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Abstract: Multi-modality image fusion provides more comprehensive and sophisticated information
in modern medical diagnosis, remote sensing, video surveillance, etc. Traditional multi-scale
transform (MST) based image fusion solutions have difficulties in the selection of decomposition
level, and the contrast loss in fused image. At the same time, traditional sparse-representation
based image fusion methods suffer the weak representation ability of fixed dictionary. In order
to overcome these deficiencies of MST- and SR-based methods, this paper proposes an image
fusion framework which integrates nonsubsampled contour transformation (NSCT) into sparse
representation (SR). In this fusion framework, NSCT is applied to source images decomposition for
obtaining corresponding low- and high-pass coefficients. It fuses low- and high-pass coefficients
by using SR and Sum Modified-laplacian (SML) respectively. NSCT inversely transforms the fused
coefficients to obtain the final fused image. In this framework, a principal component analysis
(PCA) is implemented in dictionary training to reduce the dimension of learned dictionary and
computation costs. A novel high-pass fusion rule based on SML is applied to suppress pseudo-Gibbs
phenomena around singularities of fused image. Compared to three mainstream image fusion
solutions, the proposed solution achieves better performance on structural similarity and detail
preservation in fused images.

Keywords: image fusion; sparse representation; NSCT; SML

1. Introduction

Image fusion generates a composite image via integrating the complementary information from
multiple source images in the same scene. The input source images in an image fusion system can
be acquired either from various kinds of imaging sensors or from one sensor with different optical
parameter settings. So the fused image as output is more fit for human visual perception and machine
processing than any single source image. Image fusion techniques have been widely used in computer
vision, surveillance, medical imaging, remote sensing, and so on [1].

Pixel-level fusion algorithms are mainly categorized as spatial domain and transform domain
based solutions [2]. Spatial domain based solutions directly extract useful information from source
images for image fusion [3]. Being the simplest method, pixel weighted average strategy is always
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applied to source image pixels. It often blurs the contour and edge information of source images, loses
the useful information, and causes low-quality image fusion results. To enhance the visual quality of
fused image, area and block segmentation based image fusion solutions were proposed [4]. Although
the visual performance of fused image is improved, the corresponding segmentation algorithm is
comparatively complex, and not good for real-time processing. In spatial-domain based image
fusion algorithms, it is difficult to determine the size and features of sub-block. V.Aslantaa proposed
a differential evolution algorithm to determine the size of split image [4].

Based on quad-tree structure and morphology, I. De proposed a novel image fusion algorithm [5].
M. Bagher integrated block segmentation and discrete cosine transform into image fusion [6]. Other
image block recognition and selection methods, such as pulse-coupled neural networks (PCNNs),
artificial neural network [7], had been successfully applied to image fusion. Although most of the
existing solutions can obtain high-quality fusion results in certain extents, fused images may still be
unsmooth. In transform-domain based fusion methods, source images are transformed into bases and
coefficients [2]. The transform coefficients are merged, and then inverted to construct a corresponding
fused image. MST methods are widely applied to different image fusion scenes, such as multi-focus [8],
infrared-visible [9] and multi-modality medical [2] images fusion. In general, the fusion frameworks
based on MST include decomposing source images, merging transform coefficients and reconstructing
fused image [2].

Pyramid-based image fusion algorithm is widely used in the transform-domain method.
The Laplacian pyramid was used in the multi-scale decomposition of the image, and after that the
corresponding scales were merged to form the fused image [2]. Du presented a combination Laplacian
pyramid with multiple features for medical image fusion that improved the contrast of the fused
image [10]. Jin proposed remote sensing images applied to Baldwinian Clonal Selection Optimization
based on pyramid decomposition [11]. This method employed contrast pyramid decomposition in
each level of source images, which made the fused image more fit for the human visual system.
However, the pyramid-based transform lacks direction, so it cannot extract detailed image information
in different directions [7].

