Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Landsat Data
2.3. MODIS Data
2.4. Tidal Data and Processing
2.5. Wind Field Data and Processing
2.6. Installed Capacity Data for Nuclear Power Plants in the Study Area
3. Methods
3.1. Data Preprocessing
3.2. Sea Surface Temperature Retrieval
3.3. Sea Surface Temperature Accuracy Evaluation
3.4. Criterion for Determining Increases in Sea Surface Temperatures
3.5. Methods for Analyzing Sea Surface Temperature Increases
4. Results
4.1. Seasonal Changes in Distribution Pattern of Thermal Discharge
4.2. Interannual Changes in Thermal Discharge
5. Discussion
5.1. Effects of Installed Capacity of Nuclear Power Plants on Thermal Discharge
5.2. Effects of Tides on Thermal Discharge
5.3. Effects of Monsoons on Thermal Discharge
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MODIS Product File | Landsat File | MODIS Product File | Landsat File |
AQUA_MODIS.20030722T051506.L2.SST.nc | LT05_L1TP_121044_20030722_20161205_01_T1 | AQUA_MODIS.20030823T051506.L2.SST.nc | LT05_L1TP_121044_20030823_20161204_01_T1 |
AQUA_aODIS.20031028T050505.L2.SST.nc | LT05_L1TP_121044_20031026_20161204_01_T1 | AQUA_MODIS.20031213T052006.L2.SST.nc | LT05_L1TP_121044_20031213_20161204_01_T1 |
AQUA_MODIS.20040213T053006.L2.SST.nc | LT05_L1TP_121044_20040215_20161202_01_T1 | AQUA_MODIS.20040422T055006.L2.SST.nc | LT05_L1TP_121044_20040419_20161201_01_T1 |
AQUA_MODIS.20040926T052006.L2.SST.nc | LT05_L1TP_121044_20040926_20161129_01_T1 | AQUA_MODIS.20030823T051506.L2.SST.nc | LT05_L1TP_121044_20041012_20161129_01_T1 |
AQUA_MODIS.20041013T060005.L2.SST.nc | LT05_L1TP_121044_20041012_20161129_01_T1 | AQUA_MODIS.20041129T052006.L2.SST.nc | LT05_L1TP_121044_20041129_20161128_01_T1 |
AQUA_MODIS.20041215T052006.L2.SST.nc | LT05_L1TP_121044_20041215_20161127_01_T1 | AQUA_MODIS.20050116T052006.L2.SST.nc | LT05_L1TP_121044_20050116_20161128_01_T1 |
AQUA_MODIS.20050306T060006.L2.SST.nc | LT05_L1TP_121044_20050305_20161128_01_T1 | AQUA_MODIS.20051013T053006.L2.SST.nc | LT05_L1TP_121044_20051015_20161124_01_T1 |
AQUA_MODIS.20061019T060508.L2.SST.nc | LT05_L1TP_121044_20061018_20161119_01_T1 | AQUA_MODIS.20061205T052008.L2.SST.nc | LT05_L1TP_121044_20061205_20161117_01_T1 |
AQUA_MODIS.20061221T052008.L2.SST.nc | LT05_L1TP_121044_20061221_20161118_01_T1 | AQUA_MODIS.20070207T052008.L2.SST.nc | LT05_L1TP_121044_20070207_20161117_01_T1 |
AQUA_MODIS.20070223T052007.L2.SST.nc | LT05_L1TP_121044_20070223_20161116_01_T1 | AQUA_MODIS.20070514T052007.L2.SST.nc | LT05_L1TP_121044_20070514_20161115_01_T1 |
AQUA_MODIS.20071005T052007.L2.SST.nc | LT05_L1TP_121044_20071005_20161110_01_T1 | AQUA_MODIS.20080516T052006.L2.SST.nc | LT05_L1TP_121044_20080516_20161031_01_T1 |
AQUA_MODIS.20081023T052506.L2.SST.nc | LT05_L1TP_121044_20081023_20161029_01_T1 | AQUA_MODIS.20081210T052506.L2.SST.nc | LT05_L1TP_121044_20081210_20161028_01_T1 |
AQUA_MODIS.20090111T052508.L2.SST.nc | LT05_L1TP_121044_20090111_20161028_01_T1 | AQUA_MODIS.20091010T052508.L2.SST.nc | LT05_L1TP_121044_20091010_20161019_01_T1 |
AQUA_MODIS.20101029T052007.L2.SST.nc | LT05_L1TP_121044_20101029_20161012_01_T1 | AQUA_MODIS.20101130T052008.L2.SST.nc | LT05_L1TP_121044_20101130_20161012_01_T1 |
AQUA_MODIS.20110101T052008.L2.SST.nc | LT05_L1TP_121044_20110101_20161011_01_T1 | AQUA_MODIS.20110202T052007.L2.SST.nc | LT05_L1TP_121044_20110202_20161010_01_T1 |
AQUA_MODIS.20110407T052008.L2.SST.nc | LT05_L1TP_121044_20110407_20161208_01_T1 | AQUA_MODIS.20110914T052007.L2.SST.nc | LT05_L1TP_121044_20110914_20161006_01_T1 |
