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Abstract: Global climate changes have increased the imbalance of water resources, especially in
northern China, which comprises typical arid and semiarid regions. Large-scale afforestation has
been implemented over the past three decades in northern China. The ecosystem water use efficiency
(WUE) connects the carbon cycle and water cycle of the terrestrial ecosystems and is defined as the
ratio of the gross primary productivity (GPP) to the evapotranspiration. However, there are still an
insufficient number of studies on the impact of the afforestation on the WUE. In this study, we applied
the random forest (RF) model to explore the impacts of climate and nonclimate factors on the WUE in
northern China. The results showed that in areas with high precipitation, the forests had the highest
WUE, while in the arid areas, the croplands had the highest WUE. Of the total area, 44.34% showed a
significant increase, and 5.89% showed a significant decrease in the WUE from 1982–2015 in northern
China. The main driving factors for the changes in the WUE were climate factors, including the
precipitation, temperature and solar radiation, which contributed to approximately 84% of the WUE
trends, while human activities, such as afforestation, contributed to approximately 16% of the WUE
trends. Overall, although the climate had a larger impact on the WUE dynamics than the human
activities, our results suggested that the impacts of the afforestation programs on forest carbon and
water cycles should be considered in the context of climate change.

Keywords: WUE; spatiotemporal dynamic; afforestation; random forest; GLASS; MODIS

1. Introduction

Global climate changes have increased the imbalance of water resources [1], especially in arid
regions. The planting of vegetation is regarded as one of the most powerful approaches for combatting
global warming [2]. However, newly planted vegetation needs more water to grow [3] while storing
carbon and providing biofuel to contribute to climate change mitigation [4], which has a significant
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impact on the ecological sustainability in arid and semiarid regions. The 2030 Agenda for Sustainable
Development set by the United Nations through the Sustainable Development Goals (SDGs) defined
the sustainable development of terrestrial ecosystems (SDG15) as one of the important objectives [5].
The large-scale ecological restoration programs (e.g., afforestation, revegetation) implemented in the
arid and semiarid areas of northern China are sustainable for ecological development, but there is still
controversy [6–8] regarding the adverse effect of the excessive water consumption.

The ecosystem water use efficiency (WUE) is defined as the ratio of the gross primary productivity
(GPP) to the evapotranspiration (ET) [9–11] and is one of the indicators that comprehensively reflects
ecological sustainable development [12]. WUE is often used to explore the resilience of vegetation
ecosystems to drought [13,14], as it is a key parameter that measures the exchange between the carbon
gain and water loss of terrestrial ecosystems [15]. It provides an important basis for promoting
sustainable management of regional vegetation ecosystems [15–18]. Although many environmental
factors have a significant impact on WUE, plants with high WUE may also likely place severe stress on
regional water resources [11]. Therefore, quantifying the spatiotemporal variations in WUE and its
drivers is crucial for understanding the relationship between ecosystem restoration and water resource
shortages [17–20].

Climate factors, including temperature, precipitation and solar radiation, have significant effects
on the WUE in an ecosystem [17,18]. However, the effects of these factors on the WUE are recognized
differently at different spatiotemporal scales [14,21,22]. The estimation of the WUE with a process-driven
model based on the GPP and ET suggested that the WUE was negatively correlated with the mean
annual precipitation and temperature in China over the last three decades [18]. A study that employed
long-term measurements of carbon and water fluxes at sites in a forest of the Northern Hemisphere
identified a large increase in the WUE during the past two decades, which coincided with an increase
in the atmospheric CO2 from 350 to 400 ppm [22]. The flux measurements from sites showed that
the response of the WUE to drought across global ecosystems corresponded well with the climatic
zones [14]. The Moderate Resolution Imaging Spectroradiometer (MODIS) GPP and ET products are
some of the most widely used remote sensing data in studies of ecosystem WUE [10,23]. The effects of
meteorological drivers on the global patterns of WUE were nonmonotonic based on the MODIS GPP
and ET data over the period from 2000 to 2013 [23]. However, studies on the WUE over long time
series and large spatial ranges based on remote sensing data are still insufficient. The time range of the
Global Land Surface Satellite (GLASS) GPP and ET products is from 1982 to 2015, and it is currently
one of the longest remote sensing product sources [24,25]. Based on the GLASS GPP and ET data,
this study explored the spatiotemporal changes in the WUE and the relationship between the climate
factors and the ecosystem WUE.