Compared to conventional pyramid-based algorithms, wavelet-based transform methods not only
contain more temporal and frequency features, and multi-resolution properties, but also achieve good
performance in fused results. Mallat first applied wavelet-based transform to image fusion [7]. In recent
years, following the continuous research on wavelet analysis and multi-resolution theory, some new
wavelet transforms, such as discrete wavelet (DWT) [12], fuzzy wavelet [13], double-tree complex
wavelet (DTCWT) [14], and M-band wavelet transform [7], have been introduced into image fusion.
It is known that there are some fundamental shortcomings in discrete wavelet transform, like lack of
shift invariance and directivity. Because of the shift invariance and directional selectivity of DTCWT
on DWT, the artifacts introduced by DWT can be reduced, and the DTCWT is successfully applied to
image fusion. However, DWT or DTCWT cannot represent the curve and edge information of the image
well [15]. In order to describe the spatial structures of the image more precisely, there are some new
multi-scale geometric analysis tools introduced into image fusion. For instance, the inherent geometric
structure of the image can be captured by contourlet transform, and maximize the use of geometric
characteristics of data, such as line singularities and plane singularities [7]. Since contourlet transform
contains the downsampling, it lacks shift invariant property. Nonsubsampled contourlet transform
(NSCT) can describe complex spatial structures in various directions well [16]. For conventional
MST-based image fusion methods, there are two main weaknesses as follows. One is the loss of
contrast. When the weighted average rule is applied to the low-pass fusion, the details of original
images are largely lost. The results show that the contrast of fused image is greatly deduced after MST
reconstruction. The low-pass band contains most energy of an image. The averaging fusion rule tends
to lose partial energy of source images [2]. The other one is that it is difficult to select the decomposition
level of MST. When the decomposition level is low, it cannot extract enough spatial details from source
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images. However, when the decomposition level is high, the high-pass fusion becomes more sensitive
to noise and registration. Therefore, it is difficult to make an accurate registration.

As a novel theory of image representation, sparse representation (SR) addresses the natural
sparsity of signal, according to the physiological characteristics in the human visual system.
SR is a transform-based approach, which is widely used in image classification [17,18], image
super-resolution [19], image identification [20], image characteristics extraction [21], image
deblurring [22], image target recognition [20,23] and multi-modality information fusion [24]. It was
first implemented in image fusion by Li and Yang [25].

An SR-based fusion framework was proposed and a corresponding dictionary for SR was
established by discrete cosine transform (DCT). Based on group sparse-representation, Li introduced
the de-noising method into medical image fusion [26]. However, as this method has not been
corroborated on color medical images, Yang and Liu [27] have proposed several mathematical
models for the construction of hybrid dictionaries. The hybrid dictionary can show the specific
structures well, but its poor adaptability affects the representation of different types of images.
Therefore, a learning-based adaptive dictionary was applied to SR-based image fusion [28]. K-SVD
is a classical dictionary training method, which is widely used in SR-based image fusion [29,30].
Based on K-SVD, Yin [24,30] proposed several image fusion methods, such as the multi-focus image
fusion method [30] and the multi-modality medical image fusion method [24], which have good
state-of-the-art performances and can improve the performance of image details. In order to deal with
image fusion on remote sensing, a non-parametric Bayesian [29] adaptive dictionary learning method
has been proposed.

The source image can be described by combining the sparse linearity in sparse representation
of atoms selected in an over-complete dictionary. The salient information of source images can be
represented by only few non-zero elements in sparse coefficients, because the obtained weighted
coefficients are sparse. Based on a joint patch clustering, an efficient dictionary learning method
was proposed for multi-modality image fusion [31]. Only a few main elements that can effectively
describe each joint patch cluster are chosen to construct a compact and informative dictionary.
They are combined to form an over-complete dictionary. Multi-modality images are represented by
sparse coefficients estimated from the simultaneous orthogonal matching pursuit (SOMP) algorithm.
In general, the fusion methods based on SR include three steps. First, each source image is decomposed
into many patches by using the sliding window technique (patches are overlapped) directly. Then,
it sparsely codes each block to obtain corresponding sparse coefficients. Finally, it merges coefficients
into the fused image by the Max-L1 rule.

However, conventional SR-based image fusion methods have the following defects. (1) The fine
details of original images such as textures and edges are often smoothed. The reconstructed result is
not close to the input signal because all fine details may not be sufficiently represented by dictionary.
(2) The consistence of gray in fused image may be caused by the Max-L1 rule, when the original image
is captured by different imaging methods. In the past few years, many approaches, such as SR-based
and MST-based methods, have been proposed to improve the fusion performance. An image fusion
framework that integrates the complementary advantages of MST and SR (MST-SR) was proposed for
multi-modality image fusion [31]. It overcomes the shortcomings of MST and SR-based fusion methods
at the same time. In K-SVD, the SR-based dictionary learning method is applied to fuse MST low-pass
bands. A large number of training images are involved in the iterative learning process of K-SVD.
Considering the heavy computational complexity, it has higher costs in practical application, and the
dimension of its dictionary is always limited. So this paper presents an image fusion framework
called NSCT-SML-SR (NSS) that takes all the complementary advantages of NSCT and SR. First,
NSCT decomposes each source image to obtain its high- and low-pass coefficients. With multiple
scale and direction characteristics, NSCT can solve the limitations of tradition wavelet methods in the
presentation of image curves and edges. Compared to conventional MST-based image fusion method,
NSCT has shift-invariant, and suppresses pseudo-Gibbs phenomena. The NSCT-based method is not
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only convenient to find the relationship among each sub-band of image, but also effectively suppresses
mis-registration in fused image. Then it performs Sum Modified-Laplacian (SML) processing over
high-pass bands to obtain the pixel metric features of high frequency clear region, which is used in
decision-making of image fusion algorithms. The principal component analysis (PCA) dictionary
learning algorithm is applied to low-pass bands. Then SR-based fusion algorithm is used to integrate
the low-frequency coefficients. The contrast of fused image is improved. The SR-based method is
applied to extract the spatial details of low-pass segments. The decomposition in multi-focus image
fusion is set to be less than 4 to make the proposed solution more robust to mis-registration. Thus,
it is a good solution to solve the problem of decomposition. Therefore, the problem of confirming
decomposition level can be well solved. Meanwhile, the expression ability of PCA dictionary satisfies
the accuracy of low-frequency component reconstruction, which can prevent the inclination of detail
smoothing in the SR-based method. Finally, NSCT inversion of the combined high- and low-frequency
coefficients is performed to obtain the fused image.

