A Lightweight Privacy-Preserving System for the Security of Remote Sensing Images on IoT
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. An Improved Extended VCS
Algorithm 1: The encoding process of the size-invariant EVCS. |
3.2. High-Accuracy Recognition Neural Network for Encrypted Datasets
Algorithm 2: A high-accuracy recognition neural network for encrypted datasets. |
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Yan, Z.; Fan, X. ScienceEarth: A Big Data Platform for Remote Sensing Data Processing. Remote Sens. 2020, 12, 607. [Google Scholar] [CrossRef] [Green Version]
- Ullo, S.L.; Sinha, G.R. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Zhou, L.; Tu, W.; Wang, C.; Li, Q. A Heterogeneous Access Metamodel for Efficient IoT Remote Sensing Observation Management: Taking Precision Agriculture as an Example. IEEE Internet Things J. 2022, 9, 8616–8632. [Google Scholar] [CrossRef]
- Pallavi, S.; Mallapur, J.D.; Bendigeri, K.Y. Remote Sensing and Controlling of Greenhouse Agriculture Parameters Based on IoT. In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 44–48. [Google Scholar]
- Brenner, S.; Kapitza, R. Trust More, Serverless. In Proceedings of the 12th ACM International Conference on Systems and Storage, Haifa Israel, 3–5 May 2019; pp. 33–43. [Google Scholar]
- Wang, D.; Wu, M.; He, Y.; Pang, L.; Xu, Q.; Zhang, R. An HAP and UAVs Collaboration Framework for Uplink Secure Rate Maximization in NOMA-Enabled IoT Networks. Remote Sens. 2022, 14, 4501. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance. Remote Sens. 2019, 11, 2144. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Hussain, D.; Hussain, I.; AlSalman, H.; Hussain, S.; Ullah, S.S.; Al-Hadhrami, S. Internet of Things with Deep Learning-Based Face Recognition Approach for Authentication in Control Medical Systems. Comput. Math. Methods Med. 2022, 2022, e5137513. [Google Scholar] [CrossRef]
- Akhtar, N.; Mian, A. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access 2018, 6, 14410–14430. [Google Scholar] [CrossRef]
- Gu, Z.; Hu, W.; Zhang, C.; Lu, H.; Yin, L.; Wang, L. Gradient Shielding: Towards Understanding Vulnerability of Deep Neural Networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 921–932. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Xu, S.; Mu, X.; Chai, D.; Zhang, X. Remote Sensing Image Scene Classification Based on Generative Adversarial Networks. Remote Sens. Lett. 2018, 9, 617–626. [Google Scholar] [CrossRef]
- Gu, Z.; Li, H.; Khan, S.; Deng, L.; Du, X.; Guizani, M.; Tian, Z. IEPSBP: A Cost-Efficient Image Encryption Algorithm Based on Parallel Chaotic System for Green IoT. IEEE Trans. Green Commun. Netw. 2022, 6, 89–106. [Google Scholar] [CrossRef]
- Korala, H.; Georgakopoulos, D.; Jayaraman, P.P.; Yavari, A. Managing Time-Sensitive IoT Applications via Dynamic Application Task Distribution and Adaptation. Remote Sens. 2021, 13, 4148. [Google Scholar] [CrossRef]
- Taheri, M.; Mozaffari, S.; Keshavarzi, P. Face Authentication in Encrypted Domain Based on Correlation Filters. Multimed. Tools Appl. 2018, 77, 17043–17067. [Google Scholar] [CrossRef]