AQUA_MODIS.20121009T052509.L2.SST.nc | LE07_L1TP_121044_20121010_20161128_01_T1 | AQUA_MODIS.20131005T052009.L2.SST.nc | LC08_L1TP_121044_20131005_20170429_01_T1 |
AQUA_MODIS.20141008T052008.L2.SST.nc | LC08_L1TP_121044_20141008_20180205_01_T1 | AQUA_MODIS.20141125T052000.L2.SST.nc | LC08_L1TP_121044_20141125_20170417_01_T1 |
AQUA_MODIS.20150925T052009.L2.SST.nc | LC08_L1TP_121044_20150925_20170403_01_T1 | AQUA_MODIS.20160623T052009.L2.SST.nc | LC08_L1TP_121044_20160623_20170323_01_T1 |
AQUA_MODIS.20161216T052010.L2.SST.nc | LC08_L1TP_121044_20161216_20180205_01_T1 | AQUA_MODIS.20170102T060511.L2.SST.nc | LC08_L1TP_121044_20170101_20170312_01_T1 |
AQUA_MODIS.20171101T052010.L2.SST.nc | LC08_L1TP_121044_20171101_20171109_01_T1 | AQUA_MODIS.20171117T052010.L2.SST.nc | LC08_L1TP_121044_20171117_20171122_01_T1 |
AQUA_MODIS.20171203T052001.L2.SST.nc | LC08_L1TP_121044_20171203_20171207_01_T1 | AQUA_MODIS.20171219T052001.L2.SST.nc | LC08_L1TP_121044_20171219_20171224_01_T1 |
AQUA_MODIS.20180309T052001.L2.SST.nc | LC08_L1TP_121044_20180309_20180320_01_T1 | AQUA_MODIS.20181003T052001.L2.SST.nc | LC08_L1TP_121044_20181003_20181010_01_T1 |
AQUA_MODIS.20190123T052001.L2.SST.nc | LC08_L1TP_121044_20190123_20190205_01_T1 | AQUA_MODIS.20190312T052001.L2.SST.nc | LC08_L1TP_121044_20190312_20190325_01_T1 |
AQUA_MODIS.20190920T052000.L2.SST.nc | LC08_L1TP_121044_20190920_20190926_01_T1 | AQUA_MODIS.20191022T052001.L2.SST.nc | LC08_L1TP_121044_20191022_20191030_01_T1 |
AQUA_MODIS.20191123T052001.L2.SST.nc | LC08_L1TP_121044_20191123_20191203_01_T1 |
References
- Liang, S.S.; Zhang, B.; Li, J.S.; Zhang, H.; Shen, Q. Distribution of therm-water pollution of nuclear powerplant using the thermal infrared Band of HJ-IRS data-taking Daya Bay as an example. Remote Sens. Inf. 2012, 2, 43–48. [Google Scholar]
- Verones, F.; Hanafiah, M.M.; Pfister, S.; Huijbregts, M.A.J.; Pelletier, G.J.; Koehler, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010, 44, 9364–9369. [Google Scholar] [CrossRef] [PubMed]
- McMillin, L.M. Estimation of sea surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 80, 80–82. [Google Scholar] [CrossRef]
- Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhou, J. Using MODIS imagery to map sea surface temperature. Geospat. Inf. 2006, 4, 7–9. [Google Scholar]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.; Li, J.; Fan, X. A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station. Remote Sens. Land Resour. 2018, 30, 45–53. [Google Scholar]
- Ai, B.; Wen, Z.; Jiang, Y.; Gao, S.; Lv, G. Sea surface temperature inversion model for infrared remote sensing images based on deep neural network. Infrared Phys. Technol. 2019, 99, 231–239. [Google Scholar] [CrossRef]
- Zhang, H.R.; Zhao, Y.; Yang, H.; Chen, B.R.; Ding, J.; Dai, G.X.; Chuan, P.J. Study on the temperature rise characteristics and influence effects of thermal discharge from coastal power plant in Xiangshan Bay. J. Shanghai Ocean Univ. 2013, 22, 274–281. [Google Scholar]
- Jia, H.L.; Zheng, S.; Xie, J.; Ying, X.M.; Zhang, C.P. Influence of geographic setting on thermal discharge from coastal power plants. Mar. Pollut. Bull. 2016, 111, 106–114. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.G.; Huang, H.M.; Hua, X. Research on effect of water depthand flow intensity in coastal power plant outfall on warming area. J. Waterway Harbor 2017, 38, 26–30. [Google Scholar]