The key contributions of this paper can be elaborated as the following three points:

1. It decomposes source images into high- and low-pass bands, and applies inverse NSCT to the
merged coefficients to obtain fused image. With multi-scale, multi-direction and shift-invariant
features, NSCT can suppress pseudo-Gibbs phenomena effectively.

2. It uses PCA-based dictionary learning in the fusion of low-frequency coefficients. It reduces the
dimension of learned dictionary and computation time. At the same time, it effectively improves
the detailed performance and accuracy of the fused image.

3. It utilizes MAX-SML to fuse high-frequency coefficients. It selects the coefficient with a large
SML value as the fusion coefficient. It not only suppresses pseudo-Gibbs phenomena around
singularities of the fused image, but also improves the visual quality.

The rest of this paper is organized as follows: Section 2 presents the proposed framework;
Section 3 compares the proposed solution with other existing solutions in the fusion of multi-focus,
visible-infrared, and medical images; and Section 4 concludes this paper.

2. Proposed Framework

Based on NSCT multi-scale transformation, the proposed NSS fusion framework is shown in
Figure 1. To simplify the discussion, it uses two source images for illustration. The proposed framework
can be straightforwardly extended to fuse multiple source images.

There are three main steps of the proposed solution; they are as follows:

1. NSCT Decomposition: It performs a given NSCT on two original images {IA, IB} respectively.
The low- and high-pass bands are obtained, which are expressed as {LA, LB} and {HA, HB}
respectively.

2. Low-pass and High-pass Decomposition:

• Low-pass Decomposition: It iterates vector generation and sparse representation process for
all source image patches

{
Pi

A
}T

k=1 and
{

Pi
B
}T

k=1 using Max-L1 rule. The fused result LF of
low-pass bands is obtained.

• High-pass Decomposition: It merges high-frequency component HA and HB to obtain the
fused high-frequency coefficient HF using the SML-MAX fusion rule.

3. NSCT Reconstruction: It does NSCT inversely on LF and HF to reconstruct the final fused image IF.
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Figure 1. Proposed image fusion framework.

2.1. NSCT Transformation

Based on contourlet transform (CT), it proposes nonsubsampled contourlet transform (NSCT)
with time shift invariance and direction selectivity. Compared to conventional MST fusion methods,
each sub-band image decomposed by NSCT has the same size as the source image, which is easier to
use for image fusion.

CT employs Laplacian Pyramid (LP) and Directional Filter Bank (DFB) in multi-scale and
direction decomposition respectively. Based on Nonsubsampled Pyramids Filter Bank (NSPFB) and
Nonsubsampled Directional Filter Bank (NSDFB), the proposed NSCT shown in Figure 2 can achieve
a rapid expansion with flexible multi-scale, multi-direction and shift invariant. Figure 2a displays
an overview of proposed NSCT. Figure 2b illustrates the idealized frequency partitioning obtained
by NSCT.

Figure 2. Nonsubsampled contourlet transform (NSCT). (a) An overview of proposed NSCT.
(b) The idealized frequency partitining obtained by NSCT.

NSPFB is a two-channel Nonsubsampled Filter Bank (NFB), which is used by NSCT. It removes
up- and down-samplers from LP, and then does upsampling accordingly. For multi-scale property,
it does not need additional filter design.
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The decomposition of NSPFB is illustrated by Figure 2a with j = 3 stages. The ideal frequency

of j-stage support region low pass filter is
[
−(π

/
2j) (π

/
2j)

]2
. Accordingly, the ideal support

of equivalent high-pass filter is the complement of low-pass filter at the corresponding region
[−(π/2j−1), (π/2j−1)]2\[−(π/2j), (π/2j)]2. The equivalent filters of a j-level cascading NSPFB are
given by Equation (1).

H1(z2n−1 I)Πn−2
j=0 H0(z2j I), 1 ≤ n ≤ J

Πn−2
j−0 H0(z2j I), n = J + 1

(1)

where H0(z) and H1(z) denote the low-pass filter and the corresponding high-pass filter respectively.
NSDFB used by NSCT is a shift-invariant version of the dual-channel critical sampling DFB in CT.