The WUE is sensitive to changes in human activities such as land cover changes and land
management practices [26]. On agricultural land, the crop yield could be improved by anthropogenic
activities such as irrigation, fertilizer application, and tillage because these land management practices
modify the carbon and water cycles to improve the WUE [27]. Land cover changes have a great impact
on the land surface biogeochemical and biophysical processes [28,29], which means that it could also
change the ecosystem WUE. Northern China, which is also known as the Three North Regions (TNR)
of China [30], is a typical area of arid and semiarid ecosystems where the shortage of water is one
of the threats to plant growth. The ability of the plants to survive under limited water conditions is
indispensable for the ecosystems of this region [8]. Ecological restoration projects, such as afforestation
programs, have contributed to the accelerated greening trends in the TNR [31], but they have fewer
effects on the biomass change in Northeast China [32] and on the hydrological cycle over the entire
TNR during 1989–2009 [33]. Although land cover changes play a critical role in certain areas, the role
is not large enough to shape the WUE pattern on a regional scale [26]. Therefore, the results of these
studied imply that there are still insufficient studies on the impact of afforestation on WUE, especially
in the TNR of China.
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It is a key scientific issue to assess the suitability of afforestation in arid and semiarid areas.
Therefore, WUE was used as an indicator to reflect ecologically sustainable development, and the role
of climate factors and human activity on WUE were quantitatively assessed in the arid and semiarid
TNR. Specifically, the main objectives in this study were (i) to verify the effectiveness of the ecosystem
WUE with the GLASS products, (ii) to analyze the spatiotemporal changes in the GLASS WUE from
1982 to 2015, (iii) to explore the impact of climate change and human activities on the WUE change
trends, and (iv) to evaluate the relative importance of these two types of factors. Our results can
contribute to the design of governmental ecological policies.

2. Materials and Methods

2.1. Study Area

The study area is located in northern China and included northwestern China, northern China, and
northeastern China, which is an area that is also known as the TNR of China [30] and has a total area of
5.3 million km2 and accounts for 54.8% of mainland China. In the TNR, ecological restoration projects
(e.g., afforestation and revegetation programs) have been widely implemented, and the afforested area
has increased from approximately 10 million to 34 million hectares [34,35]. Considering the different
climate conditions between the western and eastern parts of the study area, the TNR was divided into
four regions based on climatic zone and vegetation maps of China (Figure 1) [30,36]. The four regions
were the northwestern region (region I), the western-central region (region II), the eastern-central
region (region III), and the northeastern region (region IV).
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Figure 1. The study area; (a) the land cover distribution of the TNR in 2015; (b–g) For 1982–2013, the
mean monthly precipitation, temperature and solar radiation in the growing season (April–October)
(Mp, /mm; Mt, /◦C; Mr, /W m−2) changed with longitude and latitude. The solid lines show the mean
value of every climate factor, and the color zones represent the standard deviation of each interval.
(h) Location of the TNR in China.

The TNR is located in the climate transition zone between arid and humid environments, and from
the west to the east, the main land cover types in the TNR are unutilized land, grassland, cropland and
forest. The grasslands are dominated by temperate meadow-steppe and temperate steppe-desert [37],
and the croplands are mainly dry land. Various land management practices, including plastic mulching,
drip irrigation, and gravel-sand mulching, are utilized for the crops in this area [38–41]. The forests
include forests with canopy cover greater than 30%, woods with canopy cover between 10–30%, and
shrubs and other afforested land [42].
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2.2. Data Sources

In this study, the GLASS products, land cover data, and climate data were used to explore the
spatiotemporal trends and drivers of the ecosystem WUE in the TNR. The specific workflow (Figure S1)
presents the overall approach developed in this study.

