arXiv 2021, arXiv:2104.05443. [Google Scholar]
- Schaum, A. Local covariance equalization of hyperspectral imagery: Advantages and limitations for target detection. In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; pp. 2001–2011. [Google Scholar]
- Marchesi, S.; Bovolo, F.; Bruzzone, L. A context-sensitive technique robust to registration noise for change detection in VHR multispectral images. IEEE Trans. Image Process. 2010, 19, 1877–1889. [Google Scholar] [CrossRef] [PubMed]
- Dubovik, O.; Schuster, G.; Xu, F.; Hu, Y.; Boesch, H.; Landgraf, J.; Li, Z. Grand challenges in satellite remote sensing. Front. Remote Sens. 2021, 2, 1. [Google Scholar] [CrossRef]
- Wilson, R. Complexity in Remote Sensing: A Literature Review, Synthesis and Position Paper. 2 June 2011. Available online: https://ieeexplore.ieee.org/document/9069898 (accessed on 22 December 2021).
Reference | Publisher | Publication Year | Citation |
---|---|---|---|
[2] | Taylor & Francis | 1989 | 4834 |
[27] | Taylor & Francis | 2002 | 60 |
[28] | Taylor & Francis | 2004 | 3595 |
[29] | Taylor & Francis | 2012 | 510 |
[23] | Elsevier | 2013 | 1219 |
[30] | Elsevier | 2016 | 134 |
[31] | IEEE | 2016 | 1295 |
[22] | others | 2017 | 411 |
[20] | IEEE | 2017 | 1475 |
[32] | Elsevier | 2018 | 124 |
[33] | IEEE | 2019 | 90 |
[21] | ISPRS | 2019 | 689 |
[26] | MDPI | 2019 | 11 |
[34] | IEEE | 2020 | 48 |
[24] | MDPI | 2020 | 76 |
[25] | Elsevier | 2020 | 8 |
Satellite/Sensors | Country | Year | Revisit (Day) | Spatial Resolution (m) |
---|---|---|---|---|
COSMO | Italy | 2010 | 5 | 15 m |
Gaofen 3 | China | 2016 | 5 | 1–500 m |
Landsat 9 | USA | 2020 | 16 | 15 m |
TerraSAR-X | Germany | 2007 | 2.5–11 days | 1–16 |
SPOT7 | USA | 2014 | 1–3 | 1.5 m |
ERS2 | ESA | 1995 | 336 | 6–30 m |
RADARSAT | Canada | 2018 | 1 | 3–100 m |
Hyperion (EO-1) | USA | 2000 | 2–16 | 30 m |
ALOS | Japan | 2006 | 2 days | 2.5, 10 m |
IKONOS | USA | 1999 | 3 | 1 m, 4 m |
QuickBird | USA | 2001 | 2.4–5.9 | 2.61 m |
Envisat | ESA | 2002 | 35 days | 300 m |
GeoEye | USA | 2008 | 8.3 | 0.41 m |
WorldView 1 | USA | 2007 | 1.7 | 0.5 m |
WorldView 2 | USA | 2009 | 1.1 | 0.46 m |
WorldView 3 | USA | 2014 | <1 | 1.24 m |
WorldView 4 | USA | 2016 | 3 | 0.34 m |
Sentinel-1 | ESA | 2014 | 12 | 5–20 m |
Sentinel-2 | ESA | 2015 | 10 | 10–60 m |
Sentinel-3 | ESA | 2016 | 27 | 5–40 m |
Sentinel-4 | ESA | 2019 | 1 | 10 m |
Sentinel-5 | ESA | 2014 | <1 | 20 m |
Sentinel-6 | ESA | 2020 | 9 | 60 m |
Satellite | Area | Dataset Name | Image | Pixel | Date |
---|---|---|---|---|---|
RADARSAT SAR | Canada | Ottawa | 290 | May–August 1997 | |
RADARSAT-2 | China | Yellow river | 257 | June 2008 June 2009 | |
ERS-2 | US | San Francisco | 256 | August 2003 May 2004 | |
Landsat ETM+ | Mexico | Mexico | 512 | April 2000 March 2002 | |
ERS-2 | Switzerland | Bern | 301 | April–May 1999 | |
Envisat | Japan | Sulzberger | 256 | March 2011 | |
RADARSAT-2 | China | Beijing | 1024 | October 2010 |
Satellite | Area | Dataset Name | Image | Pixel | Date |
---|---|---|---|---|---|
World View-2 | Los Angeles | U. S. | 322 | 1986–1992 | |
Landsat 7 | China | Kunshan | 400 | March 2000 February 2003 | |
IKONOS | China | MtS-WH | 7200 6000 | February 2002 June 2009 | |
Sentinel-2 | UAE | Onera | 700 × 700 1200 × 1200 | 2015–2018 |
Satellite | Area | Dataset Name | Image | Pixel | Date |
---|---|---|---|---|---|