Therefore, the two-dimensional frequency plane is divided into a directional wedge by the results in
tree structured filter banks.

The upper sampling fan filters Uj(zD) (j = 0, 1) have chessboard frequency support, where the
sampling matrix D is a quincunx matrix i.e.,

D =

[
1 −1
1 1

]
,

The equivalent filter in each channel Uk(z)(k = 0, 1, 2, 3) can be obtained by Equation (2).
Although the higher sampling matrix is more complex, the higher level directional decomposition also
follows a similar strategy. Thus, a single NFB fan filter can supply all filter banks in the NSDFB tree
structure. Moreover, the usage of upsampled filters for filtering does not increase the computational
complexity. Filters in the NSDFB tree have the same complexity as that in fan NFB.

Uk(z) = Ui(z)Uj(zD) (2)

As shown in Figure 2a, NSCT can be obtained by integrating NSPFB and NSDFB. The 2-D two
channel nonsubsampled filter banks are the core of NSCT. The perfect reconstruction of the two-channel
unsampled filter banks can be realized, in which the filter satisfies the Bezout identity, as shown in
Equation (3).

H0(z)G0(z) + H1(z)G1(z) = 1 (3)

where H0(z) and H1(z) both represent the decomposition filters. G0(z) and G1(z) show the synthesis
filters. If the two-channel nonsubsampled filter banks in both NSDFB and NSPFB satisfy the Bezout
identity and are invertible, NSCT is invertible. NSCT is flexible. It allows for an arbitrary number of
directions at each scale; in particular, it satisfies the anisotropic scaling law [32,33] as a key quality for
the expansion of nonlinear approximate behavior [9,34].

2.2. Low-Pass Fusion

2.2.1. Dictionary Learning

The main difficulty of image reconstruction and fusion techniques is choosing an over-complete
dictionary based on sparse representation. Over-complete dictionaries use DCT and wavelet in most
cases. A fixed dictionary is easy to be achieved; however, its performance is somewhat limited in
terms of data and application types. Aharon [31] developed a dictionary-learning based method to
make the dictionary adapt to different input image data [31]. A dictionary called K-SVD is learned
from a set of training images and updated adaptively by SVD operation. Comparing with other fixed
dictionary based methods, K-SVD has better performance in many image reconstruction approaches.
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Elad and Aharon proved that adaptive dictionaries from noisy input images are sometimes superior
to fixed DCT or global training dictionaries [31]. K-SVD is an iterative learning process, which is
widely used in a large number of training images in practical applications with high cost. Due to the
high computational complexity, the dimension of learned dictionary is constrained [27]. The lessons
obtained by different dictionary learning methods and the clustering method are used as motivation.
To solve the problem of multi-modal image fusion, a resultful dictionary learning method based on
joint block clustering is selected. More diverse features can be supplied by images from multiple
sensors. Therefore, a complete dictionary can be formed by clustering similar patches from all source
images. The trained dictionaries can be combined together to describe all multi-modal image signals
by adding patches from all source images. In addition, the over-complete dictionary of K-SVD has
a high structure. All multi-modal image signals can be described by a learning dictionary, but it is
redundant. By eliminating redundancy in learned dictionaries (reducing the dictionary size) [35],
the computational complexity of proposed image fusion can be reduced.

An over-complete dictionary constructed by clustering all local neighbor patches is shown in
Figure 3a. Figure 3b demonstrates a dictionary constructed by those patches from joint patch clusters
directly. More image patches from source images are involved, so it may cause redundancy in the
learned dictionary. Recently, some methods have been proposed to reduce the size of over-complete
dictionaries or to utilize compact dictionaries [36,37]. The proposed solution combines the main
components of each joint patch cluster to learn a compact and informative dictionary. Since several
PCA bases can be well approximated to several cluster patches, select the most useful p principal
components to form a sub-dictionary as follows:

DC =
[
d1, ...dp

]
s.t.p = arg max

p

{
n

∑
j=p+1

Lj > δ

}
(4)

where DC expresses the sub-dictionary of the Cth cluster, which is composed of p eigenvectors, i.e.,
atom. The eigenvalues of jth eigenvector dj correspond to Lj. Ranking eigenvalues in descending order
(i.e., L1 > L2 > ... > Ln). δ is a parameter to control the amount of approximation with rank p. If δ is
set too high, the constructed sub-dictionary may have an insufficient number of atoms. In this way, the
signals reconstructed by using such dictionaries become too smooth. Thus, it should at least be wise to
determine δ to get the minimum number of atoms that correctly represent the signal. In this paper, we
set δ = 0.95. The typical PCA bases are chosen as the atoms of the corresponding sub-dictionaries,
which can best describe the underlying structure of each cluster. Once all sub-dictionaries of all joint
patch clusters are obtained, they are combined to form a single dictionary as follows:

Φ= [D1, D2, ..., DC] (5)

Figure 3. (a) Illustration of generating local patch dictionaries. (b) Illustration of generating joint
patch clusters.
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This combination dictionary Φ is called the aggregate patches dictionary in (5) because it contains
cluster principal components across input source images. Compared with the fixed DCT dictionary and
the k-svd learning dictionary, the dictionary based on principal component analysis (PCA) presented
in this paper is more compact, but the most informative components are still included in the joint
patch clusters. Therefore, it attains the good reconstruction performance by reducing the substantial
computation costs.

