Preliminary Application of Long-Range Lightning Location Network with Equivalent Propagation Velocity in China
Abstract
:1. Introduction
2. The Long-Range Lightning Location Network
3. Location Algorithm
3.1. Sferic Waveform Bank
3.2. Grouping
- (1)
- Deviation that is accurate to the order of a hundred kilometers between actual distance and matching distance;
- (2)
- Residual term of the least square method;
- (3)
- Correlation coefficient between measurement waveform and model waveform.
3.3. Bezier Inverse Solution Algorithm
3.4. Equivalent Propagation Velocity Method
4. Results
4.1. Results of Ground Wave Identification
4.2. Location Results
5. Discussion
5.1. Method Effectiveness Verification
5.2. Evaluation of Location Effect
5.3. Position Deviation
- (1)
- Lightning locations are farther from one station or several stations than others.
- (2)
- The terrain on the originating location or the propagation path of the lightning sferic is more complicated.
5.4. Frequency Distribution of Propagation Velocity
6. Conclusions
- (1)
- The detection range of the long-range lightning location network in China established in this paper can reach 3000 km. It has a good location result for individual thunderstorms, multicell thunderstorms, squall lines, and other thunderstorm process activities at different times inside and outside the station network. The ground wave identification method can accurately identify the ground wave peak point of the lightning signal. Waveform bank established by using typical daytime ionospheric conditions and typical nighttime ionospheric conditions can meet all-weather location requirements.
- (2)
- Our network’s relative detection accuracy is less than or equal to 53% calculated by the Bayesian approach. The average location error is 9.17 km, and the standard deviation is 8.04 km.
- (3)
- The equivalent propagation velocity method improved average location accuracy by ~1.16 km. Compared to using the speed of light, the equivalent propagation velocity method causes deviations of ~1 km and ~4 km inside and outside the network, respectively.
- (4)
- About 97% of the lightning sferic propagation velocity is within ±1.5% of the speed of light, and more than 96% of the lightning sferic propagation velocity is less than the speed of light. Compared to Liu et al.’s results, the distribution is more concentrated [33]. The 50th percentile of lightning velocity is 0.998 times the speed of light.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Actual Distance |
AGRI | Advanced Geosynchronous Radiation Imager |
APLLN | Asia–Pacific Lightning Location Network |
ADTD | Arrival Time Difference Thunderstorm Detection system |
CD | Chendu |
CF | Chifeng |
CG | Cloud-to-Ground lightning |
CTT | Cloud-Top Temperature |
CWP | Caiwopu |
EIWG | Earth–Ionospheric Waveguide |
EWT | Empirical Wavelet Transform |
FDTD | Finite Difference Time Domain |
FY4A | FengYun 4A meteorological satellite |
GPS | Global Position System |
IC | Intracloud Lightning |
KS | Kashi |
LF | Low Frequency |
LS | Lasa |
MD | Matching Distance |
NJ | Nanjing |
NSMC | National Satellite Meteorological Center |
RMS | Root Mean Square |
TDOA | Time Difference of Arrival |
TOA | Time of Arrival |
TOGA | Time of Group Arrival |
TY | Taiyuan |
VLF | Very Low Frequency |
WGS84 | World Geodetic System 1984 |
WH | Wuhan |
WWLLN | World Wide Lightning Location Network |
XSBN | Xishuangbanna |
XW | Xuwen |
References
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambidge, UK, 2003. [Google Scholar]
- Pessi, A.T.; Businger, S.; Cummins, K.L.; Demetriades, N.W.S.; Murphy, M.; Pifer, B. Development of a long-range lightning detection network for the Pacific: Construction, calibration, and performance. J. Atmos. Ocean. Technol. 2009, 26, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Dowden, R.; Holzworth, R.; Rodger, C.; Lichtenberger, J.; Thomson, N.; Jacobson, A.; Lay, E.; Brundell, J.; Lyons, T.; O’Keefe, S.; et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antennas Propag. Mag. 2008, 50, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Chronis, T.; Anagnostou, E. Evaluation of a long-range lightning detection network with receivers in Europe and Africa. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1504–1510. [Google Scholar] [CrossRef]
