Dynamics of Mixing Layer Height and Homogeneity from Ceilometer-Measured Aerosol Profiles and Correlation to Ground Level PM2.5 in New York City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.2. Quality Assurance of the MLH Determination by Ceilometers
3. Results and Discussion
3.1. MLH Detection, Validation and Seasonal Variation
3.2. Correlation of Attenuated Backscatter Coefficients and Ground PM2.5
3.3. Vertical Mixing of Aerosols in the ML
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MLH | Mixing Layer Height |
NYC | New York City |
QA/QC | Quality Control/Quality Assurance |
ML | Mixing Layer |
PM2.5 | Fine particulate matter with a diameter of less than or equal to 2.5 m |
AOD | Aerosol Optical Depth |
GOES-CHEM | Chemical transport model from the Goddard Earth Observing System |
CALIOP | Cloud-Aerosol Lidar with Orthogonal Polarization |
CBL | Convective Boundary Layer |
PBLH | Planetary Boundary Layer Height |
NASA | National Aeronautics and Space Administration |
NOAA | National Atmospheric and Oceanic Administration |
WCT | Wavelet Covariance Transform |
SNR | Signal-to-Noise Ratio |
CCNY | The City College of New York |
ALH | Aerosol Layer Height |
AERONET | AErosol RObotic NETwork |
NYSDEC | New York State Department of Environment Conservation |
FOV | Field Of View |
APD | Avalanche Photodiode |
PMT | Photomultiplier Tubes |
BL-View | Vaisala Boundary Layer View software |
CBH | Cloud Base Height |
djf | December, January, February |
mam | March, April, May |
jja | June, July, August |
son | September, October, November |
RMSE | Root Mean Square Error |
UTC | Coordinated Universal Time |
Attenuated Backscatter Coefficient | |
Aerosol Backscatter Coefficient | |
Molecular Backscatter Coefficient | |
EN | Evening |
NT | Night |
MT | Morning Transition |
CT | Convection |
ET | Evening Transition |
Appendix A
Appendix A.1. QA/QC Procedures
- Step 1: Initialize the primary MLHs to be the lowest ALHs retrieved by ceilometers with a time resolution of 16 s for CL51 and 15 s for CHM15k, filling the missing value of MLHs with the null value.
- Step 2: For each primary MLH, generate quality flag (mblfg) with initiate value 0.
- Step 3: For each primary MLH, check the lowest CBH within 11 timestamps (about 3 min) sliding window, if any lowest CBH is less than 3 km, mark the current quality flag to be 1;
- Step 4: Divide the MLHs into 5 intervals: evening (EN: from evening time to night time), night (NT: from night time to sunrise), morning transition (MT: from sunrise to noon), convection (CT: from noon to sunset) and evening transition (ET: from sunset to evening time). Set upper bound and lower bound threshold : (), (), (), () and (), where the subscripts indicate the certain time interval. Note that, during the morning transition, the upper bound threshold is a linear function of time. If the primary MLH exceeds the corresponding threshold, then mark the quality flag to be 1. Compare the MLHs during NT and MT with the noon MLH, if the MLH during NT and MT exceeds 100 m above noon MLH, mark quality flag to be 1. The thresholds are shown in Table A1.
- Step 5: Set the MLHs with corresponding mblfg = 1 to be the null value and then check the continuity of the MLHs: For each MLH, apply running median (omit null value) with corresponding temporal sliding window (); if the difference between the current MLH and the running median is greater than threshold (), then mark quality flag to be 1. This process is applied one or two times and values of and are chosen based on different time intervals. (Table A2).
- Step 6: Set the MLHs with corresponding mblfg = 1 to a null value, and average all the MLHs every 10 min (omit null value).
