Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Preprocessing and Trend Analysis
2.4. Urban Boundary Extraction
2.5. Attribution Analysis
3. Results
3.1. Vegetation Cover Change in China’s 32 Major Cities
3.2. Urban Expansion Model
3.3. Contribution Analysis of FVC Changes
3.3.1. Spatial Distribution of the Main Driving Factors
3.3.2. Contributions of Major Drivers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duncan, J.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef]
- Rumora, L.; Majić, I.; Miler, M.; Medak, D. Spatial video remote sensing for urban vegetation mapping using vegetation indices. Urban Ecosyst. 2021, 24, 21–33. [Google Scholar] [CrossRef]
- Hashim, H.; Abd Latif, Z.; Adnan, N.A.; Hashim, I.C.; Zahari, N.F. Vegetation extraction with pixel based classification approach in urban park area. Plan. Malays. 2021, 19, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z. Assessing of urban vegetation biomass in combination with LiDAR and high-resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 964–985. [Google Scholar] [CrossRef]
- Paschalis, A.; Chakraborty, T.; Fatichi, S.; Meili, N.; Manoli, G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Adv. 2021, 2, e2020AV000303. [Google Scholar] [CrossRef]
- Ayub, M.A.; Farooqi, Z.U.R.; Umar, W.; Nadeem, M.; Ahmad, Z.; Fatima, H.; Iftikhar, I.; Anjum, M.Z. Role of urban vegetation: Urban forestry in micro-climate pollution management. In Examining International Land Use Policies, Changes, and Conflicts; IGI Global: Hershey, PA, USA, 2021; pp. 231–251. [Google Scholar]
- Perini, K.; Pérez, G. Ventilative cooling and urban vegetation. In Innovations in Ventilative Cooling; Springer: Berlin/Heidelberg, Germany, 2021; pp. 213–234. [Google Scholar]
- Liao, J.; Tan, X.; Li, J. Evaluating the vertical cooling performances of urban vegetation scenarios in a residential environment. J. Build. Eng. 2021, 39, 102313. [Google Scholar] [CrossRef]
- Patel, S. The potential for urban vegetation to mitigate ambient air pollution threats to public health. Topophilia 2020, 53–62. [Google Scholar] [CrossRef]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Dissanayaka, C.; Weerasinghe, U.; Wijesundara, K. Urban vegetation and morphology parameters affecting microclimate and outdoor thermal comfort in warm humid cities—A review of research in the past decade. In Proceedings of the International Conference on Climate Change, Colombo, Sri Lanka, 18–19 February 2021; pp. 1–17. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Jeong, S.; Ho, C.; Kim, K.; Jeong, J. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Lucht, W.; Prentice, I.C.; Myneni, R.B.; Sitch, S. Climatic control of the high-latitude vegetation greening trend and pinatubo effect. Science 2002, 296, 1687–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.H.; Lee, E.J.; Lee, I.; Jeong, S.J. Earlier spring in Seoul, Korea. Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 26, 2117–2127. [Google Scholar] [CrossRef]
- Hua, W.; Chen, H.; Zhou, L.; Xie, Z.; Qin, M.; Li, X.; Ma, H.; Huang, Q.; Sun, S. Observational quantification of climatic and human influences on vegetation greening in China. Remote Sens. 2017, 9, 425. [Google Scholar] [CrossRef] [Green Version]
- Trumbore, S. Carbon respired by terrestrial ecosystems–recent progress and challenges. Glob. Chang. Biol. 2006, 12, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Chi, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef]
- Singh, C.M.; Singh, P.; Tiwari, C.; Purwar, S.; Kumar, M.; Pratap, A.; Singh, S.; Chugh, V.; Mishra, A.K. Improving Drought Tolerance in Mungbean (Vigna radiata L. Wilczek): Morpho-Physiological, Biochemical and Molecular Perspectives. Agronomy 2021, 11, 1534. [Google Scholar] [CrossRef]
- Flach, M.; Brenning, A.; Gans, F.; Reichstein, M.; Sippel, S.; Mahecha, M.D. Vegetation modulates the impact of climate extremes on gross primary production. Biogeosci. Discuss. 2020, 18, 39–53. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, L.; Lin, A.; Liu, Z.; Li, Q.; Qu, S. Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China. Ecol. Indic. 2020, 108, 105760. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, Y.; Sun, F.; Jiang, H.; Huang, J.; Shen, J.; Wei, F.; Li, S. Exploring the combined effect of urbanization and climate variability on urban vegetation: A multi-perspective study based on more than 3000 cities in China. Remote Sens. 2020, 12, 1328. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X.; Zhang, H. Monitoring long-term annual urban expansion (1986–2017) in the largest archipelago of China. Sci. Total Environ. 2021, 776, 146015. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- United Nations, United Nations Department of Economic and Social Affairs, Popululation Division. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2015; pp. 1–18.