- Thanh, T.M.; Tanaka, K. An Image Zero-Watermarking Algorithm Based on the Encryption of Visual Map Feature with Watermark Information. Multimed. Tools Appl. 2017, 76, 13455–13471. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Boulila, W.; Khlifi, M.K.; Ammar, A.; Koubaa, A.; Benjdira, B.; Farah, I.R. A Hybrid Privacy-Preserving Deep Learning Approach for Object Classification in Very High-Resolution Satellite Images. Remote Sens. 2022, 14, 4631. [Google Scholar] [CrossRef]
- He, Q.; Yu, S.; Xu, H.; Liu, J.; Huang, D.; Liu, G.; Xu, F.; Du, Y. A Weighted Threshold Secret Sharing Scheme for Remote Sensing Images Based on Chinese Remainder Theorem. Comput. Mater. Contin. 2019, 58, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Zheng, G.; Yang, J.; Valli, C. A Privacy-Preserving Lightweight Biometric System for Internet of Things Security. IEEE Commun. Mag. 2019, 57, 84–89. [Google Scholar] [CrossRef]
- Kothmayr, T.; Schmitt, C.; Hu, W.; Brünig, M.; Carle, G. DTLS Based Security and Two-Way Authentication for the Internet of Things. Ad. Hoc. Networks 2013, 11, 2710–2723. [Google Scholar] [CrossRef]
- Ibrahim, D.R.; Teh, J.S.; Abdullah, R. An Overview of Visual Cryptography Techniques. Multimed. Tools Appl. 2021, 80, 31927–31952. [Google Scholar] [CrossRef]
- Weir, J.; Yan, W. A Comprehensive Study of Visual Cryptography. In Transactions on Data Hiding and Multimedia Security V; Shi, Y.Q., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6010, pp. 70–105. ISBN 978-3-642-14297-0. [Google Scholar]
- Naor, M.; Shamir, A. Visual cryptography. In Advances in Cryptology—EUROCRYPT’94; De Santis, A., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1995; Volume 950, pp. 1–12. ISBN 978-3-540-60176-0. [Google Scholar]
- Zhang, D.; Zhu, H.; Liu, S.; Wei, X. HP-VCS: A High-Quality and Printer-Friendly Visual Cryptography Scheme. J. Vis. Commun. Image Represent. 2021, 78, 103–186. [Google Scholar] [CrossRef]
- Wang, L.; Yan, B.; Yang, H.-M.; Pan, J.-S. Flip Extended Visual Cryptography for Gray-Scale and Color Cover Images. Symmetry 2020, 13, 65. [Google Scholar] [CrossRef]
- Lee, K.-H.; Chiu, P.-L. An Extended Visual Cryptography Algorithm for General Access Structures. IEEE Trans. Inf. Forensics Secur. 2012, 7, 219–229. [Google Scholar] [CrossRef]
- Wu, X.; Yang, C.-N. Probabilistic Color Visual Cryptography Schemes for Black and White Secret Images. J. Vis. Commun. Image Represent. 2020, 70, 102793. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, Y.; Hu, X.; Gao, Z.; Hu, J.; Chen, L.; He, Z.; Pei, L.; Chen, K.; Wang, M.; et al. Toward Location-Enabled IoT (LE-IoT): IoT Positioning Techniques, Error Sources, and Error Mitigation. IEEE Internet Things J. 2021, 8, 4035–4062. [Google Scholar] [CrossRef]
- Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward Convolutional Blind Denoising of Real Photographs. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1712–1722. [Google Scholar]
- Lo, S.-Y.; Patel, V.M. Error Diffusion Halftoning Against Adversarial Examples. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3892–3896. [Google Scholar]
- Chu, H.-K.; Chang, C.-S.; Lee, R.-R.; Mitra, N.J. Halftone QR Codes. ACM Trans. Graph. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Rudrawar, A. Content Based Remote-Sensing Image Retrieval with Bag of Visual Words Representation. In Proceedings of the 2018 2nd International Conference I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 30–31 August 2018; pp. 162–167. [Google Scholar]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch. Comput. Methods Eng. 2020, 27, 1071–1092. [Google Scholar] [CrossRef]