2.2.2. Low-Pass Fusion

A sparse-representation based fusion approach is applied to each low-pass NSCT band. The fusion
scheme contains the following steps:

1. LA and LB are divided into image patches of size
√

n×
√

n by using sliding window technique
with steps of s pixels from the top left to the lower right corner. Suppose there are T patches
denoted as

{
Pi

A
}T

k and
{

Pi
B
}T

k in LA and LB respectively.
2. For each position i, rearrange

{
Pi

A, Pi
B
}

into column vectors
{

vi
A, vi

B
}

. Then normalize each
vector’s mean value to zero to obtain

{
Vi

A, Vi
B
}

by

Vi
A = vi

A −
−

vi
A ·



1
1
.
.
.
1


(6)

where



1
1
.
.
.
1


denotes an n× 1 vector.

−
vi

A is the mean values of all the elements in vi
A. Vi

B is

obtained in the same way as Vi
A.

3. Calculate the sparse coefficient vectors
{

αi
A, αi

B
}

of
{

Vi
A, Vi

B
}

using Simultaneous Orthogonal
Matching Pursuit (SOMP) algorithm by

αi
A = arg min

αi
A

‖α‖0 s.t.
∥∥∥yi

A,L −Φα
∥∥∥2

2
< ε (7)

where ε represents the bounded representation error, ‖α‖0 represents a count of non-zero items
in α, yi

A,L denotes the low frequency component LA. Φ is the learned dictionary. Similarly, αi
B can

also be obtained using Equation (7).
4. Merge αi

A and αi
B by Max-L1 rule to obtain fused sparse coefficients.

αi
F =

{
αi

A, i f
∥∥αi

A

∥∥
1 >

∥∥αi
B
∥∥

1
αi

B, otherwise
(8)

The fused result of vi
A and vi

B is calculated by

Vi
F = Φαi

F +
−
vi

F ·1 (9)
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where the merged mean value
−
vi

F is obtained by

−
vi

F =


−

vi
A, i f αi

F = αi
A

−
vi

B, otherwise
(10)

5. All the original image patches in
{

Pi
A
}T

k and
{

Pi
B
}T

k are iterated according to the above (2) to (4)

processes to obtain all the fused vectors
{

Vi
A
}T

i=1.For each Vi
F, it is reshaped into a

√
n×
√

n size
patch Pi

F. Then plug Pi
F into its original position in LF. The low-pass fused result LF is obtained

by averaging the accumulation times of each pixel’s value in LF.

2.3. High-Pass Fusion

In this paper, the high frequency coefficients are fused using the MAX-SML rule. Select the
coefficient with a large SML value as the fusion coefficient. Suppress pseudo-Gibbs phenomena around
singularities of fused image. The fusion scheme contains the following steps:

1. NSDFB decomposes each high-frequency component HA and HB obtained by NSCT
decomposition to obtain the coefficients Il,k

A (i, j) and Il,k
B (i, j) at (i, j) in the 1-scale k-direction.

2. Calculate the Modified Laplacian (ML) and SML of the high-frequency coefficients Il,k
A (i, j) and

Il,k
B (i, j). The ML and SML are defined as follows:

MLl,k(i, j) =
∣∣∣2Il,k(i, j)− Il,k(i− step, j)− Il,k(i + step, j)

∣∣∣+∣∣∣2Il,k(i, j)− Il,k(i, j− step)− Il,k(i, j + step)
∣∣∣ (11)

where the step denotes the variable spacing between different coefficients. In this paper, we set
step = 1.

SMLl,k(i, j) =
P

∑
p=−P

Q

∑
q=−Q

[
MLl,k(i + p, j + q)

]2

(12)

where P and Q denote the window of size (2P + l)× (2Q + l).
3. Merge Il,k

A (i, j) and Il,k
B (i, j) by the "SML-MAX" rule to obtain the high-frequency fused coefficient.

Il,k
F (i, j) =

{
Il,k
A (i, j), i f : SMLl,k

A (i, j) ≥ SMLl,k
B (i, j)

I j,k
B (i, j), i f : SMLl,k

A (i, j) < SMLj,k
B (i, j)

(13)

where SMLl,k
A (i, j) and SMLl,k

B (i, j) are the SML clarity of the high-frequency coefficients Il,k
A (i, j)

and Il,k
B (i, j) respectively. Il,k

F (i, j) denotes the fused high-frequency coefficient at (i, j) in the
1-scale k-direction.