- Wu, Y.; Tang, G.; Gu, H.; Liu, Y.; Yang, M.; Sun, L. The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001–2013 based on MODIS data. Sci. Total Environ. 2018, 653, 536–546. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci. Total Environ. 2014, 488, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.B.; Mainali, K.P. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Sci. Total Environ. 2017, 587, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liang, Z.; Li, S. The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban For. Urban Green. 2020, 54, 126764. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Li, P. Responses of vegetation cover to environmental change in large cities of China. Sustainability 2018, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Li, Z.; Dong, C.; Zhu, Z.; Zeng, H. Effects of urbanization on vegetation conditions in coastal zone of China. Prog. Phys. Geogr. Earth Environ. 2020, 45, 564–579. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. J. Ecotechnol. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, X.; Wu, D.; Tang, R.; Peng, Y. Impact of Urbanization and Climate on Vegetation Coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. 2019, 11, 2452. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barancok, P.; Alonso, J.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, M.F. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.D.R.; Dolman, A.J.; IJanssens, V.A.; Peñuela, J.; Zhang, G. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Yu, K.; Hagolle, O.; Jiang, K.; Geng, X.; Zhao, Y. A cloud detection method based on a time series of MODIS surface reflectance images. Int. J. Digit. Earth 2013, 6, 157–171. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, J.; Wang, X. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Yang, L.; Zhang, X.; Liu, D. Validation of Global LAnd Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sens. Lett. 2018, 9, 847–856. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Zhao, X.; Zhou, T.; Jiang, B.; Xu, P.; Wu, D.; Tang, B. Effects of climate factors and human activities on the ecosystem water use efficiency throughout Northern China. Remote Sens. 2019, 11, 2766. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcagno, V.; De Mazancourt, C. glmulti: An R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 2010, 34, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Lopatin, J.; Dolos, K.; Hernández, H.; Galleguillos, M.; Fassnacht, F. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sens. Environ. 2016, 173, 200–210. [Google Scholar] [CrossRef]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, R.; Luoto, M.; Rämä, T.; Mikkola, K.; Hjort, J.; Grytnes, J.-A.; Birks, H.J.B. Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Glob. Ecol. Biogeogr. 2010, 19, 810–821. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Xiang, J.; Wu, L.; Wang, D. Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environ. Sci. Pollut. Res. 2019, 26, 32866–32879. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Myneni, R.B. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 1–14. [Google Scholar] [CrossRef]