2.2.1. GLASS Products

This study was based on the GLASS GPP and ET products from 1982 to 2015 (http://glass-product.
bnu.edu.cn/) with a spatial resolution of 0.05◦ (~5.6 km) and a temporal resolution of 8 days, which
were used to explore the spatial distribution and temporal trend of the WUE. The GLASS GPP product
was calculated by the eddy covariance-light use efficiency (EC-LUE) model based on remote sensing
data and showed optimal simulation accuracy for almost all vegetation types globally [25,43]. The ET
product was obtained by merging five process-based algorithms with a Bayesian model averaging
method [44], which showed high reliability and accuracy [24]. Consequently, both the GLASS GPP
and ET could reveal the spatial distribution of the gross primary productivity and evapotranspiration.

2.2.2. Land Cover Data

The land cover data were used to investigate the impact of the different land cover types on the
WUE. The land cover data were obtained from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn), with a spatial resolution of
1 km and a temporal resolution of 5 years. The data were derived from Landsat TM/ETM+ and
Landsat 8 data from 1990 to 2015, which were interpreted visually at a scale of 1:100,000 after being
georeferenced and orthorectified [45]. Among these data, there are six land cover types, including
cropland, forest, grassland, water, built-up land and unutilized lands [42]. The overall identification
accuracy was over 95%, among which the accuracy of cropland can reach 99% and 98% for grassland,
forest and built-up land [42,45], so the data were suitable for analyzing the land cover changes in the
TNR over the past 25 years.

2.2.3. Climate Data

To explore the impact of the climate factors on the vegetation WUE, the precipitation, temperature
and solar radiation data from the Climatic Research Unit (CRU), version TS3.22 (http://www.cru.uea.
ac.uk/) [46] were used in this study. These gridded data have a spatial resolution of 0.5◦ (~56 km) and
a monthly temporal resolution. They were obtained from more than 4000 meteorological stations and
interpolated based on spatial autocorrelation functions [47,48]. The CRU datasets are characterized
by high quality and a wide application range and have become a basic dataset for use in research on
climate change [49–51].

A set of seven variables was selected as the drivers of the changes in WUE from 1982 to 2015
(Table 1).

Table 1. Variables used as the drivers of the changes in WUE throughout the study area.

Variable Class Variable
Name Definition and Units Data Source Spatial

Resolution

Climate factors

Mp mean precipitation during the growing season
from 1982 to 2013 (mm) CRU 0.5◦

Mt mean temperature during the growing season from
1982 to 2013 (◦C) CRU 0.5◦

Mr mean solar radiation during the growing season
from 1982 to 2013 (W m−2) CRU 0.5◦

Kp the trends of mean precipitation during the
growing season from 1982 to 2013 (mm yr−1) CRU 0.5◦

Kt the trends of mean temperature during the
growing season from 1982 to 2013 (◦C yr−1) CRU 0.5◦

Kr the trends of solar radiation during the growing
season from 1982 to 2013 (W m−2 yr) CRU 0.5◦

Human activities LCC land cover changes from 1990 to 2015 RESDC 1 km

http://glass-product.bnu.edu.cn/
http://glass-product.bnu.edu.cn/
http://www.resdc.cn
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
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2.2.4. MODIS Products

To verify the effectiveness of the WUE estimated in the TNR from the GLASS products, the WUE
calculated by the GLASS GPP and ET was compared with the WUE calculated by the MODIS GPP and
ET, which are widely used remote sensing products [10,11,52]. The annual GPP (MOD17A3) and ET
(MOD16A3) data with a 1 km resolution from 2000 to 2014 were produced by the Numerical Terra
Dynamic Simulation Group (http://www.ntsg.umt.edu) and are freely available.

2.3. Data Preprocessing

April to October was selected as the vegetation growing season [53,54] for the calculation of the
average GPP and ET throughout the growing season, and the mean value of the WUE was obtained.
The mean precipitation, temperature and solar radiation were also calculated from April to October.
To maintain the accuracy of the land cover change estimation, nearest neighbor resampling was applied
to the remaining datasets to match the 1 km spatial resolution of the land cover data.