Evening | Night | Morning Transition | Convection | Evening Transition | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | |
Time (UTC hour) | 0:00–2:00 | 0:00–2:00 | 2:00–12:00 | 2:00–14:00 | 12:00–17:00 | 14:00–17:00 | 17:00–21:00 | 17:00–21:00 | 21:00–0:00 | 21:00–0:00 |
H1 (km) | 1.45 | 0.65 | 0.774 | 0.725 | 0.21t–1.55 | 0.33t–3.83 | 2.2 | 1.95 | 2.45 | 1.4 |
L1 (km) | 0.1 | 0.1 | 0.08 | 0.08 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 |
Evening | Night | Sunrise-Afternoon | Afternoon-Evening | ||||||
---|---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | Summer | Winter | ||
Time (UTC hour) | 0:00–2:00 | 0:00–2:00 | 2:00–12:00 | 2:00–14:00 | 12:00–19:00 | 14:00–17:00 | 19:00–00:00 | 17:00–00:00 | |
(hour) | 1st time | 0.5 | 0.5 | 0.5 | 0.5 | 0.17 | 0.17 | 0.5 | 0.5 |
2nd time | \ | \ | 1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | |
(km) | 1st time | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.15 | 0.15 |
2nd time | \ | \ | 0.1 | 0.1 | 0.15 | 0.15 | 0.3 | 0.3 |
Appendix A.2. Aerosol Optical Transmittance
References
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar] [PubMed]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8. [Google Scholar] [PubMed]
- Kheirbek, I.; Wheeler, K.; Walters, S.; Pezeshki, G.; Kass, D.; Matte, T. Air pollution and the health of New Yorkers: The impact of fine particles and ozone. Environ. Prot. 2011, 3–4. [Google Scholar]
- Squizzato, S.; Masiol, M.; Rich, D.Q.; Hopke, P.K. A long-term source apportionment of PM2.5 in New York state during 2005–2016. Atmos. Environ. 2018, 192, 35–47. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin, Germany, 2012; Volume 13. [Google Scholar]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S. Modeling the feedback between aerosol and boundary layer processes: A case study in Beijing, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 3342–3357. [Google Scholar] [CrossRef]
- Petaja, T.; Jarvi, L.; Kerminen, V.M.; Ding, A.J.; Sun, J.N.; Nie, W.; Kujansuu, J.; Virkkula, A.; Yang, X.Q.; Fu, C.B.; et al. Enhanced air pollution via aerosol-boundary layer feedback in China. Sci. Rep. 2016, 6, 18998. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Li, Z.; Yu, X.; Cribb, M.; Li, X.; Dai, J. Opposite long-term trends in aerosols between low and high altitudes: A testimony to the aerosol–PBL feedback. Atmos. Chem. Phys. 2017, 17, 7997–8009. [Google Scholar] [CrossRef] [Green Version]
- Mues, A.; Lauer, A.; Lupascu, A.; Rupakheti, M.; Kuik, F.; Lawrence, M.G. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley. Geosci. Model Dev. 2018, 11, 2067–2091. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T.; Shen, H.; Zhang, L. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environ. Pollut. 2019, 248, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.; Kilaru, V.; Sarnat, J.A. Mapping annual mean ground-level PM2.5concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J. Geophys. Res. Atmos. 2004, 109, D22. [Google Scholar] [CrossRef]
- Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. Environ. Sci. Technol. 2005, 39, 3269–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. 2006, 111, D21. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Drury, E.; Remer, L.A.; Levy, R.C.; Wang, J. Optimal estimation for global ground-level fine particulate matter concentrations. J. Geophys. Res. Atmos. 2013, 118, 5621–5636. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Zhao, C.; Zhu, Y.; Wang, Y.; Shi, X.; Wu, X.; Chen, T.; Wu, F.; Qiu, Y. Analysis of influential factors for the relationship between PM 2.5 and AOD in Beijing. Atmos. Chem. Phys. 2017, 17, 13473–13489. [Google Scholar] [CrossRef] [Green Version]
- Schafer, K.; Emeis, S.; Rauch, A.; Munkel, C.; Vogt, S. Determination of mixing layer heights from ceilometer data. Remote Sens. 2004, 5571, 248–259. [Google Scholar]
- de Haij, M.; Wauben, W.; Baltink, H.K. Determination of mixing layer height from ceilometer backscatter profiles. SPIE Remote Sens. 2006, 6362, 158–169. [Google Scholar]
