Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Daya Bay Nuclear Power Plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5229 KiB  
Article
Distribution and Relationship of Radionuclides and Heavy Metal Concentrations in Marine Sediments from the Areas Surrounding the Daya Bay Power Plant, Southeast China
by Chengpeng Huang, Yunpeng Lin, Haidong Li, Binxin Zheng, Xueqiang Zhu, Yiming Xu, Heshan Lin, Qiangqiang Zhong, Fangfang Shu, Mingjiang Cai and Yunhai Li
J. Mar. Sci. Eng. 2025, 13(7), 1237; https://doi.org/10.3390/jmse13071237 - 27 Jun 2025
Viewed by 297
Abstract
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment [...] Read more.
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment samples were collected in January 2024 and analyzed for natural (210Pb, 228Th, 226Ra, 228Ra, and 40K) and anthropogenic (137Cs) radionuclides, heavy metals (Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As), grain size, and total organic carbon (TOC). The surface sediments of Daya Bay were predominantly fine-grained, with TOC levels ranging from 0.41% to 1.83%, influenced significantly by riverine input from the Dan’ao River. Natural radionuclides exhibited distinct spatial patterns: 210Pb and 228Th activity levels were higher in fine-grained sediments, and correlated with TOC, indicating adsorption and sedimentation controls. In contrast, anthropogenic 137Cs activity was low and showed no significant impact from the nuclear power plant. Notably, the absence in the samples of key anthropogenic radionuclides typically associated with nuclear power plant operations further confirmed the negligible impact of the power plant on local sediment contamination. The results indicated that the baseline levels of both natural and anthropogenic radionuclides and heavy metals were predominantly influenced by natural processes and local anthropogenic activities rather than the operation of the nuclear power plant. This study establishes critical baselines for radioactivity and heavy metals in Daya Bay, underscoring effective pollution control measures and the resilience of local ecosystems despite anthropogenic pressures. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

12 pages, 9926 KiB  
Article
Far-Field Influences Shadow the Effects of a Nuclear Power Plant’s Discharges in a Semi-Enclosed Bay
by Chen-Tung (Arthur) Chen, Sen Jan, Meng-Hsien Chen, Li-Lian Liu, Jung-Fu Huang and Yiing-Jang Yang
Sustainability 2023, 15(11), 9092; https://doi.org/10.3390/su15119092 - 5 Jun 2023
Cited by 7 | Viewed by 1785
Abstract
The sustainable development of society depends on the reliable supply of electricity while keeping impacts on the environment to a minimum. A 951 MWe nuclear power plant in the semi-enclosed Nanwan Bay at the southern tip of Taiwan began operating in May 1984. [...] Read more.
The sustainable development of society depends on the reliable supply of electricity while keeping impacts on the environment to a minimum. A 951 MWe nuclear power plant in the semi-enclosed Nanwan Bay at the southern tip of Taiwan began operating in May 1984. Part of the bay is in Kenting National Park, which is known for its coral reefs and abundant marine life; thus, thermal pollution from the cooling water discharge is a great concern. Fortunately, the bay opens south to face the Luzon Strait, where the world’s strongest internal tides are generated. Because the bay is deep enough, internal waves bring up cold deep water and reduce the surface temperature by as much as 10 °C for a few hours every day. These internal waves and topographically generated upwelling also bring nutrients to the euphotic layer from the depths, but the upwelled waters quickly leave the bay along with the cooling water. As a result, a thermal plume with a temperature of 1 °C or higher than the ambient temperature only covers 1 km. By way of comparison, El Niño—Southern Oscillation- or Pacific Decadal Oscillation-related interannual variations in temperature are as high as 5 °C. The rapid turnover of the upwelled waters also helps to prevent heat released by the power plant from accumulating and diminishes the thermal stress, thus sustaining corals and other marine life forms. Typhoons, even hundreds of kilometers away, could also induce the upwelling of cold subsurface water. Consecutive typhoons have been observed to reduce the water surface temperature by up to 10 °C for two weeks or longer. Furthermore, the currents are such that the thermal plume flows out of the bay most of the time. All of these factors make the surface waters in the bay about 0.5 °C cooler than the waters outside of the bay, despite the operation of a nearby nuclear power plant. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