The WUE values of the croplands, forests and grasslands were mainly considered in this study
since the TNR is dominated by these land cover types. The land cover data from 1990 to 2015 were
processed, and those pixels that consistently remained one type of land cover or only changed land
cover type once (e.g., from croplands to forests, from cropland to grasslands, etc.) were selected
as the research object, which was called land cover changes (LCC). Since it is difficult to describe
the relationship between WUE and multiple changes of land cover, we simplified the calculation by
omitting the pixels with more than one change in land cover.

To verify the effectiveness of the WUE from the GLASS products for the TNR, the WUE results
derived from the GLASS products and MODIS products were compared for different land cover types
in different regions. However, the relationship between the GLASS-WUE and the MODIS-WUE under
different land cover types could not be verified yearly due to the limitation of land cover data with a
temporal resolution of 5 years. For the pixels with consistent land cover types over the 5 years, we
assumed that the land cover type of these pixels did not change during the 5 years. Therefore, the
pixels of croplands, forests and grasslands with consistent land cover types from 1990 to 2015 were
selected [51] as the target of the comparison, and the WUE values of the four regions were compared
for each year.

2.4. Trend Analysis

The trend analysis was conducted on a per-pixel basis with a linear regression between the WUE
of the TNR and the year (1982–2015). WUE was considered as a dependent variable and the year as an
independent variable. Their relationship is represented by the following equation:

WUE = a + b×Year (1)

where a is the y-intercept, which gives the WUE value at the beginning of the period, and b is the trend,
which represents the rate of change of WUE per unit year.

The p-values of two-sided Student’s t-tests were computed to examine the consistency of the
trends (b). A p-value of a pixel of less than 0.05 indicated that the pixel had significant positive or
negative temporal changes. If the p-value of a pixel was more than 0.05, this indicates that the pixel
had no consistent changes [55,56]. Linear regression was also used to calculate the temporal trends of
the precipitation, temperature, and solar radiation.

2.5. Analysis of the Drivers of the Changes in the WUE

To explore the underlying drivers of the changes in WUE, we selected the main driver by analyzing
the importance of every factor to the WUE. Here, we calculated the variable importance with the
internal importance measurement of the random forest (RF) algorithm to identify the drivers with the
most important contributions to changing trends in the WUE [57]. The RF is an effective algorithm

http://www.ntsg.umt.edu
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for optimizing learning accuracy without obviously complicating the calculation [58], and it has been
widely used in geography and ecology [57,59,60].

The drivers that were used in the RF model included the climate factors and human activities.
The climate factors included 6 potential drivers (Mp, Mt, Mr, Kp, Kt and Kr, details seen in Table 1),
and the human activities were characterized by the LCC. The WUE trends (WUE-K) were treated as
the target variables to be explained. The mean value of the climate factors represented the general
climate conditions over a period of time, while the trends of the slope reflected the changes in the
climate conditions over many years [57]. One RF model was set up for each of the four regions in this
study. The number of trees and the number of variables tried at each split are two key parameters of
the RF model and were set to the default values of 500 and 2, respectively.

Here, we aimed to determine the relative importance of the factors that influenced trends of
the WUE. Thus, we used the RF internal variable importance measures to achieve this goal and
focused on the importance indicator %IncMSE, which indicates an increase in the mean square error
(MSE) [61]. The higher the value of %IncMSE was, the more important the variable was in the
out-of-bag cross-validation process [58], which meant the higher importance of the driver was in
explaining the WUE trends in this study. To further explore the specific effects of every climate factor
on the WUE, the partial dependence plot (PDP) provided by the RF was used to describe the influences
of the single variation on the WUE. The PDP can reveal the nonlinear relationships between the
drivers and the target variable and graphically characterize their relationships independently of other
variables [59,62,63].

The RF algorithm was implemented using the random forest package available in the R
environment [62].

