Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sample Collection
3.2. Data Preparation
3.3. Image Pre-Processing and Feature Selection
3.4. Classification and Validation
3.5. Feature Importance Scoring
3.6. Analysis of Bamboo Spatial Distribution Patterns
4. Results
4.1. Distribution of Bamboo Forest
4.2. Classification Accuracy Assessment
4.3. Environmental Characteristics of the Spatial Distribution of Bamboo Forests
4.3.1. Topological Characteristics of Bamboo Forests
4.3.2. Hydrothermal Characteristics of the Bamboo Forest
4.4. Feature Importance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, T.; Shi, J.; Ma, L.; Wang, H.; Yang, L. Chinese Bamboo Pictures; Science Press: Beijing, China, 2008; p. 766. [Google Scholar]
- Li, Y.; Feng, P. Bamboo Resources in China Based on the Ninth National Forest Inventory Data. World Bamboo Ratt. 2019, 17, 45–48. [Google Scholar]
- Yang, Y.; Hui, C.; Du, F.; Wang, W.; Jin, W. China’s Bamboo: Culture/Resources/Cultivation/Utilization; International Network for Bamboo and Rattan: Beijing, China, 2010; pp. 32, 57. [Google Scholar]
- Sun, M.; Yan, B.; Xu, T.; Yu, L. Resources and Utilization of Bamboo Plants; Science Press: Beijing, China, 2015; pp. 1–36. [Google Scholar]
- Isagi, Y.; Kawahara, T.; Kamo, K.; Ito, H. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol. 1997, 130, 41–52. [Google Scholar] [CrossRef]
- Ren, G. Remote Sensing Investigation of Giant Panda’s Staple Food Bamboo Resources. Remote Sens. Inf. 1989, 2, 34–35. [Google Scholar]
- Shanmughavel, P.; Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 1996, 10, 383–391. [Google Scholar] [CrossRef]
- Li, P.; Zhou, G.; Du, H.; Lu, D.; Mo, L.; Xu, X.; Shi, Y.; Zhou, Y. Current and potential carbon stocks in moso bamboo forests in China. J. Env. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wei, W.; Liu, C.; You, W.; Niu, X.; Man, R. Biomass and carbon stock in moso bamboo forests in subtropical China: Characteristics and implications. J. Trop. For. Sci. 2013, 25, 137–148. [Google Scholar]
- Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of Carbon Fixation in Bamboo Forests in China. Bot. Rev. 2011, 77, 262–270. [Google Scholar] [CrossRef]
- Venkatappa, M.; Anantsuksomsri, S.; Castillo, J.A.; Smith, B.; Sasaki, N. Mapping the Natural Distribution of Bamboo and Related Carbon Stocks in the Tropics Using Google Earth Engine, Phenological Behavior, Landsat 8, and Sentinel-2. Remote Sens. 2020, 12, 3109. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Li, B.; Yang, X. The production of phytolith-occluded carbon in China’s forests: Implications to biogeochemical carbon sequestration. Glob. Change Biol. 2013, 19, 2907–2915. [Google Scholar] [CrossRef]
- Benzhi, Z.; Maoyi, F.; Jinzhong, X.; Xiaosheng, Y.; Zhengcai, L. Ecological functions of bamboo forest: Research and Application. J. For. Res. 2015, 16, 143–147. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, K.; Gao, Z. Identification of TIP Genes and Their Expression Patterns under Stresses in Moso Bamboo ( Phyllostachys edulis). World Bamboo Ratt. 2021, 19, 1–11. [Google Scholar]
