Outbreak of Negative Narrow Bipolar Events in Two Mid-Latitude Thunderstorms Featuring Overshooting Tops
Abstract
:1. Introduction
2. Data and Method
2.1. Lightning VLF/LF Data and NBE Height
2.2. Radar and Sounding Data
3. Analyses and Results
3.1. Negative Narrow Bipolar Events Associated with Overshooting Tops
3.2. Negative Narrow Bipolar Events versus –CGs, IC and Total Lightning
3.3. Mixing Condition of Negative NBEs at Cloud Top
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
E-field | Electric field |
CG | Cloud-ground discharges |
NBE | Narrow bipolar events |
NLDN | National Lightning Detection Network |
OT | Overshooting tops |
IC | Intra-cloud discharges |
JASA | Jianghuai Area Sferic Array |
TOA | The time of arrival |
VLF/LF | Very low frequency and low frequency |
VHF | Very high frequency |
References
- Le Vine, D.M. Sources of the strongest RF radiation from lightning. J. Geophys. Res. Oceans 1980, 85, 4091–4095. [Google Scholar] [CrossRef] [Green Version]
- Willett, J.C.; Bailey, J.C.; Krider, E.P. A class of unusual lightning electric field waveforms with very strong high-frequency radiation. J. Geophys. Res. Atmos. 1989, 94, 16255–16267. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, H.; Ma, M.; Tao, S. Observations of narrow bipolar events in East China. J. Atmos. Sol. Terr. Phys. 2010, 72, 271–278. [Google Scholar] [CrossRef]
- Nag, A.; Rakov, V.A.; Tsalikis, D.; Cramer, J.A. On phenomenology of compact intracloud lightning discharges. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Rison, W.; Krehbiel, R.; Stock, M.; Edens, H.; Shao, X.; Thomas, R.; Stanley, M.; Zhang, Y. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat. Commun. 2016, 7, 10721. [Google Scholar] [CrossRef] [Green Version]
- Bandara, S.; Marshall, T.; Karunarathne, S.; Stolzenburg, M. Electric field change and VHF waveforms of positive Narrow Bipolar events in Mississippi thunderstorms. Atmos. Res. 2020, 243, 105000. [Google Scholar] [CrossRef]
- Light, T.; Jacobson, A. Characteristics of impulsive VHF lightning signals observed by the FORTE satellite. J. Geophys. Res. Atmos. 2002, 107, ACL-8. [Google Scholar] [CrossRef]
- Jacobson, A.R. How do the strongest radio pulses from thunderstorms relate to lightning flashes? J. Geophys. Res. Atmos. 2003, 108, 4778. [Google Scholar] [CrossRef]
- Wu, T.; Dong, W.; Zhang, Y.; Wang, T. Comparison of positive and negative compact intracloud discharges. J. Geophys. Res. Atmos. 2011, 116, D03111. [Google Scholar] [CrossRef]
- Wu, T.; Dong, W.; Zhang, Y.; Funaki, T.; Yoshida, S.; Morimoto, T.; Ushio, T.; Kawasaki, Z. Discharge height of lightning narrow bipolar events. J. Geophys. Res. Atmos. 2012, 117, D05119. [Google Scholar] [CrossRef]
- Bandara, S.; Marshall, T.; Karunarathne, S.; Karunarathne, N.; Siedlecki, R.; Stolzenburg, M. Characterizing three types of negative narrow bipolar events in thunderstorms. Atmos. Res. 2019, 227, 263–279. [Google Scholar] [CrossRef]
- Wu, T.S.; Yoshida, S.; Ushio, T.; Kawasaki, Z.; Wang, D.H. Lightning-initiator type of narrow bipolar events and their subsequent pulse trains. J. Geophys. Res. Atmos. 2014, 119, 7425–7438. [Google Scholar] [CrossRef]
- Tilles, J.N.; Liu, N.; Stanley, M.A.; Krehbiel, P.R.; Rison, W.; Stock, M.G.; Wilson, J. Fast negative breakdown in thunderstorms. Nat. Commun. 2019, 10, 1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, F.C.; Cummer, S.A.; Qin, Z.L.; Chen, M.L. Lightning initiation processes imaged with very high frequency broadband interferometry. J. Geophys. Res. Atmos. 2019, 124, 2994–3004. [Google Scholar] [CrossRef]