- Norouzi, M.; Fleet, D.J.; Salakhutdinov, R.R. Hamming Distance Metric Learning. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1061–1069. [Google Scholar]
- Pang, H.; Xuan, Q.; Xie, M.; Liu, C.; Li, Z. Research on Target Tracking Algorithm Based on Siamese Neural Network. Mob. Inf. Syst. 2021, 2021, e6645629. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Ren, L. A Novel Raster Map Exchange Scheme Based on Visual Cryptography. Adv. Multimed. 2021, 2021, 3287774. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Burger, H.C.; Schuler, C.J.; Harmeling, S. Image Denoising: Can Plain Neural Networks Compete with BM3D? In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2392–2399. [Google Scholar]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
Secret Pixel | ||||
---|---|---|---|---|
Decrypted Pixel |
PSNR (%)|MSE | SSIM (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Halftone | Ours | Wu [30] | Ren [44] | Halftone | Ours | Wu [30] | Ren [44] | ||||
4.75 | 170.83 | 4.89 | 165.41 | 4.75 | 170.83 | 4.74 | 170.83 | 7.81 | 7.32 | 2.34 | 1.01 |
4.81 | 168.49 | 4.76 | 170.44 | 4.71 | 172.41 | 4.79 | 172.41 | 3.83 | 3.07 | 1.26 | 0.13 |
4.93 | 163.90 | 5.00 | 161.28 | 4.98 | 162.02 | 4.74 | 162.02 | 8.35 | 3.47 | 1.51 | 1.17 |
4.76 | 170.44 | 5.13 | 156.52 | 4.70 | 172.81 | 4.66 | 172.81 | 2.12 | 1.83 | 0.08 | 0.64 |
5.15 | 155.80 | 4.72 | 172.02 | 4.79 | 169.27 | 4.74 | 169.27 | 12.78 | 11.79 | 3.11 | 0.94 |
4.82 | 168.10 | 4.92 | 164.27 | 4.54 | 179.30 | 4.72 | 179.30 | 6.04 | 5.88 | 1.92 | 1.12 |
4.71 | 172.41 | 4.76 | 170.44 | 4.67 | 174.01 | 4.64 | 174.01 | 6.12 | 5.92 | 1.13 | 0.33 |
4.76 | 170.44 | 5.16 | 155.44 | 4.82 | 168.10 | 4.62 | 168.10 | 7.13 | 6.12 | 2.23 | 1.12 |
5.12 | 156.88 | 4.56 | 178.47 | 4.92 | 164.27 | 4.74 | 164.27 | 6.90 | 6.32 | 2.93 | 0.34 |
4.82 | 168.10 | 5.01 | 160.91 | 5.04 | 159.80 | 4.67 | 159.80 | 6.91 | 5.87 | 2.94 | 0.49 |
Schemes | (3,3)-EVCS | (4,4)-EVCS | (6,6)-EVCS | (8,8)-EVCS |
---|---|---|---|---|
Accuracy | 0.94 | 0.91 | 0.83 | 0.64 |
Precision | 0.92 | 0.92 | 0.85 | 0.62 |
Recall | 0.93 | 0.92 | 0.84 | 0.62 |
F1-score | 0.92 | 0.93 | 0.84 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Ren, L.; Shafiq, M.; Gu, Z. A Lightweight Privacy-Preserving System for the Security of Remote Sensing Images on IoT. Remote Sens. 2022, 14, 6371. https://doi.org/10.3390/rs14246371
Zhang D, Ren L, Shafiq M, Gu Z. A Lightweight Privacy-Preserving System for the Security of Remote Sensing Images on IoT. Remote Sensing. 2022; 14(24):6371. https://doi.org/10.3390/rs14246371
Chicago/Turabian StyleZhang, Denghui, Lijing Ren, Muhammad Shafiq, and Zhaoquan Gu. 2022. "A Lightweight Privacy-Preserving System for the Security of Remote Sensing Images on IoT" Remote Sensing 14, no. 24: 6371. https://doi.org/10.3390/rs14246371
APA StyleZhang, D., Ren, L., Shafiq, M., & Gu, Z. (2022). A Lightweight Privacy-Preserving System for the Security of Remote Sensing Images on IoT. Remote Sensing, 14(24), 6371. https://doi.org/10.3390/rs14246371