- Nash, J.; Atkinson, N.C.; Hibbett, E.; Callaghan, G.; Taylor, P.L.; Odhams, P.; Jenkins, D.; Keogh, S.; Gaffard, C.; Walker, E. The new Met Office ATDNET lightning detection system. In Proceedings of the WMO Technical Conference on Instruments and Observing Methods, Geneva, Switzerland, 4–6 December 2006; Volume 94. [Google Scholar]
- Wang, J.; Ma, Q.; Zhou, X.; Xiao, F.; Yuan, S.; Chang, S.; He, J.; Wang, H.; Huang, Q. Asia-Pacific Lightning Location Network (APLLN) and Preliminary Performance Assessment. Remote Sens. 2020, 12, 1537. [Google Scholar] [CrossRef]
- Wang, Y.; Min, Y.; Liu, Y.; Zhao, G. A New Approach of 3D Lightning Location Based on Pearson Correlation Combined with Empirical Mode Decomposition. Remote Sens. 2021, 13, 3883. [Google Scholar] [CrossRef]
- Srivastava, A.; Tian, Y.; Qie, X.; Wang, D.; Sun, Z.; Yuan, S.; Wang, Y.; Chen, Z.; Xu, W.; Zhang, H.; et al. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Mazur, V.; Williams, E.; Boldi, R.; Maier, L.; Proctor, D.E. Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems. J. Geophys. Res. Space Phys. 1997, 102, 11071–11085. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Qie, X.; Zhang, T.; Zhao, Y.; Li, Y.; Cao, D. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes. Sci. China Earth Sci. 2010, 53, 591–602. [Google Scholar] [CrossRef]
- Shi, D.; Zheng, D.; Zhang, Y.; Zhang, Y.; Huang, Z.; Lu, W.; Chen, S.; Yan, X. Low-frequency E-field Detection Array (LFEDA)—Construction and preliminary results. Sci. China Earth Sci. 2017, 60, 1896–1908. [Google Scholar] [CrossRef]
- Sun, Z.; Qie, X.; Liu, M.; Cao, D.; Wang, D. Lightning VHF radiation location system based on short-baseline TDOA technique—Validation in rocket-triggered lightning. Atmos. Res. 2012, 129-130, 58–66. [Google Scholar] [CrossRef]
- Cummins, K.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. Space Phys. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Dowden, R.L.; Brundell, J.; Rodger, C. VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Solar-Terr. Phys. 2002, 64, 817–830. [Google Scholar] [CrossRef]
- Poelman, D.R.; Honoré, F.; Anderson, G.; Pedeboy, S. Comparing a Regional, Subcontinental, and Long-Range Lightning Location System over the Benelux and France. J. Atmos. Ocean. Technol. 2013, 30, 2394–2405. [Google Scholar] [CrossRef] [Green Version]
- Cooray, V. Effects of propagation on the return stroke radiation fields. Radio Sci. 1987, 22, 757–768. [Google Scholar] [CrossRef]
- Honma, N.; Suzuki, F.; Miyake, Y.; Ishii, M.; Hidayat, S. Propagation effect on field waveforms in relation to time-of-arrival technique in lightning location. J. Geophys. Res. Space Phys. 1998, 103, 14141–14145. [Google Scholar] [CrossRef]
- Cooray, V.; Ming, Y. Propagation effects on the lightning-generated electromagnetic fields for homogeneous and mixed sea-land paths. J. Geophys. Res. Space Phys. 1994, 99, 10641–10652. [Google Scholar] [CrossRef]
- Cooray, V.; Fernando, M.; Sörensen, T.; Götschl, T.; Pedersen, A. Propagation of lightning generated transient electromagnetic fields over finitely conducting ground. J. Atmos. Solar-Terr. Phys. 2000, 62, 583–600. [Google Scholar] [CrossRef]
- Barr, R.; Jones, D.L.; Rodger, C.J. ELF and VLF radio waves. J. Atmos. Sol.-Terr. Phys. 2000, 62, 1689–1718. [Google Scholar] [CrossRef]
- Cummins, K.L. On the effect of land: Sea and other earth surface discontinuities in LLS-Inferred lightning parameters. In Proceedings of the VIII International Symposium on Lightning Protection, Sao Paulo, Brazil, 21–25 November 2005. [Google Scholar]
- Cooray, V. Propagation effects due to finitely conducting ground on lightning-generated magnetic fields evaluated using Sommerfeld’s integrals. IEEE Trans. Electromagn. Compat. 2009, 51, 526–531. [Google Scholar] [CrossRef]
- Li, D.; Azadifar, M.; Rachidi, F.; Rubinstein, M.; Diendorfer, G.; Sheshyekani, K.; Zhang, Q.; Wang, Z. Analysis of lightning electromagnetic field propagation in mountainous terrain and its effects on ToA-based lightning location systems. J. Geophys. Res. Atmos. 2016, 121, 895–911. [Google Scholar] [CrossRef]