- Eresmaa, N.; Karppinen, A.; Joffre, S.M.; Räsänen, J.; Talvitie, H. Mixing height determination by ceilometer. Atmos. Chem. Phys. 2006, 6, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Münkel, C.; Eresmaa, N.; Räsänen, J.; Karppinen, A. Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteorol. 2006, 124, 117–128. [Google Scholar] [CrossRef]
- Gan, C.M.; Wu, Y.; Madhavan, B.L.; Gross, B.; Moshary, F. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5 forecasts. Atmos. Environ. 2011, 45, 6613–6621. [Google Scholar] [CrossRef]
- Hicks, M.; Demoz, B.; Vermeesch, K.; Atkinson, D. Intercomparison of Mixing Layer Heights from the National Weather Service Ceilometer Test Sites and Collocated Radiosondes. J. Atmos. Ocean. Technol. 2019, 36, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S.; Schäfer, K.; Münkel, C. Surface-based remote sensing of the mixing-layer height—A review. Meteorol. Z. 2008, 17, 621–630. [Google Scholar] [CrossRef]
- Menut, L.; Flamant, C.; Pelon, J.; Flamant, P.H. Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt. 1999, 38, 945. [Google Scholar] [CrossRef] [PubMed]
- Lammert, A.; Bösenberg, J. Determination of the convective boundary-layer height with laser remote sensing. Bound.-Layer Meteorol. 2005, 119, 159–170. [Google Scholar] [CrossRef]
- Cohn, S.A.; Angevine, W.M. Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars. J. Appl. Meteorol. 2000, 39, 1233–1247. [Google Scholar] [CrossRef]
- Brooks, I.M. Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles. J. Atmos. Ocean. Technol. 2003, 20, 1092–1105. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Engelmann, R.; Althausen, D. Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys. Discuss. 2008, 8, 10749–10790. [Google Scholar] [CrossRef] [Green Version]
- Steyn, D.G.; Baldi, M.; Hoff, R.M. The Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles. J. Atmos. Ocean. Technol. 1999, 16, 953–959. [Google Scholar] [CrossRef]
- Caicedo, V.; Rappenglück, B.; Lefer, B.; Morris, G.; Toledo, D.; Delgado, R. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech. 2017, 10, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.; Schäfer, K. Influence of mixing layer height on air pollutant concentrations in an urban street canyon. Urban Clim. 2017, 22, 64–79. [Google Scholar] [CrossRef]
- Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S. Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech. 2010, 3, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Wiegner, M.; Geiß, A. Aerosol profiling with the JenOptik ceilometer CHM15kx. Atmos. Meas. Tech. Discuss. 2012, 5, 3395–3430. [Google Scholar] [CrossRef]
- Wiegner, M.; Mattis, I.; Pattantyús-Ábrahám, M.; Bravo-Aranda, J.A.; Poltera, Y.; Haefele, A.; Hervo, M.; Görsdorf, U.; Leinweber, R.; Gasteiger, J.; et al. Aerosol backscatter profiles from ceilometers: Validation of water vapor correction in the framework of CeiLinEx2015. Atmos. Meas. Tech. 2019, 12, 471–490. [Google Scholar] [CrossRef] [Green Version]
- Madonna, F.; Rosoldi, M.; Lolli, S.; Amato, F.; Vande Hey, J.; Dhillon, R.; Zheng, Y.; Brettle, M.; Pappalardo, G. Intercomparison of aerosol measurements performed with multi-wavelength Raman lidars, automatic lidars and ceilometers in the framework of INTERACT-II campaign. Atmos. Meas. Tech. 2018, 11, 2459–2475. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Joseph, E.; Min, Q. Remote sensing of ground-level PM2.5 combining AOD and backscattering profile. Remote Sens. Environ. 2016, 183, 120–128. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chaw, S.; Gross, B.; Moshary, F.; Ahmed, S. Low and optically thin cloud measurements using a Raman-Mie lidar. Appl. Opt. 2009, 48, 1218. [Google Scholar] [CrossRef]
- Fernald, F.G.; Herman, B.M.; Reagan, J.A. Determination of Aerosol Height Distributions by Lidar. J. Appl. Meteorol. 1972, 11, 482–489. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OTT HydroMet Fellbach GmbH. User Manual Lufft CHM15k Ceilometer. 2021. Available online: https://www.lufft.com/products/cloud-height-snow-depth-sensors-288/ceilometer-chm-15k-nimbus-2300/ (accessed on 25 November 2022).