4. Iterate the above (2) and (3) process for all the high-frequency coefficients in high-frequency
component HA and HB to obtain the high-frequency fused coefficient HF.

The final fused image IF is reconstructed by performing the corresponding inverse NSCT over LF
and HF.

3. Experiments and Analysis

3.1. Experiment Preparation

In our experiments, 34 sets of medical images, 29 sets of multi-focus and 8 sets of infrared-visible
images are applied to the fusion performance testing respectively. The resolution of test images
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are 256 × 256, 240 × 320 and 520 × 520 respectively. Parts of representative images are shown in
Figure 4. In Figure 4, image pairs (a), (b), and (c) show image sets of medical, multi-focus, and
infrared-visible respectively. Medical image sets are acquired from http://www.med.harvard.edu/aanlib/
home.html. Infrared-visible and gray-level multi-focus image pairs were collected by Liu [2] and can be
downloaded from quxiaobo.org. The color multi-focus image sets are from Lytro-multi-focus data-set
at http://mansournejati.ece.iut.ac.ir. All the experiment’s program’s codes are programmed in Matlab
2014a on an Intel(R) Core(TM)i7-4790CPU @ 3.60GHz Desktop with 8.00 GB RAM.

Figure 4. Source images of comparative experiments: (a) Medical image pairs. (b) Multi-focus image
pairs. (c) Infrared-visible image pairs.

Objective Evaluation Metrics

In evaluate the quality of fused images, single evaluation metric lacks adequacy and objectivity.
Therefore, a plurality of evaluation metrics are used to comprehensively evaluate the image quality
as necessary. In this paper, eight evaluation metrics are applied to objectively evaluate the fusion
performance of different fusion approaches, which are QTE [38,39], QIE [38,40] , QAB/F [41], QP [38,42],
MI [43], QY [38,40], QCB [38,44], and VIF [45].

QTE [38,39] and QIE [38,40] evaluate the Tsallis entropy and nonlinear correlation information
entropy of fused images respectively. QAB/F [41] and QP [38,42] are used to measure the edge
information. QAB/F [41] is a gradient-based quality index, and QP [38,42] is an image fusion

http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
http://mansournejati.ece.iut.ac.ir
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performance metric based on phase consistency. MI [38] and QY [38,40] are metrics for evaluating the
similarity between the fused image and source images.

MI [38] measures the degree of interdependence between two variables, and QY [38,40] evaluates
the structural similarity between two variables. QCB [38,44] and VIF [45] evaluate the human
visualisation performance of fused images. QCB [38,44] is human perception inspired fusion metric.
VIF [45] is defined as the ratio between fused image information and source images information.

3.2. Experiment Results of Four Popular Fusion Methods

In this subsection, four popular fusion methods are applied to demonstrate the advantages of
proposed image fusion framework (NSS). The rest of the popular fusion methods include Kim’s
multi-modal image fusion proposed by Minjae Kim [46], the novel multi-modal image fusion method
based on image cartoon-texture (CT) decomposition proposed by Zhu [47], and the MST- and SR-based
image fusion framework proposed by Liu [2].

In this experiment, we set the NSCT filters mainly based on the optimal setting obtained by Liu [2].
We use the “9-7” as the NSPFB and the "pkva" as the NSDFB. Furthermore, the directional number of
the four decomposition levels is set to 4, 8, 8 and 16 in order. For the NSS fusion method, the image
patch decomposition size is set to 8 × 8. The dictionary use in sparse model is learned by PCA method.

The dictionary used in sparse model is learned by PCA method.

3.2.1. Experiment Results of Medical Images

In modern medical diagnosis, various types of medical images provide great help in the accurate
diagnosis of diseases. Common medical image techniques include X-Ray, Computed Tomograpy
(CT), Magnetic Resonance (MR), and Positron Emission Tomograph (PET), etc. There are significant
differences in the attention of different modal medical images of human organs and tissues, because
of the different imaging mechanisms. Single-type image often fails to provide comprehensive and
sufficient information for disease diagnosis. Clinically, doctors generally need to synthesize multiple
different types of medical images from the same position to diagnose patient’s condition, which
often brings great inconvenience and affects the accuracy of diagnosis. As a solution to these issues,
the multi-modal medical image fusion is successfully applied to medical diagnosis. As a key advantage,
multi-modal medical image fusion combines the information from different modalities of medical
images and presents the combined one in a fused image.