FÖMI | China | SZTAKI | 952 × 640 | 2000 2003 | |
Géoportail | China | HRSCD | 321330 | 2002 2005 | |
WorldView-2 | China | Yandu | 322 | 19 September 2012 10 February 2015 |
Satellite | Area | Dataset Name | Image | Pixel | Date |
---|---|---|---|---|---|
Hyperion sensor | China | Jiangsu Province | 420140 | 3 May 2006 23 April 2007 | |
Hyperion sensor | USA | Hermiston City | 308 | 1 May 2004 8 May 2007 | |
AVIRIS | Oregon | Hermiston dataset | 390200 | 2007–2015 | |
AVIRIS | California | Santa Barbara dataset | 984740 | 2013–2014 | |
AVIRIS | USA | California | 147316 | 21 October 2015 25 June 2018 | |
EO-1 | Henan | Dalin | 187268 | 6 March 2003 16 April 2006 |
Satellite | Area | Dataset Name | Image | Pixel | Date |
---|---|---|---|---|---|
Worldview-2 | Italy | VHR World View 2 | 420140 | August 2010 May 2011 | |
QuickBird | Italy | image pair | 14001400 | August 2012 September 2013 | |
Google Earth | US | LEVIR-CD dataset | 1024 × 1024 | 2002–2018 |
Satellite | Area | Dataset Name | Image | Pixel | Date |
---|---|---|---|---|---|
ETM+ | US | Mexico | 512512 | April 2000 March 2002 | |
LANDSAT 7 | China | Farmland | 306291 | 2008 2009 | |
LANDSAT 7 | China | Shuguang Village | 921593 | June 2008 September 2012 | |
Gaofen-3 | China | Sichuan Province | 28271333 | 24 June 2017 | |
Landsat-5 | Italy | Sardinia | 412350,300 | September 1995 July 1996 |
Author | Year | Techniques | Mode | Advantage | Disadvantage |
---|---|---|---|---|---|
Daudt et al. [132] | 2018 | FCNN | Supervised | Trained end-to-end | Massive amount of training data |
Mou et al. [133] | 2018 | RCNN | Supervised | End-to-End | Model could not extract all the deep features. |
Zhang et al. [134] | 2019 | SSJLN | Supervised | High performance | Large amount of training data |
Lin, Y et al. [135] | 2020 | BCNNs | Supervised | Trained end to end | Challenging to generate labeled data |
Cao et al. [136] | 2017 | DBN | Supervised | High accuracy | Processing time |
Atluri et al. [137] | 2018 | MAU-Net | Supervised | End-to-end | Low performance |
Gong et al. [138] | 2019 | DCN, GDCN | Supervised | Reduce training sample issue | Model complexity |
Saha et al. [139] | 2020 | Deep joint segmentation | Unsupervised | Not require any labeled training pixel | Time consuming |
Wiratama et al. [140] | 2020 | U-Net | Unsupervised | Solve spectral distortion issue | Computational complexity |
Syedi et al. [141] | 2020 | CNN | Unsupervised | End-to-end | Time consuming |
Luo et al. [142] | 2020 | DCGAN, DeepLabv3+ | Unsupervised | High performance | Massive amount of training data |
Zhang et al. [144] | 2020 | FDCNN | Pretrained | strong robustness and generalization ability | Require large pixel-level training samples |
Alvarez, J et al. [145] | 2020 | S2-cGAN | Semi Supervised | Extract features at multiple resolutions | Model complexity |
Author | Year | Techniques | Mode | Advantage | Disadvantage |
---|---|---|---|---|---|
Syedi, S et al. [146] | 2017 | Similarity based methods | Supervised | High accuracy | Demand for sample data for thresholding |
Fandino, J et al. [147] | 2018 | SAE ELM or SVM | Supervised | binary and multiclass CD | Training ample issue |
Hou et al. [148] | 2019 | W-Net | Supervised | Better performance | Training relies on lots of manually annotated data |
Moustafa et al. [149] | 2021 | ARR-U-Net | Supervised | Both binary and multiclass CD | Computational complexity |