- Lentz, S.J.; Largier, J. The influence of wind forcing on the Chesapeake Bay buoyant coastal current. J. Phys. Oceanogr. 2006, 36, 1305–1316. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Y. Modeling the ecosystem response of the semi-closed Daya Bay to the thermal discharge from two nearby nuclear power plants. Ecotoxicology 2020, 29, 736–750. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Shen, Y.; Zhou, C.; Huang, X. Dynamics of alkaline phosphatase activity in relation to phytoplankton and bacteria in a coastal embayment Daya Bay, South China. Mar. Pollut. Bull. 2018, 131, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Chen, K.; Zhou, Q.; Xiang, P.; Huo, Y.; Lin, M. Impacts of thermal discharge on phytoplankton in Daya Bay. J. Coast. Res. 2019, 83, 135–147. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Yang, Z.; Wang, W. Monitoring heated water pollution of the DaYaWan nuclear power plant using TM images. Int. J. Remote Sens. 2007, 28, 885–890. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Xu, Q.; Chen, Y.; Wang, B. Monitoring of fine-scale warm drain-off water from nuclear power stations in the Daya Bay based on Landsat 8 data. Remote Sens. 2020, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Chen, C.; Guo, B.; Chu, Y.; Zheng, H. A split-window method to retrieving sea surface temperature from Landsat 8 thermal infrared remote sensing data in offshore waters. Estuar. Coast. Shelf Sci. 2020, 236, 106626. [Google Scholar] [CrossRef]
- Schott, J.R.; Volchok, W.J. Thematic Mapper thermal infrared calibration. Photogramm. Eng. Remote Sens. 1985, 51, 1351–1357. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.; Li, Z.; Stoll, M.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Arabi Aliabad, F.; Zare, M.; Ghafarian Malamiri, H. A comparative assessment of the accuracies of split-window algorithms for retrieving of land surface temperature using Landsat 8 data. Model. Earth Syst. Environ. 2021, 7, 2267–2281. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Lagouarde, J.P.; Imbernon, J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sens. Environ. 1992, 41, 197–209. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Rem. Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Li, X.; Ling, T.; Zhang, Y.; Zhou, Q. A 31-year global diurnal sea surface temperature dataset created by an ocean mixed-Layer model. Adv. Atmos. Sci. 2018, 35, 1443–1454. [Google Scholar] [CrossRef]
- Zhou, Y.; Gong, C.; Kuang, D.; Hu, Y. Research on the distribution of temperature and drainage of nuclear power plants based on the thermal infrared band data of environmental disaster mitigation satellites. J. Infrared Millim. Waves 2012, 31, 544–549. [Google Scholar] [CrossRef]
- Wang, R.; Yang, H.; Zhu, L.; Wu, C.; Chen, Y. Application of temperature rise envelop in thermal discharge from nuclear power plant. Environ. Monit. Manag. Technol. 2020, 32, 49–52. [Google Scholar] [CrossRef]
- Lin, J.; Zou, X.; Huang, F.; Yao, Y. Quantitative estimation of sea surface temperature increases resulting from the thermal discharge of coastal power plants in China. Mar. Pollut. Bull. 2021, 164, 112020. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Liu, H.D.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Wang, G.L.; Xiong, X.J. Distribution and variation of warm water discharge in the coastal area of Tianwan. Adv. Mar. Sci. 2013, 31, 69–74. [Google Scholar]
- Xie, F.; Liu, H.; Huang, H.; Song, X. Effects of thermal discharge and nutrients input on size structure of phytoplankton in Daya Ba. J. Trop. Oceanogr. 2008, 37, 55–64. [Google Scholar] [CrossRef]