- Fu, W.; Lü, Y.; Harris, P.; Comber, A.; Wu, L. Peri-urbanization may vary with vegetation restoration: A large scale regional analysis. Urban For. Urban Green. 2018, 29, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yang, Y.; Tian, H.; Zhang, B.; Lei, G.U. Assessment of human impacts on vegetation in built-up areas in China based on AVHRR, MODIS and DMSP_OLS nighttime light data, 1992–2010. Chin. Geogr. Sci. 2014, 24, 231–244. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, K.; Zhao, S.; Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ. 2011, 75, 946–952. [Google Scholar] [CrossRef]
- Norby, R.J.; Delucia, E.H.; Gielen, B.; Alfapietra, C.C.; Giardina, C.P.; King, J.S.; Ledford, J.; Mccarthy, H.R.; Moore, D.J.; Ceulemans, R. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 2005, 102, 18052–18056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourghasemi, H.R.; Rossi, M. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: A comparison between GLM, GAM, MARS, and M-AHP methods. Theor. Appl. Climatol. 2017, 130, 1–25. [Google Scholar] [CrossRef]
- Mao, J.; Ribes, A.; Yan, B.; Shi, X.; Thornton, P.E.; Séférian, R.; Ciais, P.; Myneni, R.B.; Douville, H.; Piao, S. Human-induced greening of the northern extratropical land surface. Nat. Clim. Chang. 2016, 6, 959–963. [Google Scholar] [CrossRef]
- Johnson, S.E.; Abrams, M.D. Age class, longevity and growth rate relationships: Protracted growth increases in old trees in the eastern United States. Tree Physiol. 2009, 29, 1317–1328. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: A review. Int. J. Remote Sens. 2016, 38, 6030–6046. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cheng, W.; Zhou, C.; Ma, T.; Li, M.; Huang, K. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens. Environ. 2020, 248, 111980. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, C.; Zhou, Y.; Li, X.; Shen, S.; Song, C. A global dataset of annual urban extents (1992–2020) from harmonized nighttime lights. Earth Syst. Sci. Data Discuss. 2021, 7, 1–25. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imure, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Frolking, S.; Milliman, T.; Seto, K.C.; Friedl, M.A. A globa lfingerprint of macro-scale changes in urban structure from 1999 to 2009. Environ. Res. Lett. 2013, 8, 024004. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Liu, F.; Tang, L.; Liao, K.; Ruan, L.; Liu, P. Spatial distribution and regional difference of carbon emissions efficiency of industrial energy in China. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