3. Results

3.1. Verification of the Effectiveness of the WUE Estimated from the GLASS Products

To verify the effectiveness of the GLASS-WUE, we compared the two WUE datasets derived
from the GLASS GPP and ET products and from the MODIS GPP and ET datasets for the TNR
(Figure 2). We found a high degree of consistency between the MODIS-WUE and GLASS-WUE
(RMSE = 0.21, R2 = 0.72, p < 0.001). However, the GLASS-WUE was slightly overestimated compared
to the MODIS-WUE for the whole study area. Upon comparing the GLASS-WUE and MODIS-WUE
values in the different regions (Figure 2b–e), there was good consistency between the values in regions I
to III; all R squared values were greater than 0.6.
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Figure 2. Comparison of the GLASS-WUE with the MODIS-WUE (Unit, g C kg−1 H2O). The x-axis
and y-axis are the WUE values calculated by MODIS and GLASS, respectively. The red dashed line
represents the regression line, and the round, triangle, square, and diamond symbols represent regions
I to IV, with different colors for croplands, forests and grasslands, respectively. The error bar indicates
the standard error of the mean. (a–e) Comparison of the GLASS-WUE with the MODIS-WUE in the
four regions. The four regions are named regions I, II, III and IV.
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Upon comparing the results of this study with other estimates in the literature, the spatial
distribution of the GLASS-WUE was consistent with the results of the model estimations and remote
sensing calculations [21,64,65]. The reported ranges of the WUE in China were approximately
0.37–3.10 g C kg−1 H2O in the period from 2003 to 2010 [64], 0–3.8 g C kg−1 H2O between 1980 and
2010 [65], approximately 0.36–3.89 g C kg−1 H2O in the period of 2001 to 2010 [21], and 0–5 g C kg−1

H2O between 1979 and 2012 [18], all of which were similar to our results, which ranged from 0 to
4 g C kg−1 H2O.

Therefore, the WUE values calculated using the GLASS products in this study were consistent with
the results of previous studies, supporting the use of the GLASS products to study WUE. It was feasible
and effective to use GLASS products to study the ecosystem WUE, especially for long-term research.

3.2. Spatial Patterns of WUE

The average WUE for the total area in the TNR showed larger spatial variations from the west to
the east (Figure 3). The mean WUE (WUE-M) from 1982 to 2015 was 1.40 g C kg−1 H2O and ranged
from approximately 0 to 4 g C kg−1 H2O. The WUE of the western regions (regions I and II) was lower,
while the WUE in the eastern regions (regions III and IV) was higher. The pixels of the cropland, forest
and grassland types that were unchanged in the land cover data from 1990 to 2015 were selected to
calculate their WUE values. The results showed that the WUE was significantly different among the
croplands, forests and grasslands (one-way ANOVA, p < 0.001, Figure 3a–d) in each region. Specifically,
the grasslands had the lowest WUE values of the whole TNR, the forests had the highest WUE values
in the eastern TNR (regions I and II) and the croplands had the highest WUE values in the arid areas of
the western TNR (regions III and IV).
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3.3. Trend Analysis of the Changes in WUE in the TNR

During the period of 1982 to 2015, 75.94% of the total area in the TNR showed an increase in the
WUE, with a significant increase of 18.52% (Figure 4a, p < 0.05). The increasing WUE was mainly
found in the Northeast Plain, North China Plain, and some mountainous areas of Xinjiang. In contrast,
the WUE of the mountainous areas in Northeast China, eastern Inner Mongolia and Qilian Mountain
showed a significant decreasing trend, accounting for 2.5% of the total area. The interannual variations
in the spatially averaged WUE (WUE-M) for the different regions are shown in Figure S2.

Considering the impacts of the different types of vegetation transformations on the WUE
(Figure 4b–e), the WUE-K of the stable croplands was relatively high. The WUE-K from croplands to
grasslands was higher than that to forests in the regions II, III and IV. The WUE-K of the stable forests
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was relatively low, and the WUE-K from forests to croplands and grasslands were both higher than
that of stable forest in all four regions. The WUE-K of the stable grasslands was higher than that of the
grasslands that changed into forests in all four regions.
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Figure 4. (a) The spatial distribution of the WUE trends (WUE-K) in northern China from 1982–2015
(p < 0.05); (b–e) The WUE-K mean column chart of the conversions of cropland, forest and grassland in
the four regions between 1990 and 2015 with standard deviation error bars. C refers to croplands, F to
forests, and G to grasslands. C-C refers to the croplands in 1990, which were still croplands in 2015;
C-F refers to the croplands in 1990, which were converted into forests in 2015; and C-G refers to the
croplands in 1990, which were converted into grasslands in 2015. The rest of the abbreviations can be
extrapolated following these conventions.