Tong et al. [150] | 2020 | AL TL | Unsupervised | Multiple CD | New land-cover types in the target image cannot be detected. |
Saha et al. [152] | 2021 | deep CVA | Unsupervised | Better performance | Time consuming and model complexity |
Seydi et al. [153] | 2020 | 3D CNN | Unsupervised | Multiclass CD | A lot of training data |
Yuan, Y et al. [154] | 2015 | SSDM-CD | Semi Supervised | High performance | Not applicable for Spatial information |
Huang, F et al. [156] | 2019 | TDL | Semi Supervised | Better performance | Only uses spectral feature |
Wang et al. [155] | 2019 | GETNET | Semi-Supervised | End-to-end 2-D | Training difficulty |
Song, A et al. [151] | 2020 | Re3FCN, CD | Pretrained | High semantic segmentation result | Insufficient training data |
Author | Year | Techniques | Mode | Advantage | Disadvantage |
---|---|---|---|---|---|
Peng et al. [157] | 2019 | U-Net++ | Supervised | End-to-end | Require huge training sample |
Fang et al. [158] | 2019 | DLSF | Supervised | High detection performance | Not focus on spectral information changes. |
Chen et al. [159] | 2019 | SiamCRNN | Supervised | High performance | Large number of labeled sample |
Jing, R et al. [160] | 2020 | TriSiamese LSTM | Supervised | Improved accuracy | Computational complexity |
Javed et al. [161] | 2020 | D–S theory | Unsupervised | Low false alarm | Miss detection of building changes |
Correa et al. [162] | 2018 | Tree of radiometric change | Unsupervised | Good performance | Lot of training sample |
Saha et al. [163] | 2019 | Multi-layered CNN | Unsupervised | Reduce dependence on changing samples | Needs a large number of pixel-level samples. |
Zhao et al. [164] | 2020 | AG-GAAN | Unsupervised | Improve the detection accuracy | Model is greatly challenged by the hazardous environments |
Papadomanolaki et al. [167] | 2021 | LU-Net | Unsupervised | Novel method | Low performance |
Saha et al. [165] | 2020 | GCN | Semi-supervised | Eliminates many redundant features | Time consuming |
Pang et al. [157] | 2021 | SCA-CDNet | Pretrained | Improve accuracy | Insufficient for some practical applications |
Ji et al. [168] | 2019 | Mask R-CNN, CNN | Self-trained | Reduce the demand of training samples | Time complexity |
Author | Year | Techniques | Mode | Advantage | Disadvantage |
---|---|---|---|---|---|
Yang et al. [169] | 2018 | DCCA | Supervised | DCCA typically faster to train than KCCA | High computational cost |
Wang et al. [170] | 2020 | OB-DSCNH | Supervised | High accuracy | Did not consider if central pixel and its neighborhoods are not in the same category |
Ebel et al. [171] | 2021 | Siamese network | Supervised | Novel data | Time consuming and low performance |
Liu et al. [172] | 2016 | SCCN, DAE | Unsupervised | High performance | spatial complexity |
Niu et al. [173] | 2018 | cGAN | Unsupervised | Higher accuracy | Huge amount of learnable parameters |
Zhan et al. [174] | 2018 | LTFL | Unsupervised | High detection accuracy | High cost of manual operation |
Touati et al. [175] | 2020 | DSRM | Unsupervised | better performance | Require huge training sample |
Saha et al. [182] | 2021 | DC, AV, CL, SN | Self-supervised | Better performance | Time consuming |
Yang et al. [180] | 2021 | SAA | Unsupervised | Novel and high performance | Training is difficult |