Types | DEM (m) | Precipitation (mm) | Temperature (°C) | Radiation (W·m−2) | ||||
---|---|---|---|---|---|---|---|---|
Cities | C | E | C | E | C | E | C | E |
Harbin | 143.2 | 132.6 | 563.3 | 551.6 | 4.2 | 4.7 | 139.7 | 140.1 |
Changchun | 214.3 | 211.8 | 668.9 | 656.6 | 5. | 5.9 | 149.5 | 149.5 |
Urumchi | 823.7 | 800.3 | 236.9 | 239.6 | 6.2 | 6.5 | 177.6 | 177.4 |
Shenyang | 45.6 | 47.4 | 425.9 | 431.8 | 7.9 | 7.9 | 156.8 | 157.2 |
Hohhot | 1053.8 | 1057.3 | 591.3 | 591.2 | 6.9 | 6.9 | 169.3 | 169.6 |
Beijing | 46.6 | 46.1 | 504.2 | 514.1 | 12.6 | 12.2 | 161.0 | 160.9 |
Tianjin | 5.5 | 3.5 | 562.7 | 580.6 | 12.9 | 12.9 | 162.0 | 163.9 |
Yinchuan | 1113.5 | 1110.3 | 270.2 | 274.0 | 9.9 | 9.9 | 186.1 | 185.1 |
Shijiazhuang | 76.5 | 80.7 | 431.6 | 439.3 | 13.9 | 13.7 | 152.2 | 152.5 |
Taiyuan | 799.3 | 802.3 | 363.3 | 358.5 | 10.3 | 10.1 | 170.1 | 169.4 |
Jinan | 46.2 | 77.8 | 767.9 | 800.9 | 14.9 | 14.7 | 166.9 | 166.3 |
Xining | 2261.0 | 2297.5 | 485.8 | 484.9 | 4.2 | 4.4 | 185.0 | 185.5 |
Lanzhou | 1541.9 | 1569.8 | 632.1 | 640.5 | 7.5 | 6.7 | 181.2 | 180.8 |
Zhengzhou | 104.2 | 108.1 | 598.8 | 593.4 | 15.5 | 15.5 | 156.4 | 156.3 |
Xi’an | 411.8 | 404.6 | 474.9 | 473.4 | 14.9 | 14.8 | 159.7 | 159.7 |
Nanjing | 23.0 | 18.3 | 1281.9 | 1292.1 | 15.9 | 15.9 | 160.1 | 159.3 |
Hefei | 26.0 | 27.4 | 1366.2 | 1384.6 | 15.9 | 15.9 | 150.1 | 150.2 |
Shanghai | 5.6 | 4.6 | 1214.5 | 1347.3 | 15.6 | 17.5 | 154.4 | 155.0 |
Chengdu | 498.8 | 505.7 | 1117.2 | 1136.7 | 15.9 | 15.9 | 134.9 | 134.2 |
Wuhan | 27.6 | 27.8 | 1029.9 | 1055.3 | 17.6 | 17.4 | 148.8 | 148.5 |
Hangzhou | 15.0 | 14.9 | 1735.1 | 1732.2 | 17.8 | 17.4 | 154.2 | 154.1 |
Lhasa | 3655.5 | 3653.2 | 569.4 | 566.8 | 8.6 | 8.5 | 227.0 | 226.9 |
Chongqing | 265.7 | 275.8 | 1069.2 | 1068.6 | 18.4 | 18.5 | 129.9 | 129.9 |
Nanchang | 23.9 | 26.9 | 1564.7 | 1566.6 | 18.6 | 18.5 | 155.7 | 155.4 |
Changsha | 53.2 | 55.5 | 1275.2 | 1275.1 | 17.0 | 17.1 | 148.6 | 148.9 |
Guiyang | 1111.2 | 1196.4 | 1180.1 | 1173.4 | 14.8 | 14.4 | 129.4 | 129.7 |
Fuzhou | 14.2 | 24.6 | 1334.3 | 1325.9 | 20.9 | 20.3 | 153.3 | 153.5 |
Kunming | 1897.8 | 1916.6 | 1169.8 | 1246.5 | 14.9 | 14.8 | 188.6 | 187.1 |
Guizhou | 14.1 | 13.9 | 1764.5 | 1783.4 | 21.9 | 21.8 | 154.8 | 153.8 |
Nanning | 83.6 | 97.9 | 1244.9 | 1245.1 | 20.9 | 20.9 | 160.0 | 159.8 |
Shenzhen | 57.0 | 68.8 | 1929.3 | 1869.5 | 22.4 | 22.0 | 170.8 | 169.5 |
Haikou | 16.5 | 17.9 | 2166.7 | 2036.3 | 23.9 | 23.9 | 184.7 | 182.1 |
Type | Gain | Loss | Type | Gain | Loss | ||||
---|---|---|---|---|---|---|---|---|---|
Cities | Area | Ratio | Area | Ratio | Cities | Area | Ratio | Area | Ratio |