- Leal, A.F.R.; Rakov, V.A. A study of the context in which compact intracloud discharges occur. Sci. Rep. 2019, 9, 12218. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Cummer, S.A.; Lyons, W.A.; Krehbiel, P.R.; Li, J.; Rison, W.; Thomas, R.J.; Edens, H.E.; Stanley, M.A.; Beasley, W.; et al. Lightning development associated with two negative gigantic jets. Geophys. Res. Lett. 2011, 38, L12801. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Spiva, N.; Dwyer, J.R.; Rassoul, H.K.; Free, D.; Cummer, S.A. Upward electrical discharges observed above Tropical Depression Dorian. Nat. Commun. 2015, 6, 5995. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Qie, X.; Zhong, L.; He, Q.; Lu, G.; Wang, Z.; Li, H. Analysis of a gigantic jet in southern china: Morphology, meteorology, storm evolution, lightning, and narrow bipolar events. J. Geophys. Res. Atmos. 2020, 125, e2019JD031538. [Google Scholar] [CrossRef]
- Wu, T.; Takayanagi, Y.; Yoshida, S.; Funaki, T.; Ushio, T.; Kawasaki, Z. Spatial relationship between lightning narrow bipolar events and parent thunderstorms as revealed by phased array radar. Geophys. Res. Lett. 2013, 40, 618–623. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, B.; Lu, G.; Qin, Z.; Lei, J.; Peng, K.-M.; Chen, A.; Huang, A.; Cummer, S.A.; Chen, M.; et al. Observations of blue discharges associated with negative narrow bipolar events in active deep convection. Geophys. Res. Lett. 2018, 45, 2842–2851. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, B.; Lu, G.; Lei, J.; Shao, J.; Chen, Y.; Zhou, H. Meteorological and electrical conditions of two mid-latitude thunderstorms producing blue discharges. J. Geophys. Res. Atmos. 2021, 126. [Google Scholar] [CrossRef]
- Liu, F.; Lu, G.; Neubert, T.; Lei, J.; Chanrion, O.; Østgaard, N.; Zhu, B. Optical emissions associated with narrow bipolar events from thunderstorm clouds penetrating into the stratosphere. Nat. Commun. 2021, 12, 6631. [Google Scholar] [CrossRef] [PubMed]
- Wescott, E.M.; Sentman, D.; Osborne, D.; Hampton, D.; Heavner, M. Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets. Geophys. Res. Lett. 1995, 22, 1209–1212. [Google Scholar] [CrossRef]
- Pasko, V.P.; Stanley, M.A.; Mathews, J.D.; Inan, U.S.; Wood, T.G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 2002, 416, 152–154. [Google Scholar] [CrossRef]
- Chanrion, O.; Neubert, T.; Mogensen, A.; Yair, Y.; Stendel, M.; Singh, R.; Siingh, D. Profuse activity of blue electrical discharges at the tops of thunderstorms. Geophys. Res. Lett. 2017, 44, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Neubert, T.; Chanrion, O.; Heumesser, M.; Dimitriadou, K.; Husbjerg, L.; Rasmussen, I.L.; Østgaard, N.; Reglero, V. Observation of the onset of a blue jet into the stratosphere. Nature 2021, 589, 371–375. [Google Scholar] [CrossRef]
- Suszcynsky, D.M.; Heavner, M.J. Narrow Bipolar Events as indicators of thunderstorm convective strength. Geophys. Res. Lett. 2003, 30, 1879. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, A.R.; Heavner, M.J. Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection. Mon. Weather Rev. 2005, 133, 1144–1154. [Google Scholar] [CrossRef]
- Wiens, K.C.; Hamlin, T.; Harlin, J.; Suszcynsky, D.M. Relationships among narrow bipolar events, “total” lightning, and radar-inferred convective strength in Great Plains thunderstorms. J. Geophys. Res. Atmos. 2008, 113, D05201. [Google Scholar] [CrossRef] [Green Version]
- Lü, F.; Zhu, B.; Zhou, H.; Rakov, V.A.; Xu, W.; Qin, Z. Observations of compact intracloud lightning discharges in the northernmost region (51N) of China. J. Geophys. Res. Atmos. 2013, 118, 4458–4465. [Google Scholar] [CrossRef]
- Karunarathna, N.; Marshall, T.C.; Stolzenburg, M.; Karunarathne, S. Narrow bipolar pulse locations compared to thunderstorm radar echo structure. J. Geophys. Res. Atmos. 2015, 120, 11–690. [Google Scholar] [CrossRef]
- Qin, Z.; Zhu, B.; Ma, M.; Ma, D. Using time domain waveforms of return strokes to retrieve the daytime fluctuation of ionospheric D layer. Chin. Sci. Bull. 2015, 60, 654. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, M.; Lyu, F.; Cummer, S.A.; Zhu, B.; Liu, F.; Du, Y. A GPU-Based Grid Traverse Algorithm for Accelerating Lightning Geolocation Process. IEEE Trans. Electromagn. Compat. 2019, 62, 489–497. [Google Scholar] [CrossRef]
- Ma, D. Characteristic pulse trains of preliminary breakdown in four isolated small thunderstorms. J. Geophys. Res. Atmos. 2017, 122, 3361–3373. [Google Scholar] [CrossRef]