3.4. Drivers of the WUE Trends

To extend the analysis of the underlying factors of the WUE change trends, we used seven factors
(i.e., LCC, Mp, Mt, Mr, Kp, Kt and Kr) to explore the importance of each factor in influencing WUE
trends. The relative importance of the factors was explored for significant changes in the WUE trends
(p < 0.05) in every region through the RF (Figure 5). The drivers explained that the percentages for
the four regions from west to the east were approximately 52.96%, 65.91%, 69.26%, and 89.32%. The
RMSE of the RF models for each region were 0.015, 0.014, 0.011 and 0.004, respectively. The factors that
contributed the most to the WUEs in regions I to IV were Mt, Mp, Mp, and LCC. In region IV, Mt was
also very important to the WUE. Overall, the climate factors were the dominant drivers of the WUE
dynamics across the entire TNR, contributing to more than 84% of the trend, and the LCC played a
relatively small role, accounting for less than 16%.

To further explore the specific effects of each climate factor on the WUE, the PDP was used to
describe the influences of single variations on the response (Figure S4). The relationship between the
meteorological factors and the WUE was nonmonotonic. In region I, when the temperature reached
approximately 19 ◦C, the WUE increased at the highest rate. The most important climate factor affecting
the WUE in regions II and III was the precipitation, which had the greatest impact on the WUE in
regions II and III when the precipitation reached approximately 30 mm and 50 mm, respectively.
In region IV, the effect of the temperature on the WUE increased gradually and remained stable after
approximately 16 ◦C.
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4. Discussion

This study quantitatively assessed the impact of land cover change on the ecosystem WUE under
the background of climate change. In general, these geographic characteristics of WUE were mainly
due to different climatic conditions [66,67], which was consistent with the results of existing research
on WUE [15,65]. The favorable water and heat conditions were beneficial for vegetation growth, and
the ecosystem WUE was relatively high [18]. The WUE values of the different vegetation types varied
widely in this study, probably due to differences in carbon uptake and water consumption [15,66].
Large variations in the WUE were also evident for the same land cover types in different regions,
probably because of the different climate conditions and the impact of human activities. The WUE
of the forests in the eastern TNR was higher than that of the croplands [30]. In the arid areas of
the western TNR, the forest WUE was lower than that of the croplands, probably because of drip
irrigation [38,39], plastic mulch [40], gravel-sand mulch [41], and other land management practices
that made the increase in productivity greater than that of evaporation [39]. In terms of the spatial
distribution, the regions with significant changes in WUE showed greater spatial variability. To better
highlight the WUE variation in small regions, we chose five subregions with obvious changes in the
WUE-K to further explore the reasons for the changes in WUE from the perspective of the trends in the
GPP and ET. The greater spatial variability of the trends in the WUE was mainly due to the different
directions and amounts of GPP and ET in the different regions (Figure S5).