Harbin | 354.5 | 74.9 | 8.8 | 1.9 | Hefei | 281.7 | 45.5 | 14.2 | 2.3 |
Changchun | 136.6 | 26.6 | 5.4 | 1.0 | Shanghai | 1211.4 | 30.6 | 114.4 | 2.9 |
Urumchi | 34.7 | 14.8 | 4.8 | 2.0 | Chengdu | 438.2 | 45.3 | 10.3 | 1.1 |
Shenyang | 86.5 | 12.7 | 10.4 | 1.5 | Wuhan | 280.3 | 33.2 | 7.4 | 0.9 |
Hohhot | 49.9 | 23.1 | 5.8 | 2.7 | Hangzhou | 400.0 | 29.9 | 23.8 | 1.8 |
Beijing | 1022.8 | 37.0 | 39.0 | 1.4 | Lhasa | 0.6 | 1.8 | 0.1 | 0.4 |
Tianjin | 547.9 | 32.6 | 37.4 | 2.2 | Chongqing | 82.1 | 33.7 | 3.2 | 1.3 |
Yinchuan | 59.6 | 36.5 | 4.3 | 2.6 | Nanchang | 87.8 | 22.1 | 3.3 | 0.8 |
Shijiazhuang | 80.7 | 21.7 | 4.6 | 1.2 | Changsha | 140.9 | 38.3 | 6.0 | 1.6 |
Taiyuan | 110.2 | 33.4 | 2.7 | 0.8 | Guiyang | 36.4 | 18.6 | 4.5 | 2.3 |
Jinan | 157.0 | 32.7 | 7.5 | 1.6 | Fuzhou | 53.4 | 22.6 | 2.5 | 1.1 |
Xining | 25.6 | 22.5 | 2.4 | 2.1 | Kunming | 180.5 | 45.7 | 0.6 | 0.1 |
Lanzhou | 39.7 | 21.0 | 0.9 | 0.5 | Guizhou | 508.2 | 28.6 | 23.8 | 1.3 |
Zhengzhou | 272.3 | 50.7 | 5.8 | 1.1 | Nanning | 75.3 | 29.2 | 3.5 | 1.4 |
Xi’an | 232.9 | 33.7 | 9.1 | 1.3 | Shenzhen | 316.4 | 21.7 | 28.8 | 2.0 |
Nanjing | 357.1 | 36.9 | 10.7 | 1.1 | Haikou | 9.1 | 10.1 | 0.2 | 0.2 |
Drivers | CO2 | Urbanization | Precipitation | Temperature | Radiation | Other | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cities | C | E | C | E | C | E | C | E | C | E | C | E |
Harbin | 32.5 | 35.2 | 10.4 * | 13.8 * | 10.3 | 7.8 * | 16.2 * | 14.0 * | 20.1 | 20.5 | 10.4 | 8.7 |
Changchun | 38.2 * | 49.1 * | 8.4 * | 8.9 | 15.8 * | 12.0 * | 14.9 * | 12.4 * | 12.2 | 10.0 | 10.6 | 7.7 |
Urumchi | 37.9 * | 35.0 * | 11.7 | 5.9 | 7.1 * | 16.0 * | 16.0 * | 16.6 * | 20.6 | 20.8 | 6.7 | 5.6 |
Shenyang | 41.9 * | 29.6 * | 10.0 * | 14.5 | 9.6 * | 14.9 * | 13.5 * | 16.7 * | 14.8 | 15.9 | 10.2 | 8.5 |
Hohhot | 22.2 | 28.1 | 8.7 * | 7.5 * | 30.3 * | 28.7 * | 19.3 * | 23.4 | 9.3 * | 7.5 * | 10.1 | 4.7 |
Beijing | 26.4 * | 29.6 * | 9.4 | 14.2 | 27.5 * | 23.9 * | 15.5 | 13.6 * | 12.0 | 10.3 | 9.1 | 8.5 |
Tianjin | 28.2 | 28.5 | 15.9 * | 15.2 * | 6.1 * | 10.3 * | 16.3 * | 10.5 * | 22.4 | 26.4 | 11.0 | 8.9 |
Yinchuan | 36.4 * | 35.6 * | 8.5 | 15.1 | 37.6 * | 29.7 * | 9.4 * | 10.9 | 4.2 | 5.4 * | 3.9 | 3.2 |
Shijiazhuang | 51.6 | 67.2 | 7.7 * | 9.6 | 6.6 * | 4.6 * | 10.3 * | 6.7 * | 11.1 | 6.5 | 12.7 | 5.4 |
Taiyuan | 21.0 | 32.9 | 14.7 * | 12.0 * | 9.1 | 6.7 * | 19.0 | 16.4 | 18.7 | 20.3 | 17.5 | 11.7 |
Jinan | 33.8 | 41.8 * | 10.9 | 13.9 * | 12.1 | 10.2 * | 18.8 | 17.7 * | 9.1 | 6.7 | 15.3 | 9.7 |
Xining | 66.3 * | 53.8 * | 8.4 * | 14.4 * | 7.4 * | 15.3 * | 8.5 * | 6.9 | 4.4 | 4.5 * | 5.0 | 5.1 |
Lanzhou | 28.9 | 31.2 * | 12.1 * | 10.4 * | 23.2 * | 32.6 * | 13.6 | 9.5 * | 11.5 * | 7.5 | 10.7 | 8.7 |