Scheme | Cooling Water Flow Rate (m3 s−1) | Total Installed Capacity (MW) | Installed Capacities in Different Periods (MW) |
---|---|---|---|
DBNPP | 319 | 6120 | 1968 |
LNPP | 329 | Phase 1: 1980 Phase 2: 2172 |
Range of SST Increases (>Tr) | Level (>Tr) |
---|---|
<2 °C | <2 °C |
[+2 °C, +3 °C] | +2 °C |
[+3 °C, +4 °C] | +3 °C |
[+4 °C, +5 °C] | +4 °C |
[+5 °C, +6 °C] | +5 °C |
[+6 °C, +7 °C] | +6 °C |
>7 °C | +7 °C |
Season\Area (km2) | A+2°C | A+3°C | A+4°C | A+5°C | A+6°C | A+7°C | Atotal |
---|---|---|---|---|---|---|---|
Spring | 8.83 | 3.6 | 1.8 | 1.06 | 0.44 | 0.3 | 16.03 |
Summer | 15.67 | 9.49 | 3.29 | 1.37 | 0.79 | 1.0 | 31.58 |
Fall | 9.4 | 3.51 | 1.69 | 0.64 | 0.55 | 0.56 | 16.35 |
Winter | 4.23 | 1.84 | 0.94 | 0.4 | 0.29 | 0.19 | 7.89 |
Season\Area (km2) | Tidal State | A+2°C | A+3°C | A+4°C | A+5°C | A+6°C | A+7°C | Atotal | |
---|---|---|---|---|---|---|---|---|---|
Spring | STs | FTs | 12.22 | 3.15 | 2.28 | 0.62 | 0.71 | 0.27 | 19.25 |
ETs | 18.14 | 9.36 | 3.21 | 1.93 | 0.65 | 0.25 | 33.54 | ||
NTs | FTs | 13.80 | 3.60 | 1.53 | 0.55 | 0.33 | 0.19 | 20.0 | |
ETs | 11.81 | 7.01 | 5.35 | 3.32 | 1.5 | 1.07 | 30.06 | ||
Summer | STs | FTs | 7.81 | 13.01 | 1.29 | 0.60 | 0.26 | 0.10 | 23.07 |
ETs | 7.88 | 11.36 | 12.97 | 0.51 | 0.42 | 0.17 | 33.31 | ||
NTs | FTs | 16.74 | 8.95 | 3.63 | 1.02 | 0.46 | 0.29 | 31.09 | |
ETs | 36.0 | 17.85 | 1.91 | 0.57 | 0.45 | 0.26 | 56.19 | ||
Fall | STs | FTs | 3.67 | 2.60 | 1.21 | 0.39 | 0.38 | 0.18 | 8.43 |
ETs | 20.42 | 6.77 | 1.75 | 0.69 | 0.37 | 0.17 | 30.17 | ||
NTs | FTs | 15.58 | 3.79 | 0.69 | 0.65 | 0.28 | 0.16 | 21.15 | |
ETs | 7.68 | 1.93 | 0.96 | 0.62 | 0.23 | 0.18 | 11.6 | ||
Winter | STs | FTs | 6.01 | 1.89 | 1.09 | 0.25 | 0.04 | 0.02 | 9.3 |
ETs | 13.39 | 1.6 | 1.06 | 0.37 | 0.05 | 0.01 | 16.48 | ||
NTs | FTs | 2.73 | 2.21 | 0.80 | 0.51 | 0.48 | 0.09 | 6.82 | |
ETs | 7.5 | 2.71 | 1.67 | 0.33 | 0.12 | 0.16 | 12.49 |
Season | Conditions | A+2°C (km2) | A+3°C (km2) | A+4°C (km2) | A+5°C (km2) | A+6°C (km2) | A+7°C (km2) | Atotal (km2) |
---|---|---|---|---|---|---|---|---|
Spring | Average | 8.83 | 3.6 | 1.8 | 1.06 | 0.44 | 0.3 | 16.03 |
ETs | 14.98 | 8.18 | 4.28 | 2.62 | 1.01 | 0.66 | 31.73 | |
Favorable winds | 9.51 | 4.72 | 2.38 | 1.81 | 1.2 | 0.87 | 20.28 | |
Summer | Average | 15.67 | 9.49 | 3.29 | 1.37 | 0.79 | 1.0 | 31.58 |
ETs | 21.95 | 14.61 | 5.4 | 1.54 | 1.04 | 0.6 | 45.14 | |
Favorable winds | 14.74 | 9.31 | 4.81 | 0.57 | 1.58 | 0.86 | 26.49 | |
Fall | Average | 9.4 | 3.51 | 1.69 | 0.64 | 0.55 | 0.56 | 16.35 |
ETs | 20.42 | 6.77 | 1.75 | 0.69 | 0.37 | 0.17 | 30.17 | |
Favorable winds | 18.97 | 3.64 | 1.7 | 0.82 | 0.32 | 0.17 | 23.1 | |
Winter | Average | 4.23 | 1.84 | 0.94 | 0.4 | 0.29 | 0.19 | 7.89 |
ETs | 10.45 | 2.16 | 1.37 | 0.35 | 0.09 | 0.09 | 14.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, D.; Cheng, Y.; Gong, F. Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China. Remote Sens. 2022, 14, 763. https://doi.org/10.3390/rs14030763
Zhang Z, Wang D, Cheng Y, Gong F. Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China. Remote Sensing. 2022; 14(3):763. https://doi.org/10.3390/rs14030763
Chicago/Turabian StyleZhang, Zhihua, Difeng Wang, Yinhe Cheng, and Fang Gong. 2022. "Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China" Remote Sensing 14, no. 3: 763. https://doi.org/10.3390/rs14030763
APA StyleZhang, Z., Wang, D., Cheng, Y., & Gong, F. (2022). Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China. Remote Sensing, 14(3), 763. https://doi.org/10.3390/rs14030763