In the four different regions from west to the east (regions I, II, III and IV), the factors that most
contributed to the WUEs were the mean temperature, mean precipitation, mean precipitation and
LCC, respectively. The most important factor affecting the WUE in region I was the mean temperature.
Region I was located in both arid and semiarid regions, where strong evaporation and low precipitation
limit the vegetation growth [15]. The effect of the temperature on the WUE was largely reflected in the
soil evaporation and the vegetation transpiration due to the sparse vegetation coverage [11,68,69]. The
factor that contributed most to the WUE in region II was the mean precipitation. The results based
on the site and the model both showed that the WUE of the Chinese terrestrial ecosystems increased
quickly with precipitation and then reached saturation [15,64], which was generally consistent with our
results from examining the effect of the precipitation on the trends of the WUE (Figure S4). In region
III, the vegetation was sensitive to precipitation [15,39,70,71]. The WUE increased rapidly and then
maintained a high rate with the increasing temperature (Figure S4) in region IV. This may have been
due to the presence of a broad temperate grassland in northeast China that is mainly controlled by
temperature [15]. In addition to climate factors, human activities also played an important role in the
WUE. The variation trend of the WUE was different in the different regions, which was closely related
to the changes in land cover (Figure 4b–e). From 1985 to 2012, the TNR experienced intense human
activities, such as afforestation, which increased the forested area from approximately 10 million to
34 million hectares [34,35]. The WUE-K from the croplands to the grasslands was higher than that to
forests in regions II to IV, and the WUE-K of the stable grasslands was higher than that of the forest that
was converted from grasslands in all four regions, which implied that returning croplands to grasslands
or protecting the original grasslands may be superior to afforestation and reforestation for maintaining
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higher WUE. The reason for this trend may be that grass is more likely to survive than forests in
arid and semiarid regions [72], and there is more likely to be an impact on the ecosystem WUE from
converting from other land use types to grasslands. In addition, if afforestation exceeds the carrying
capacity of an ecosystem, degradation is inevitable [65], which is negative for the ecosystem WUE.

This study quantitatively assessed the impact of climate factors and land cover change on the
ecosystem WUE, and the results could contribute to the design of governmental ecological policies.
However, there are still some uncertainties in this study. First, in the RF, the relationships between
the drivers and the target variable were not as simple as a formula or a graph, which made the
mechanism between the drivers and the WUE difficult to explain by the theories of ecology and
geography. Second, the spatial resolutions of the multisource datasets were not exactly the same,
so there was some deviation in the expected results. Third, we mainly discussed the effects of the
climate factors and human activities, such as LCC, on the WUE in this study. However, the WUE of an
ecosystem is impacted by many other factors, including the leaf area index [73], stomatal conductance
characteristics [74–76], the growth cycles of vegetation [63,77], drought stress [15], CO2 fertilization
effects [22], and urbanization [30]. Additionally, the soil moisture, respiration, nitrogen content, and
other soil conditions [78,79] also play important roles in improving the WUE of crops. Therefore,
in the future, we will improve the above deficiencies by selecting a model or method that includes
biophysical mechanisms to explore the drivers of changes in WUE, collecting data with the same
spatial resolution to avoid problems caused by resolution mismatching, further exploring other factors
affecting the WUE, and promoting the sustainable development of ecosystems in the TNR of China.

5. Conclusions

In this study, we explored the impacts of climate factors and human activities, especially land
cover change, on the WUE dynamics in the TNR during the period of 1982 to 2015. Our results
demonstrated that climate factors played dominant roles in affecting the WUE trends, contributing
to approximately 84% of the WUE trends, while the land cover change played a relatively small role.
Furthermore, our results also showed that the forests had the highest WUE values in the humid areas
of the eastern TNR and that croplands had the highest WUE values in the arid areas of the western
TNR. Of the total area, 44.34% displaying a significant increase and 5.89% displaying a significant
decrease in the WUE from 1982 to 2015.

This study quantitatively assessed the impact of afforestation on the WUE in the TNR, which
is critical for gaining a better understanding of the environmental changes due to the afforestation
program in China. Overall, although the climate factors had a larger impact on the WUE dynamics
than human activities under the background of climate change, our results suggested that the impacts
of afforestation programs on the forest carbon and water cycles should be considered because they
contribute to approximately 16% of the WUE change trends.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/23/2766/s1.
Figure S1: The methodological workflow of the research. Figure S2: Interannual variations of the spatially
averaged WUE (WUE-M) of the different regions over the TNR from 1982–2015. Figure S3: The change levels
of the annual WUE in China from 1982–2015. Figure S4: Partial dependence plots (PDP) for the climate factors.
Figure S5. The classification of the WUE trends (p < 0.05) in the five subregions. Table S1. The criteria for the
classification of the WUE trends.
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