- Jiang, M.; Cai, X.; Liao, J.; Yang, Y.; Chen, Q.; Gao, S.; Yu, X.; Luo, Z.; Lei, T.; Lv, B.; et al. Different strategies for lead detoxification in dwarf bamboo tissues. Ecotoxicol Environ Saf. 2020, 193, 110329. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Jiang, M.; Liao, J.; Yang, Y.; Li, N.; Cheng, Q.; Li, X.; Song, H.; Luo, Z.; Liu, S. Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicol. Environ. Saf. 2021, 207, 111500. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, Y.; Huo, D.; Zhou, H.; Yang, Y. Policy System Establishment for Bamboo Industry High-quality Development in Guizhou Province. World Bamboo Ratt. 2021, 19, 12–19. [Google Scholar]
- Dong, J.; Kuang, W.; Liu, J. Continuous land cover change monitoring in the remote sensing big data era. Sci. China Earth Sci. 2017, 60, 2223–2224. [Google Scholar] [CrossRef]
- Du, H.; Zhou, G.; Ge, H.; Zhao, X.; Cui, L. Method of extracting bamboo forest remote sensing information based on TM data. J. Northeast For. Univ. 2008, 36, 35–38. [Google Scholar]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Mertens, B.; Hua, L.; Belcher, B.; Ruiz-Pérez, M.; Maoyi, F.; Xiaosheng, Y. Spatial patterns and processes of bamboo expansion in Southern China. Appl. Geogr. 2008, 28, 16–31. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126–1142. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Jiang, H.; Fang, C.; Yang, J.; Zhu, Z.; Shi, L.; Liu, S.; Gong, P. Tracking bamboo dynamics in Zhejiang, China, using time-series of Landsat data from 1990 to 2014. Int. J. Remote Sens. 2016, 37, 1714–1729. [Google Scholar] [CrossRef]
- Singh, A. Spectral separability of tropical forest cover classes. Int. J. Remote Sens. 2007, 8, 971–979. [Google Scholar] [CrossRef]
- McMichael, C.H.; Bush, M.B.; Silman, M.R.; Piperno, D.R.; Raczka, M.; Lobato, L.C.; Zimmerman, M.; Hagen, S.; Palace, M.; Linder, P. Historical fire and bamboo dynamics in western Amazonia. J. Biogeogr. 2013, 40, 299–309. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, Y.; Bao, Y. Extraction of Bamboo Forest Information from IKONOS Image Based on Gray Level Co-occurrence Matrix Method. Remote Sens. Inf. 2004, 2, 31–34. [Google Scholar]
- Sun, X.; Du, H.; Han, N.; Ge, H.; Gu, C. Multi-Scale Segmentation, Object-Based Extraction of Moso Bamboo Forest from SPOT5 Imagery. Sci. Silvae Sin. 2013, 49, 80–87. [Google Scholar]
- Guan, F.; Fan, S.; Gao, Y.; Xiao, F.; Cai, H. Different Classification Methods in the Application of Remote Sensing Information Identification of Bamboo. Chin. Agric. Sci. Bull. 2013, 29, 47–52. [Google Scholar]
- Xu, X.; Du, H.; Zhou, G.; Dong, D.; Fan, W.; Cui, R. Spectral Mixture Analysis Based on Erf-BP Model and Applied in Extracting Forest Information. Sci. Silvae Sin. 2011, 47, 30–38. [Google Scholar]
- Li, M.; Peng, S.; Zhou, L.; Ma, Y. A study of automated construction and classification of decision tree classifiers based on ASTER remotely sensed datasets. Remote Sens. Land Resour. 2006, 18, 33–36. [Google Scholar]
- Li, L.; Li, N.; Lu, D.; Chen, Y. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sens. Environ. 2019, 231, 111265. [Google Scholar] [CrossRef]
- Greig, C.; Robertson, C.; Lacerda, A.E.B. Spectral-temporal modelling of bamboo-dominated forest succession in the Atlantic Forest of Southern Brazil. Ecol. Model. 2018, 384, 316–332. [Google Scholar] [CrossRef]