Figures 5 and 6 are two multi-modal medical image fusion examples. In Figures 5 and 6, (a) and
(b) are two source images, and (c), (d), (e), and (f) illustrate the fused results of KIM, CT,MST-SR, and
NSS image fusion method respectively. The different organ information of the human body is reflected
by captured images from different modalities. As illustrated in Figures 5 and 6, comparing with the
fused images of KIM and CT methods, the fused images obtained by the NSS method have clearer
details of the edges and better contrast. Compared to the MST-SR method, the NSS method performs
excellently in detail preservation. For example, in the middle white area of Figure 5 obtained by the
MST-SR method, some minor details are lost, and the color of Figure 6 obtained by the MST-SR method
is unnatural.
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Figure 5. CT image fusion experiments, (a) and (b) are two CT source images. (c) KIM. (d) Zhu. (e) Liu.
(f) NSS.

Figure 6. CT-MR image fusion experiments, (a) and (b) are CT and MR source image respectively. (a)
KIM. (b) Zhu. (e) Liu. (f) NSS.

Table 1 lists the objective assessments of four popular fusion methods on medical images.
As shown in Table 1, compared to other methods, the fusion image obtained by the NSS method
outperforms in several evaluation metrics, QIE, QAB/F, MI, QY and QCB. From the properties of these
evaluation indicators, it can be indicated that fused image obtained by the NSS approach has excellent
similarity with source images, and better preserves details. Although, QTE and QP metrics are not as
good as the CT method, and the VIF metric is a bit lower than the MST-SR method, the NSS fusion
framework performs excellently on the preservation of details. In summary, NSS achieves better fusion
effects in multi-modal medical image fusion.
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Table 1. Objective evaluations of medical image fusion experimentation.

QTE QIE QAB/F QP MI QY QCB VIF

KIM 0.5241 0.8063 0.3564 0.2710 1.8923 0.4701 0.5078 0.2584
CT 0.5544 0.8069 0.5230 0.4895 2.0000 0.6180 0.5465 0.2958
MST-SR 0.5125 0.8067 0.5812 0.3975 1.9624 0.6574 0.5324 0.3174
NSS 0.5371 0.8070 0.6148 0.4430 2.0093 0.6874 0.5482 0.3081

The bolded number is the maximum value of each column.

3.2.2. Experiment Results of Multi-Focus Images

Since the optical system has a limited range of focus, getting a full-focus image in one scene is
difficult to achieve. When an object is within the focus range, a clear image can be captured. But the
out-of-focus objects suffer from blurs in various degrees. At present, the resolution of the optical lens
is continuously improving. However, the overall impact of limited focusing range on imaging still
exists. However, a fully focused image in one scene can be obtained by multi-focus image fusion.
The multi-focus fusion techniques can effectively overcome the limited focus range of the optical
system [1,27]. Multi-focus fusion techniques can effectively overcome the limited focus range of the
optical system to achieve a fully focused image obtainment in one scene. Furthermore, it lays the
foundation for image processing, such as feature extraction.

Figures 7 and 8 show the multi-focus image fusion of black-white and color images respectively.
Figures 7 and 8a–b are source images. Figures 7 and 8c–f represent the fused images obtained by KIM,
CT, MST-SR, and NSS method respectively. As shown in Figure 7, petal texture details of images fused
by KIM and CT approaches are poorer than those of the MST-SR and NSS methods. For the two fused
images obtained by the MST-SR and NSS methods, the quality of fusion shown in the human visual
system is equally good. It is difficult to distinguish these two fusion results. Similarly, in Figure 8, since
the quality of four fused images is equally good in the human visual system, it is difficult for the human
visual system to distinguish between the four fused images. Therefore, the objective measurement is
a method for better measuring the fusion performance.

Figure 7. Multi-focus image fusion experiments. (a) and (b) are two multi-focus source images. (c) KIM.
(d) Zhu. (e) Liu. (f) NSS.
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Figure 8. Multi-focus color image fusion experiments. (a) and (b) are two multi-focus color source
images. (c) KIM. (d) Zhu. (e) Liu. (f) NSS.

As illustrated in Table 2, the six evaluation metrics of the NSS approach, QTE, QIE, QP, MI, QY,
QCB, all have excellent performance. It can be inferred that the NSS fusion framework performed
excellently in the preservation of information and details. Moreover, for the human visual performance
evaluation metric QCB, the proposed method shows good performance. MST-SR obtains the highest
score on QAB/F and VIF, it means that the edge retention and human visualisation performance are
better than the NSS method. Although QAB/F and VIF of the NSS method are slightly small, this fusion
approach performs excellently in the preservation of information and details, and it performs good in
visualisation and edge retention.

Table 2. Objective evaluations of multi-focus image fusion experimentation.

QTE QIE QAB/F QP MI QY QCB VIF

KIM 0.7486 0.8208 0.6521 0.7572 4.1530 0.8126 0.6969 0.7887
CT 0.7494 0.8208 0.6943 0.7928 3.9241 0.8442 0.6829 0.7677
MST-AR 0.8912 0.8276 0.8370 0.8380 4.6436 0.9561 0.7718 0.8204
NSS 0.9174 0.8294 0.8260 0.8441 4.7723 0.9596 0.7767 0.8151

The bolded number is the maximum value of each column.