- Smith, D.A.; Heavner, M.J.; Jacobson, A.R.; Shao, X.M.; Massey, R.S.; Sheldon, R.J.; Wiens, K.C. A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records. Radio Sci. 2004, 39, RS1010. [Google Scholar] [CrossRef]
- Lyu, F.; Cummer, S.A.; McTague, L. Insights into high peak current in-cloud lightning events during thunderstorms. Geophys. Res. Lett. 2015, 42, 6836–6843. [Google Scholar] [CrossRef]
- Istok, M.J.; Doviak, R.J. Analysis of the relation between doppler spectral width and thunderstorm turbulence. J. Atmos. Sci. 1986, 43, 2199–2214. [Google Scholar] [CrossRef] [Green Version]
- Todd, S.G.; Zenk, W. ; American Meteorological Society. Glossary of Meteorology, 2nd ed.; American Meteorological Society: Boston, MA, USA, 2000; p. 855. [Google Scholar]
- Liu, C.; Zipser, E.J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. Atmos. 2005, 110, D23104. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Homeyer, C.R.; Honomichl, S.; Ridley, B.A.; Weisman, M.; Barth, M.C.; Hair, J.W.; Fenn, M.A.; Butler, C.; Huntrieser, H. Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett. 2014, 41, 7785–7790. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Elliott, M.S.; DiGangi, E. Electrical discharges in the overshooting tops of thunderstorms. J. Geophys. Res. Atmos. 2017, 122, 2929–2957. [Google Scholar] [CrossRef]
- Williams, E.R.; Boldi, B.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.; Goodman, S.; Raghaven, R.; Buechler, D. The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res. 1999, 51, 245–265. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.J.; Rutledge, S.A. Relationships between convective storm kinematics, precipitation, and lightning. Mon. Weather Rev. 2002, 130, 2492–2506. [Google Scholar] [CrossRef]
- Lapp, J.L.; Saylor, J.R. Correlation between lightning types. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Boggs, L.D.; Liu, N.Y.; Riousset, J.A.; Shi, F.; Lazarus, S.; Splitt, M.; Rassoul, H.K. Thunderstorm charge structures producing gigantic jets. Sci. Rep. 2018, 8, 18085. [Google Scholar] [CrossRef] [PubMed]
- Brewster, K.A.; Zrnić, D.S. Comparison of eddy dissipation rates from spatial spectra of Doppler velocities and Doppler spectrum widths. J. Atmos. Ocean. Technol. 1986, 3, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; Doviak, R.J.; Melnikov, V. Spectrum width measured by WSR-88D: Error sources and statistics of various weather phenomena. J. Atmos. Ocean. Technol. 2004, 21, 888–904. [Google Scholar] [CrossRef]
- Riousset, J.A.; Pasko, V.P.; Krehbiel, P.R.; Rison, W.; Stanley, M.A. Modeling of thundercloud screening charges: Implications for blue and gigantic jets. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Krehbiel, P.R.; Riousset, J.A.; Pasko, V.P.; Thomas, R.J.; Rison, W.; Stanley, M.A.; Edens, H.E. Upward electrical discharges from thunderstorms. Nat. Geosci. 2008, 1, 233–237. [Google Scholar] [CrossRef]
- Boggs, L.D.; Liu, N.; Peterson, M.; Lazarus, S.; Splitt, M.; Lucena, F.; Nag, A.; Rassoul, H.K. First observations of gigantic jets from geostationary orbit. Geophys. Res. Lett. 2019, 46, 3999–4006. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Zhu, B.; Lu, G.; Ma, M. Outbreak of Negative Narrow Bipolar Events in Two Mid-Latitude Thunderstorms Featuring Overshooting Tops. Remote Sens. 2021, 13, 5130. https://doi.org/10.3390/rs13245130
Liu F, Zhu B, Lu G, Ma M. Outbreak of Negative Narrow Bipolar Events in Two Mid-Latitude Thunderstorms Featuring Overshooting Tops. Remote Sensing. 2021; 13(24):5130. https://doi.org/10.3390/rs13245130
Chicago/Turabian StyleLiu, Feifan, Baoyou Zhu, Gaopeng Lu, and Ming Ma. 2021. "Outbreak of Negative Narrow Bipolar Events in Two Mid-Latitude Thunderstorms Featuring Overshooting Tops" Remote Sensing 13, no. 24: 5130. https://doi.org/10.3390/rs13245130
APA StyleLiu, F., Zhu, B., Lu, G., & Ma, M. (2021). Outbreak of Negative Narrow Bipolar Events in Two Mid-Latitude Thunderstorms Featuring Overshooting Tops. Remote Sensing, 13(24), 5130. https://doi.org/10.3390/rs13245130