- Tuanmu, M.-N.; Viña, A.; Bearer, S.; Xu, W.; Ouyang, Z.; Zhang, H.; Liu, J. Mapping understory vegetation using phenological characteristics derived from remotely sensed data. Remote Sens. Environ. 2010, 114, 1833–1844. [Google Scholar] [CrossRef]
- Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X. Understory Bamboo Discrimination Using a Winter Image. Photogramm. Eng. Remote Sens. 2009, 75, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Liu, C.; Xiong, T.; Gong, P.; Qi, S. Improving large-scale moso bamboo mapping based on dense Landsat time series and auxiliary data: A case study in Fujian Province, China. Remote Sens. Lett. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, P.; Qi, S.; Liu, C.; Xiong, T. Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine. Int. J. Remote Sens. 2019, 40, 9541–9555. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Jayaraman, D.; Belay, D.; Sebrala, H.; Ngugi, J.; Maina, E.; Akombo, R.; Otuoma, J.; Mutyaba, J.; et al. Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 116–125. [Google Scholar] [CrossRef]
- Sari, I.L.; Weston, C.J.; Newnham, G.J.; Volkova, L. Assessing Accuracy of Land Cover Change Maps Derived from Automated Digital Processing and Visual Interpretation in Tropical Forests in Indonesia. Remote Sens. 2021, 13, 1446. [Google Scholar] [CrossRef]
- Quirós-Ramírez, G.; Herrera-Ugalde, M.E.; Arce-Benavides, H.; Obando-Vargas, G.; Ortiz-Malavasi, E.; Romero-Badilla, D. Evaluación de Collect Earth como herramienta para estimar datos de actividad para el programa REDD+ de Costa Rica. Rev. For. Mesoam. Kurú 2019, 17, 21–32. [Google Scholar]
- Hsu, C.; Lin, C. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar]
- Linderman, M.; Liu, J.; Qi, J.; An, L.; Ouyang, Z.; Yang, J.; Tan, Y. Using artificial neural networks to map the spatial distribution of understorey bamboo from remote sensing data. Int. J. Remote Sens. 2010, 25, 1685–1700. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Forghani, Y.; Yazdi, H.S. Robust support vector machine-trained fuzzy system. Neural Netw. 2014, 50, 154–165. [Google Scholar] [CrossRef]
- Liu, L.; Sun, X.; Li, C.; Lei, Y. Classification of Medical Text Data Using Convolutional Neural Network-Support Vector Machine Method. J. Med. Imaging Health Inform. 2020, 10, 1746–1753. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.M.; Park, J.S. Building Lightweight Intrusion Detection System based on Random Forest. In Advances in Neural Networks—ISNN 2006; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3973, pp. 224–230. [Google Scholar]
- Chan, J.C.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Yu, S.; Liu, J.; Zhao, Q.; Zhao, Z. Aboveground biomass estimation of black locust planted forests with aspect variable using machine learning regression algorithms. Ecol. Indic. 2021, 129. [Google Scholar] [CrossRef]
- Tomislav Hengl. Monthly precipitation in mm at 1 km resolution based on SM2RAIN-ASCAT 2007-2018, IMERGE, CHELSA Climate and WorldClim; 0.2; 2018. Available online: https://zenodo.org/record/3256275#.YfZMQfgo9PY (accessed on 3 November 2021).
- Wan, Z.; Hook, S.; Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006. 2015. Available online: https://lpdaac.usgs.gov/products/mod11a1v006/ (accessed on 3 November 2021).