3.2.3. Experimental Results of Infrared-Visible Images

In the reconnaissance shooting task, visible light cameras and infrared imaging devices are used to
acquire the object images. Infrared thermography uses thermal radiation technique to convert infrared
wavelengths beyond the human eye observation wavelength into visible information mapped into the
image. However, the obtained images have poor contrast and cannot extract enough details. Images
obtained by visible light camera have high resolution and enough detailed information of texture and
edge. However, the imaging quality is easily affected by natural conditions. Since the differences and
limitations between visible light and infrared images [48], relying solely on a single type of image is
difficult to meet the actual needs of the project. The infrared-visible image fusion technique offers the
full use of complementary information and spatial-temporal correlation of visible and infrared images
to better meet engineering requirements. Images with high quality and comprehensive information
are obtained by fusing multiple image information [49].

Two infrared-visible image fusion examples are displayed in Figures 9 and 10. Figures 9 and 10a–b
are source images. Figures 9 and 10c–f represent the fused images obtained by the KIM, CT, MST-SR
and NSS methods respectively. As indicated in Figure 9, the image fused by the KIM approach has too
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high brightness of plants edge and poor texture details. In the image fused by the MST-SR algorithm,
the distribution of the sky grayscale is fair. The fused images obtained by the CT and NSS methods get
good performance on details and grayscale. In Figure 10, the fused image of KIM does not show as
good of contrast as NSS and CT methods. The sharpness of MST-SR and KIM fused images is poorer
than that of the NSS approach. Additionally, the pedestrian’s detailed information also shows that the
CT and NSS methods perform excellently in image details contrast and brightness.

Figure 9. Infrared-visible image fusion experiments-1. (a) and (b) are two infrared-visible source
images. (c) KIM. (d) Zhu. (e) Liu. (f) NSS.

Figure 10. Infrared-visible image fusion experiments-2. (a) and (b) are two infrared-visible source
images. (c) KIM. (d) Zhu. (e) Liu. (f) NSS.

As illustrated in Table 3, the image fused by the CT method obtained the best QP score. However,
the human visualisation performance and details preservation of image fused by the CT method are
poorer than that of the NSS approach. The NSS method obtains the highest QTE, QTE, QAB/F, MI, QCB

and VIF. It can be indicated that the NSS approach performs excellently in visual quality and in the
preservation of structural, and performs good in edge retention. Therefore, the NSS fusion framework
is superior to other methods.
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Table 3. Objective evaluations of infrared-visible image fusion experimentation.

QTE QIE QAB/F QP MI QY QCB VIF

KIM 0.5121 0.8119 0.6849 0.6046 2.6497 0.8014 0.5883 0.4678
CT 0.5014 0.8102 0.7167 0.7263 2.5742 0.8338 0.5885 0.4919
MST-SR 0.6215 0.8175 0.8164 0.6966 3.2251 0.9189 0.6842 0.5267
NSS 0.6573 0.8177 0.8342 0.7207 3.3989 0.9332 0.6861 0.5376

The bolded number is the maximum value of each column.

Based on the above experiments, the effectiveness of the proposed NSS image fusion framework
is verified via the subjective visual effects and objective evaluation indicators.

4. Conclusions

This paper talks about multi-source image fusion, which covers multi-modal medical, multi-focus,
and visible-infrared image fusion. An image fusion framework (NSS), based on NSCT and SR,
is proposed to solve the contrast loss, the difficulties in the selection of decomposing level, the defects
of representation ability, and other weaknesses in conventional MST and SR-based fusion algorithms.
In this fusion framework, low-frequency coefficients are fused via the SR-based scheme which uses PCA
dictionary learning, and the high-frequency coefficients are fused via the Sum Modified-laplacian (SML)
rule. The fused image is obtained by performing inverse transform of NSCT on fusion coefficients.
Compared with conventional MST fusion methods, the NSS framework can obtain more informative
fused images. The NSS framework can also improve the detailed performance and accuracy of the
fused image by using PCA dictionary learning in comparison with conventional SR-based methods.
It eliminates the gray-scale discontinuity, while effectively preventing smooth fine details by sliding
window technology. Experiment results prove that the NSS fusion approach sufficiently integrates the
advantages of NSCT and SR. Compared with three mainstream fusion methods, the NSS method can
achieve superior performance in fused results. Particularly, the NSS method owns the advantages of
simple implementation, high efficiency and good performance. It owns the great application prospect
in infrared-visible image fusion. Furthermore, the proposed fusion framework also has great potential
in the visible-infrared image fusion. In the future, we will improve the computational efficiency and
enhance the image fusion performance. Particularly, the NSS fusion framework will be continuously
optimized for visible-infrared image fusion.
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