- Hervo, M.; Poltera, Y.; Haefele, A. An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers. Atmos. Meas. Tech. 2016, 9, 2947–2959. [Google Scholar] [CrossRef] [Green Version]
- Vaisala Oyj. BL-View User Guide. 2018. Available online: https://docs.vaisala.com/r/M211185EN-E/en-US (accessed on 25 November 2022).
- The MathWorks, Inc. Curve Fitting Toolbox; MathWorks: Natick, MA, USA, 2018; Available online: https://www.mathworks.com/help/curvefit/least-squares-fitting.html (accessed on 25 November 2022).
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Willett, J.B.; Singer, J.D. Another cautionary note about R2: Its use in weighted least-squares regression analysis. Am. Stat. 1988, 42, 236–238. [Google Scholar]
Instrument | Laser Source | Wave-Length (nm) | Pulse Width (ns) | Pulse Energy | Beam Divergence (mrad) | Repetition Rate (Hz) | Config-Uration | Receiver FOV (mrad) | Aprrox. Overlap Range (m) |
---|---|---|---|---|---|---|---|---|---|
CCNY-Lidar | Nd:YAG | 1064 532 355 | 8–12 1–2 < 1064 nm 2–3 < 1064 nm | 950 mJ 475 mJ 300 mJ | <0.5 | 30 | coaxial | 2 | 500 (∼95% overlap) |
Vaisala CL51 | InGaAs Diode | 910 (±10) | 110 (50%) | 3 µJ (±20%) | 0.15 × 0.25 | 6.5 k | coaxial | 0.56 | 230 (∼90% overlap) [36] |
Lufft CHM15k | micro-chip Nd:YAG | 1064 | 1–5 | 7–9 µJ | <0.3 | 5 k–7 k | biaxial | 0.45 | 1500 [33,44] |
Study Date | CL51 | CHM15k * | ||||
---|---|---|---|---|---|---|
RMSE | Num of Data | RMSE | Num of Data | |||
2018/07/09 | 0.89 | 5.57 × 10 | 4279 | N/A | N/A | N/A |
2018/07/10 | 0.66 | 5.79 × 10 | 9010 | N/A | N/A | N/A |
2018/10/25 | 0.85 | 1.98 × 10 | 3036 | 0.83 | 9.39 × 10 | 3658 |
2018/10/30 | 0.85 | 1.07 × 10 | 3846 | 0.79 | 1.46 × 10 | 3259 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wu, Y.; Gross, B.; Moshary, F. Dynamics of Mixing Layer Height and Homogeneity from Ceilometer-Measured Aerosol Profiles and Correlation to Ground Level PM2.5 in New York City. Remote Sens. 2022, 14, 6370. https://doi.org/10.3390/rs14246370
Li D, Wu Y, Gross B, Moshary F. Dynamics of Mixing Layer Height and Homogeneity from Ceilometer-Measured Aerosol Profiles and Correlation to Ground Level PM2.5 in New York City. Remote Sensing. 2022; 14(24):6370. https://doi.org/10.3390/rs14246370
Chicago/Turabian StyleLi, Dingdong, Yonghua Wu, Barry Gross, and Fred Moshary. 2022. "Dynamics of Mixing Layer Height and Homogeneity from Ceilometer-Measured Aerosol Profiles and Correlation to Ground Level PM2.5 in New York City" Remote Sensing 14, no. 24: 6370. https://doi.org/10.3390/rs14246370
APA StyleLi, D., Wu, Y., Gross, B., & Moshary, F. (2022). Dynamics of Mixing Layer Height and Homogeneity from Ceilometer-Measured Aerosol Profiles and Correlation to Ground Level PM2.5 in New York City. Remote Sensing, 14(24), 6370. https://doi.org/10.3390/rs14246370