18 pages, 21074 KiB  
Article
Analysis of the Invasion of Acetes into the Water Intake of the Daya Bay Nuclear Power Base
by Xinghao Li, Lin Yang, Huatang Ren, Zhaowei Liu and Zeyu Jia
Water 2022, 14(22), 3741; https://doi.org/10.3390/w14223741 - 17 Nov 2022
Cited by 2 | Viewed by 2106
Abstract
The invasions of marine organisms into the intake of nuclear power plants threaten the normal operation of such plants. Most published numerical models assumed that marine organisms passively follow the current, but such models neglected their biological swimming ability. In this work, adopting [...] Read more.
The invasions of marine organisms into the intake of nuclear power plants threaten the normal operation of such plants. Most published numerical models assumed that marine organisms passively follow the current, but such models neglected their biological swimming ability. In this work, adopting a hydrodynamic mathematical model to replicate the flow around the Daya Bay nuclear power base, the invasion characteristics of Acetes were explored by considering the behavior of biological movement. A concept of biological residual current was introduced to describe biological movements that were dominated by both tidal current and biological swimming ability. The biological residual currents near the nuclear power plant were obtained for cases with different nocturnal migration periods (12 h, 13 h, 14 h, 15 h, and 16 h). Using the Lagrangian particle-tracking method, the primary invasion paths of Acetes were obtained, as well as the travel time of Acetes to the intake, based on the biological residual current along monitoring points. The results showed that the invading time for Acetes reaching the water intake of the nuclear power base was significantly decreased when biological migration behavior was considered. When the nocturnal active period was over 13 h, it took only 10 days for Acetes to enter the western waters of Daya Bay from the southwest of Da Lajia Island and then continue migrating to the water intake in the nuclear power base. When the nocturnal active period was less than 13 h, it took more than 20 days for Acetes to travel the same distance. The present work provides a new methodology for the simulation and prediction of the migration of marine organisms. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

19 pages, 5575 KiB  
Article
Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China
by Zhihua Zhang, Difeng Wang, Yinhe Cheng and Fang Gong
Remote Sens. 2022, 14(3), 763; https://doi.org/10.3390/rs14030763 - 7 Feb 2022
Cited by 9 | Viewed by 3319
Abstract
Thermal discharge (i.e., warm water) from nuclear power plants (NPPs) in Daya Bay, China, was analyzed in this study. To determine temporal and spatial patterns as well as factors affecting thermal discharge, data were acquired by the Landsat series of remote-sensing satellites for [...] Read more.
Thermal discharge (i.e., warm water) from nuclear power plants (NPPs) in Daya Bay, China, was analyzed in this study. To determine temporal and spatial patterns as well as factors affecting thermal discharge, data were acquired by the Landsat series of remote-sensing satellites for the period 1993–2020. First, sea surface temperature (SST) data for waters off NPPs were retrieved from Landsat imagery using a radiative transfer equation in conjunction with a split-window algorithm. Then, retrieved SST data were used to analyze seasonal and interannual changes in areas affected by NPP thermal discharge, as well as the effects of NPP installed capacity, tides, and wind field on the diffusion of thermal discharge. Analysis of interannual changes revealed an increase in SST with an increase in NPP installed capacity, with the area affected by increased drainage outlet temperature increasing to different degrees. Sea surface temperature and NPP installed capacity were significantly linearly related. Both flood tides (peak spring and neap) and ebb tides (peak spring and neap) affected areas of warming zones, with ebb tides having greater effects. The total area of all warming zones in summer was approximately twice that in spring, regardless of whether winds were favorable (i.e., westerly) or adverse (i.e., easterly). The effects of tides on areas of warming zones exceeded those of winds. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation)
Show Figures

Figure 1

16 pages, 659 KiB  
Article
Seasonal Variation of Water Quality and Phytoplankton Response Patterns in Daya Bay, China
by Cui-Ci Sun, You-Shao Wang, Mei-Lin Wu, Jun-De Dong, Yu-Tu Wang, Fu-Lin Sun and Yan-Ying Zhang
Int. J. Environ. Res. Public Health 2011, 8(7), 2951-2966; https://doi.org/10.3390/ijerph8072951 - 15 Jul 2011
Cited by 43 | Viewed by 10152
Abstract
Data collected from 12 stations in Daya Bay in different seasons in 2002 revealed the relation between water quality and phytoplankton response patterns. The results showed that Daya Bay could be divided into wet and dry seasons by multivariate statistical analysis. Principal component [...] Read more.
Data collected from 12 stations in Daya Bay in different seasons in 2002 revealed the relation between water quality and phytoplankton response patterns. The results showed that Daya Bay could be divided into wet and dry seasons by multivariate statistical analysis. Principal component analysis indicated that temperature, chlorophyll a and nutrients were important components during the wet season (summer and autumn). The salinity and dissolved oxygen were the main environmental factors in the dry season (winter and spring). According to non-metric multidimensional scaling, there was a shift from the large diatoms in the dry season to the smaller line-chain taxa in the wet season with the condition of a high dissolved inorganic nitrogen and nitrogen to phosphorous concentration ratio. Nutrient changes can thus alter the phytoplankton community composition and biomass, especially near the aquaculture farm areas. There was no evidence of an effect of thermal water from the nearby nuclear power plants on the observed changes in phytoplankton community and biomass in 2002. Full article
(This article belongs to the Special Issue Geostatistics in Environmental Pollution and Risk Assessment)
Show Figures

Back to TopTop