Li et al. [179] | 2021 | SSPCN | Unsupervised | Better accuracy | Generation of Pseudo labels does not hold in some case, |
Prexl et al. [177] | 2021 | Extended DCVA | Unsupervised | Better performance | Not Novel |
Sun et al. [178] | 2021 | Patch similarity | Unsupervised | Better performance | Complex when the ground features covers a very large area |
Wu et al. [181] | 2021 | GCN | Semi-Supervised | Novel framework | Time consuming |
Jiang et al. [176] | 2020 | DHFF IST | Pre-trained | High performance | Computational complexity |
Methods | FN | FP | OE | PCC | K |
---|---|---|---|---|---|
FCM | 12,126 | 813 | 12,939 | 85.47 | 34.95 |
NLMFCM | 687 | 668 | 1355 | 98.48 | 86.36 |
DBN | 697 | 841 | 1538 | 98.27 | 84.29 |
SCCN | 768 | 779 | 1547 | 98.26 | 84.38 |
wavelet fusion | 931 | 1377 | 2308 | 97.41 | 75.76 |
gcForest | 124 | 685 | 809 | 99.09 | 91.41 |
Proposed method | 163 | 630 | 793 | 99.11 | 91.66 |
Methods | Precision | Recall | F1-Score | OA |
---|---|---|---|---|
CDNet | 0.7395 | 0.6797 | 0.68 82 | 0.9105 |
FC-EF | 0.8156 | 0.7613 | 0.7711 | 0.9413 |
FC-Siam-conc | 0.8441 | 0.8250 | 0.8250 | 0.9572 |
FC-Siam-diff | 0.8578 | 0.8364 | 0.8373 | 0.9575 |
FC-EF-Res | 0.8093 | 0.7881 | 0.7861 | 0.9436 |
FCN-PP | 0.8264 | 0.8060 | 0.8047 | 0.9536 |
U-Net++ | 0.8954 | 0.8711 | 0.8756 | 0.9673 |
Methods | OA | Precision | Recall | F1-Score | K |
---|---|---|---|---|---|
U-Net | 0.945470 | 0.935675 | 0.951087 | 0.942151 | 0.950427 |
R U-Net | 0.989402 | 0.948417 | 0.923722 | 0.935821 | 0.945470 |
Att U-Net | 0.986232 | 0.900143 | 0.908169 | 0.893870 | 0.930937 |
R2 U-Net | 0. 953387 | 0.978676 | 0.920067 | 0.919009 | 0.900139 |
Att R2U-Net | 0.991611 | 0.958538 | 0.946333 | 0.952342 | 0.957096 |
Methods | OA | Sensitivity | MD | FA | F1 | BA | Precision | Specificity | KC |
---|---|---|---|---|---|---|---|---|---|
CVA | 94.09 | 19.50 | 80.50 | 4.16 | 13.15 | 57.67 | 9.92 | 95.84 | 0.104 |
MAD | 91.05 | 42.48 | 57.52 | 7.81 | 17.88 | 67.34 | 11.32 | 92.19 | 0.148 |
PCA | 92.55 | 19.25 | 80.75 | 5.72 | 10.61 | 56.77 | 7.32 | 94.28 | 0.075 |
IR-MAD | 91.1 | 40.56 | 59.44 | 7.70 | 17.31 | 66.43 | 11.00 | 92.30 | 0.142 |
SFA | 92.48 | 31.06 | 68.94 | 6.07 | 15.94 | 62.49 | 10.72 | 93.93 | 0.128 |
3D-CNN | 98.15 | 29.19 | 70.81 | 0.23 | 42.02 | 64.48 | 74.96 | 99.77 | 0.413 |
Proposed method | 99.18 | 75.40 | 24.60 | 0.25 | 80.99 | 87.58 87.46 | 99.75 | 0.805 |
Methods | FA | MA | OE | OA | KC |
---|---|---|---|---|---|
PCC | 2947 | 1187 | 4134 | 95.86 | 0.4651 |
SCCN | 2094 | 538 | 2632 | 97.36 | 0.6532 |
ASDNN | 1939 | 525 | 2464 | 97.53 | 0.6695 |
FL-based | 2027 | 627 | 2654 | 97.34 | 0.6434 |
LTFL | 1104 | 841 | 1945 | 98.05 | 0.6950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens. 2022, 14, 871. https://doi.org/10.3390/rs14040871
Shafique A, Cao G, Khan Z, Asad M, Aslam M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sensing. 2022; 14(4):871. https://doi.org/10.3390/rs14040871
Chicago/Turabian StyleShafique, Ayesha, Guo Cao, Zia Khan, Muhammad Asad, and Muhammad Aslam. 2022. "Deep Learning-Based Change Detection in Remote Sensing Images: A Review" Remote Sensing 14, no. 4: 871. https://doi.org/10.3390/rs14040871
APA StyleShafique, A., Cao, G., Khan, Z., Asad, M., & Aslam, M. (2022). Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sensing, 14(4), 871. https://doi.org/10.3390/rs14040871