Zhengzhou | 25.0 | 33.1 * | 9.4 * | 7.8 | 12.6 * | 5.1 * | 28.0 | 42.3 | 10.6 * | 8.2 * | 14.3 | 3.5 |
Xi’an | 30.0 | 51.1 * | 13.2 * | 8.2 | 7.3 * | 7.0 * | 26.7 | 14.1 * | 13.8 | 14.1 * | 9.0 | 5.6 |
Nanjing | 31.2 | 42.6 | 11.4 * | 14.8 * | 13.2 * | 10.9 | 10.0 * | 9.6 * | 12.6 * | 11.0 | 21.6 | 11.2 |
Hefei | 27.5 | 49.2 | 16.5 * | 10.4 | 11.2 | 10.3 | 11.5 * | 13.7 * | 14.9 | 9.6 | 18.3 | 6.8 |
Shanghai | 32.5 | 44.0 | 11.6 * | 8.9 * | 12.6 * | 10. 5 * | 12.0 * | 17.1 | 21.3 | 11.8 | 10.0 | 7.8 |
Chengdu | 55.2 | 55.9 * | 8.3 * | 6.5 | 7.5 * | 11.3 * | 11.9 | 17.0 * | 6.7 | 3.4 | 10.3 | 5.9 |
Wuhan | 40.7 | 40.3 | 9.1 * | 12.1 | 8.2 * | 8.5 | 15.9 * | 17.3 * | 12.8 * | 11.8 * | 13.3 | 9.9 |
Hangzhou | 28.9 | 42.8 | 9.0 * | 6.4 * | 12.5 | 16.3 * | 24.5 | 18.3 | 16.8 | 9.4 | 8.3 | 6.8 |
Lhasa | 27.9 | 27.4 | 11.8 * | 8.1 * | 8.0 * | 10.6 * | 32.7 | 35.6 * | 7.7 * | 8.3 | 11.9 | 10.0 |
Chongqing | 38.8 | 45.9 * | 11.2 | 10.6 | 12. 3 * | 8.8 * | 18.0 * | 16.4 | 9.0 | 9.3 * | 10.7 | 9.0 |
Nanchang | 33.7 * | 36.2 | 9.7 | 19.3 * | 14.3 | 10.4 | 15.5 | 11.2 | 15.0 | 15.4 | 11.7 | 7.5 |
Changsha | 39.3 | 50.7 | 7.6 * | 9.2 * | 17.2 * | 8.4 * | 14.8 | 17.1 * | 6.4 * | 5.8 | 14.7 | 8.7 |
Guiyang | 43.7 | 45.6 * | 8.3 * | 11.4 | 21.2 * | 14.5 * | 11.0 | 10.0 * | 4.3 * | 8.3 * | 11.4 | 10.2 |
Fuzhou | 24.0 * | 48.1 | 11.4 | 6.6 | 13.9 | 16.0 | 23.3 | 8.6 | 14.2 | 13.4 | 13.2 | 7.3 |
Kunming | 49.6 | 52.3 * | 8.8 * | 7.4 | 15.4 * | 17.7 * | 8.1 | 7.5 | 9.4 * | 10.2 | 8.6 | 5.0 |
Guizhou | 31.9 | 34.3 | 10.8 | 11.6 | 11.8 | 11.0 | 21.8 | 19.3 | 9.3 * | 11.9 * | 14.5 | 11.9 |
Nanning | 30.1 | 63.3 * | 14.1 * | 5.2 | 11.2 | 10.0 * | 17.5 | 7.3 | 11.1 | 7.2 * | 16.0 | 7.0 |
Shenzhen | 50.1 * | 39.4 * | 11.0 * | 10.8 * | 6.9 * | 8.8 * | 14.9 * | 17.0 * | 7.6 | 11.8 | 9.5 | 12.1 |
Haikou | 53.8 | 51.4 * | 4.7 * | 9.7 * | 9.2 * | 10.4 * | 11.5 | 7.7 * | 15.0 | 14.4 | 5.8 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, B.; Zhao, X.; Zhao, J.; Liu, N.; Si, L.; Wang, Q.; Sun, N.; Sun, M.; Guo, Y.; Zhao, S. Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sens. 2022, 14, 839. https://doi.org/10.3390/rs14040839
Mu B, Zhao X, Zhao J, Liu N, Si L, Wang Q, Sun N, Sun M, Guo Y, Zhao S. Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sensing. 2022; 14(4):839. https://doi.org/10.3390/rs14040839
Chicago/Turabian StyleMu, Baohui, Xiang Zhao, Jiacheng Zhao, Naijing Liu, Longping Si, Qian Wang, Na Sun, Mengmeng Sun, Yinkun Guo, and Siqing Zhao. 2022. "Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities" Remote Sensing 14, no. 4: 839. https://doi.org/10.3390/rs14040839
APA StyleMu, B., Zhao, X., Zhao, J., Liu, N., Si, L., Wang, Q., Sun, N., Sun, M., Guo, Y., & Zhao, S. (2022). Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sensing, 14(4), 839. https://doi.org/10.3390/rs14040839