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Chen, B.; Wang, J.; Ma, J.; Zhao, B.; Li, B. Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 2020, 247, 111916. [Google Scholar] [CrossRef]
- Pan, L.; Xia, H.; Yang, J.; Niu, W.; Wang, R.; Song, H.; Guo, Y.; Qin, Y. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102376. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Cihlar, J.; Manak, D.; Iorio, M.D. Evaluation of Compositing Algorithms for AVHRR Data Over Land. IEEE Trans. Geosci. Remote Sens. 1994, 32, 427–437. [Google Scholar] [CrossRef]
- Xu, H.; Qi, S.; Li, X.; Gao, C.; Wei, Y.; Liu, C. Monitoring three-decade dynamics of citrus planting in Southeastern China using dense Landsat records. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102518. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A:Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Chatziantoniou, A.; Psomiadis, E.; Petropoulos, G. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Bharati, M.H.; Liu, J.J.; MacGregor, J.F. Image texture analysis: Methods and comparisons. Chemom. Intell. Lab. Syst. 2004, 72, 57–71. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Wong, T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Q. A Feature Selection Method for Multi-Label Text Based on Feature Importance. Appl. Sci. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- al Sagri, H.; Ykhlef, M. Quantifying Feature Importance for Detecting Depression using Random Forest. IJCSNS Int. J. Comput. Sci. Netw. Secur. 2019, 19, 29–39. [Google Scholar]
- Tan, H. The advantages, disadvantages and development direction of the bamboo industry in Yunnan Province. Yunnan For. 2001, 22, 6–7. [Google Scholar]
- Zhang, M.; Fan, S.; Yan, X.; Zhou, Y.-Q.; Guan, F. Relationships between stand spatial structure characteristics and influencing factors of bamboo and broad-leaved mixed forest. J. For. Res. 2020, 25, 83–91. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Hu, X.; Gao, H.; Wang, Y.; Luo, H.; Cai, S.; Li, G.; Zheng, Y.; Lin, C.; et al. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Tree Physiol. 2020, 40, 538–556. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, Y.; Zhu, D.; Zheng, J.; et al. Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. J. Env. Manag. 2019, 248, 109265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shi, Y.; Huang, Y.; Fu, J. Uncertainties of snow cover extraction caused by the nature of topography and underlying surface. J. Arid Land 2015, 7, 285–295. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.; Yang, L.; Zhou, T. Declining Effect of Precipitation on the Normalized Difference Vegetation Index of Grasslands in the Inner Mongolian Plateau, 1982–2010. Appl. Sci. 2021, 11, 8766. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 2016, 75, 291. [Google Scholar] [CrossRef]
- Heo, I.; Kwon, W.T.; Ho, L.S. The Impact of Temperature Rising on the Distribution of Plant—In Case of Bamboos and Garlics. J. Environ. Impact Assess. 2006, 15, 67–78. [Google Scholar]
- Fadrique, B.; Gann, D.; Nelson, B.W.; Saatchi, S.; Feeley, K.J.; Jucker, T. Bamboo phenology and life cycle drive seasonal and long-term functioning of Amazonian bamboo-dominated forests. J. Ecol. 2020, 109, 860–876. [Google Scholar] [CrossRef]
ID | Provinces | Sources | Time | No. of Samples | |
---|---|---|---|---|---|
Bamboo | Non-Bamboo | ||||
1 | Hainan | FT | 2016–2017 | 153 | 991 |
2 | Zhejiang | FT | 2015 | 373 | 444 |