- Li, D.; Rubinstein, M.; Rachidi, F.; Diendorfer, G.; Schulz, W.; Lu, G. Location Accuracy Evaluation of ToA-Based Lightning Location Systems Over Mountainous Terrain. J. Geophys. Res. Atmos. 2017, 122, 11760–11775. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, J.; Jing, X.; Li, D.; Wang, Z. Propagation effect of a fractal rough ground boundary on the lightning-radiated vertical electric field. Atmos. Res. 2012, 104, 202–208. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Li, D.; Wang, Z. Propagation effects of a fractal rough ocean surface on the vertical electric field generated by lightning return strokes. J. Electrost. 2012, 70, 54–59. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Q.; Zhang, J.; Hou, W.; Yin, Q.; Huang, S. Effect of Real Terrain on the Lightning Magnetic Fields and Location Accuracy in Yunnan, China. IEEE Trans. Electromagn. Compat. 2021, 63, 1491–1500. [Google Scholar] [CrossRef]
- Bennett, A.J.; Gaffard, C.; Nash, J.; Callaghan, G.; Atkinson, N.C. The Effect of Modal Interference on VLF Long-Range Lightning Location Networks Using the Waveform Correlation Technique. J. Atmos. Ocean. Technol. 2011, 28, 993–1006. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Cramer, J.A.; Scheftic, W.; Demetriades, N.; Nag, A. Location accuracy improvements using propagation corrections: A case study of the US National Lightning Detection Network. In Proceedings of the 21st International Lightning Detection Conference, Orlando, FL, USA, 19–22 April 2010; Vaisala, Inc.: Tucson, AZ, USA, 2010; pp. 19–20. [Google Scholar]
- Jean, A.G.; Taylor, W.L.; Wait, J.R. VLF phase characteristics deduced from atmospheric wave forms. J. Geophys. Res. Space Phys. 1960, 65, 907–912. [Google Scholar] [CrossRef]
- King, R.J.; Maley, S.W.; Wait, J.R. Groundwave propagation along three-section mixed paths. In Proceedings of the Institution of Electrical Engineers; IET Digital Library: London, UK, 1966; Volume 113, pp. 747–751. [Google Scholar]
- Li, D.; Azadifar, M.; Rachidi, F.; Rubinstein, M.; Paolone, M.; Pavanello, D.; Metz, S.; Zhang, Q.; Wang, Z. On Lightning Electromagnetic Field Propagation Along an Irregular Terrain. IEEE Trans. Electromagn. Compat. 2015, 58, 161–171. [Google Scholar] [CrossRef]
- Liu, Z.; Koh, K.L.; Mezentsev, A.; Enno, S.-E.; Sugier, J.; Füllekrug, M. Variable phase propagation velocity for long-range lightning location system. Radio Sci. 2016, 51, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Koshak, W.J.; Solakiewicz, R.J. TOA lightning location retrieval on spherical and oblate spheroidal earth geometries. J. Atmos. Ocean. Technol. 2001, 18, 187–199. [Google Scholar] [CrossRef]
- Hu, Z.X.; Zhao, W.G.; Zhu, H.P. A source location algorithm of lightning detection networks in China. Ann. Geophys. 2010, 28, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Cummer, S. An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy. IEEE Trans. Antennas Propag. 1997, 45, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Azadifar, M.; Rubinstein, M.; Rachidi, F.; Zhang, Q. The Polarity Reversal of Lightning-Generated Sky Wave. J. Geophys. Res. Atmos. 2020, 125, e2020JD032448. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, Q.; Zhang, J.; Wang, L.; Shen, Y. A New Approximate Method for Lightning-Radiated ELF/VLF Ground Wave Propagation over Intermediate Ranges. Int. J. Antennas Propag. 2018, 2018, 9353294. [Google Scholar] [CrossRef] [Green Version]
- Bitzer, P.M.; Burchfield, J.C. Bayesian techniques to analyze and merge lightning locating system data. Geophys. Res. Lett. 2016, 43, 12605–12613. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Dai, B.; Zhou, J.; Zhang, J.; Zhang, Q.; Yang, J.; Wang, Y.; Gu, J.; Hou, W.; Zou, B.; et al. Preliminary Application of Long-Range Lightning Location Network with Equivalent Propagation Velocity in China. Remote Sens. 2022, 14, 560. https://doi.org/10.3390/rs14030560
Li J, Dai B, Zhou J, Zhang J, Zhang Q, Yang J, Wang Y, Gu J, Hou W, Zou B, et al. Preliminary Application of Long-Range Lightning Location Network with Equivalent Propagation Velocity in China. Remote Sensing. 2022; 14(3):560. https://doi.org/10.3390/rs14030560
Chicago/Turabian StyleLi, Jie, Bingzhe Dai, Jiahao Zhou, Junchao Zhang, Qilin Zhang, Jing Yang, Yao Wang, Jiaying Gu, Wenhao Hou, Bin Zou, and et al. 2022. "Preliminary Application of Long-Range Lightning Location Network with Equivalent Propagation Velocity in China" Remote Sensing 14, no. 3: 560. https://doi.org/10.3390/rs14030560