3 | Jiangxi | FT | 2016 | 586 | 1101 |
FRI | 2014 | ||||
4 | Yunnan | FT | 2017 | 920 | 1089 |
FRI | 2016–2017 | ||||
5 | Fujian | FRI | 2015 | 611 | 974 |
6 | Guangdong | FRI | 2002 | 323 | 1189 |
7 | Sichuan | FRI | 2007 | 471 | 2382 |
8 | Guangxi | PFM | 1999–2003 | 245 | 710 |
9 | Guizhou | PFM | 1999–2003 | 183 | 680 |
10 | Hubei | PFM | 1999–2003 | 134 | 1217 |
11 | Hunan | PFM | 1999–2003 | 490 | 1801 |
12 | Jiangsu | PFM | 1999–2003 | 124 | 348 |
13 | Chongqing | PFM | 1999–2003 | 124 | 596 |
14 | Anhui | PFM | 1999–2003 | 209 | 709 |
15 | Taiwan | WEB | 2015 | 436 | 1997 |
16 | Shaanxi | -- | -- | -- | -- |
Sum | -- | -- | -- | 5382 | 16228 |
Name | Description | Centers/μm | Wavelength/μm | Resolution/m |
---|---|---|---|---|
B1 | ultra blue | 0.443 | 0.435–0.451 | 30 |
B2 | blue | 0.482 | 0.452–0.512 | 30 |
B3 | green | 0.5615 | 0.533–0.590 | 30 |
B4 | red | 0.6545 | 0.636–0.673 | 30 |
B5 | near infrared | 0.865 | 0.851–0.879 | 30 |
B6 | shortwave infrared 1 | 1.6085 | 1.566–1.651 | 30 |
B7 | shortwave infrared 2 | 2.2005 | 2.107–2.294 | 30 |
B8 | panchromatic | 0.5895 | 0.503–0.676 | 15 |
B9 | Cirrus | 1.3735 | 1.363–1.384 | 30 |
Collection Snippet | Time | Images Count |
---|---|---|
LANDSAT/LC08/C01/T1_SR | 2014 | 2883 |
2015 | 2823 | |
2016 | 2856 | |
LANDSAT/LC08/C01/T2_SR | 2014 | 90 |
2015 | 105 | |
2016 | 110 | |
Total | 8867 |
Indices | Metrics | No. of Variables |
---|---|---|
Composited image | B2–B7 | 6 |
DEM | Elevation | 1 |
GLCM | Homogeneity | 1 |
GLCM | Contrast | 1 |
GLCM | Variance | 1 |
GLCM | Entropy | 1 |
NDVI, NDMI | Maximum | 2 |
NDVI, NDMI | Minimum | 2 |
NDVI, NDMI | Mean | 2 |
NDVI, NDMI | Standard deviation | 2 |
ID | Province | Bamboo | OA | Kappa | |
---|---|---|---|---|---|
UA | PA | ||||
1 | Fujian | 74.59% | 83.46% | 84.58% | 0.6625 |
2 | Jiangxi | 87.61% | 90.83% | 93.33% | 0.8325 |
3 | Zhejiang | 97.37% | 94.87% | 96.10% | 0.922 |
4 | Hunan | 74.59% | 83.46% | 97.04% | 0.6197 |
5 | Sichuan | 58.90% | 97.73% | 92.78% | 0.7018 |
6 | Guangdong | 56.06% | 90.24% | 89.62% | 0.6332 |
7 | Guangxi | 77.50% | 93.94% | 93.99% | 0.8122 |
8 | Anhui | 84.62% | 94.29% | 95.48% | 0.8634 |
9 | Guizhou | 90.63% | 96.67% | 97.67% | 0.9213 |
10 | Taiwan | 83.12% | 90.14% | 95.58% | 0.8385 |
11 | Hubei | 82.35% | 96.55% | 97.43% | 0.8744 |
12 | Chongqing | 59.26% | 94.12% | 90.55% | 0.6736 |
13 | Yunnan | 85.20% | 65.30% | 93.59% | 0.7038 |
14 | Jiangsu | 95.65% | 95.65% | 98.17% | 0.9449 |
15 | Shaanxi | 58.90% | 97.73% | 92.78% | 0.7018 |
16 | Hainan | 88.80% | 74.60% | 84.13% | 0.757 |
Average | 78.45% | 89.97% | 93.74% | 0.7789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, S.; Song, B.; Liu, C.; Gong, P.; Luo, J.; Zhang, M.; Xiong, T. Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine. Remote Sens. 2022, 14, 762. https://doi.org/10.3390/rs14030762
Qi S, Song B, Liu C, Gong P, Luo J, Zhang M, Xiong T. Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine. Remote Sensing. 2022; 14(3):762. https://doi.org/10.3390/rs14030762
Chicago/Turabian StyleQi, Shuhua, Bin Song, Chong Liu, Peng Gong, Jin Luo, Meinan Zhang, and Tianwei Xiong. 2022. "Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine" Remote Sensing 14, no. 3: 762. https://doi.org/10.3390/rs14030762
APA StyleQi, S., Song, B., Liu, C., Gong, P., Luo, J., Zhang, M., & Xiong, T. (2022). Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine. Remote Sensing, 14(3), 762. https://doi.org/10.3390/rs14030762