
remote sensing

Article

ScienceEarth: A Big Data Platform for Remote
Sensing Data Processing

Chen Xu , Xiaoping Du * , Zhenzhen Yan and Xiangtao Fan

Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100094, China; xuchen@aircas.ac.cn (C.X.); yanzz@radi.ac.cn (Z.Y.);
fanxt@radi.ac.cn (X.F.)
* Correspondence: duxp@radi.ac.cn; Tel.: +86-10-8217-8073

Received: 19 January 2020; Accepted: 10 February 2020; Published: 12 February 2020
����������
�������

Abstract: Mass remote sensing data management and processing is currently one of the most
important topics. In this study, we introduce ScienceEarth, a cluster-based data processing framework.
The aim of ScienceEarth is to store, manage, and process large-scale remote sensing data in a
cloud-based cluster-computing environment. The platform consists of the following three main
parts: ScienceGeoData, ScienceGeoIndex, and ScienceGeoSpark. ScienceGeoData stores and manages
remote sensing data. ScienceGeoIndex is an index and query system, a spatial index based on
quad-tree and Hilbert curve which is combined for heterogeneous tiled remote sensing data that
makes efficient data retrieval in ScienceGeoData. ScienceGeoSpark is an easy-to-use computing
framework in which we use Apache Spark as the analytics engine for big remote sensing data
processing. The result of tests proves that ScienceEarth can efficiently store, retrieve, and process
remote sensing data. The results reveal ScienceEarth has the potential and capabilities of efficient big
remote sensing data processing.

Keywords: big data; remote sensing data processing; distributed file system; HBase; Spark

1. Introduction

Remote sensing is an important earth observation method without physical contact [1] which is
widely applied in agriculture [2], climate [3], water bodies [4], and many other fields. In recent years,
the progress of sensors and computer technologies has initiated the proliferation of remote sensing
data. Currently, more than 1000 remote sensing satellites have been launched [5] and data gathered
by a single satellite center are accumulating at a rate of terabytes per day [6]. The amount of Earth
observation data of the European Space Agency has exceeded 1.5 PB [7]. Additionally, many other
approaches, such as UAVs, are frequently employed in differentiated remote sensing data collection
tasks [8–11]. Digital Earth big data which is based on multivariate remote sensing data has reached the
ZB level [12]. Obviously, remote sensing data has been universally acknowledged as “big data”.

Since we are continuously gathering various types of high-quality remote sensing data, we are
facing several challenges when we make most of this data and mine the value inside. First, the quantity
of remote sensing data expected to be managed is enormous and the structure of remote sensing data
is complicated. Remote sensing data is stored in different formats and structures such as GeoTiff,
ASCII, HDF, and data are not interactive between different datasets [13]. Therefore, it is necessary to
invent a general remote sensing data storage and index architectures that are aimed at “remote sensing
big data” [14]. Secondly, we notice that remote sensing data processing places high demands on
computing performance. [15]. On the one hand, with the continuous improvement of data quality and
accuracy, more high-resolution data needs to be processed; on the other hand, with the development
of algorithms such as machine learning and deep learning, the algorithms for processing remote

Remote Sens. 2020, 12, 607; doi:10.3390/rs12040607 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5452-9941
https://orcid.org/0000-0002-0618-0984
http://dx.doi.org/10.3390/rs12040607
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/4/607?type=check_update&version=3

Remote Sens. 2020, 12, 607 2 of 20

sensing data are becoming more and more complex. Faced with the two main challenges, as previously
mentioned, novel technologies are expected to be applied.

Great efforts have focused on both the availability of remote sensing data and computation. To
guarantee high availability of remote sensing data, distributed storage systems have been widely
applied. MongeDB is a distributed database originally supporting both storage and index of remote
sensing data and vector data [16,17]. The Hadoop Distributed File System (HDFS) can be applied to
store all types of remote sensing data which proves to outperform the local file system [18,19]. It is
feasible to store remote sensing data with NoSQL database such as HBase [20]. In addition, discrete
globe grid systems (DGGSs) [21] and some other data organization approaches [22,23] help to index
and define the organization of row data. Cluster-based and cloud-based HPC are two dominating
patterns for remote sensing processing [24]. “Master-slave” structure helps to scheduling and perform
complex remote sensing processing which proves to significantly improve the efficiency of remote
sensing data computing [25]. OpenMP provides flexible, scalable, and potentially computational
performance [26]. MapReduce uses the “map/reduce” function and transforms the complex remote
sensing algorithm into a list of operations [27,28]. Apart from the individual solutions, some unified
platforms are proposed to offer a throughout solution for remote sensing big data. PipsCloud is a
large-scale remote sensing data processing system based on HPC and distributed systems [29]. Google
Earth Engine (GEE) provides easy access to high-performance computing resources for large-scale
remote sensing datasets [30]. However, since GEE is a public cloud platform open to the public,
its computing power obviously cannot satisfy large-scale remote sensing scientific research. Google
Earth Engine is not open source and it is not convenient to process private datasets with a user’s
own computing resources. Nevertheless, as a very successful earth big data processing platform,
GEE provides great inspiration for our research. Above all, existing solutions for the problems of
remote sensing storage and processing are facing the following major issues: (1) the storage system
and processing system are independent, the huge amount data in storage system are not flexible and
scalable enough for on-demand processing system [31]; (2) processing systems, such as MapReduce,
are relatively difficult for remote sensing scientists or clients without related IT experience; and (3)
powerful general big data tools are not especially designed for the field of remote sensing, basic remote
sensing algorithms are not supported. Therefore, in order to overcome these challenges, we propose a
new cloud-based remote sensing big data processing platform.

In this study, we build a remote sensing platform, ScienceEarth, for storing, managing,
and processing large-scale remote sensing data. On the basis of stable open source software, ScienceEarth
aims to provide a throughout solution for “remote sensing big data” with easy access for remote
sensing scientists. ScienceEarth provides users with ready-to-use datasets and easy-to-use API for
complex distributed process system without dealing with data and computational problems. The
remainder of this paper is organized as follows: In Section 2, we describe the architecture of the
platform, explain the design and implementation of main components; in Section 3, we describe the
experimental validation of the platform; in Section 4, we discuss the results of the experiments; finally,
we give a general conclusion in Section 5.

2. Materials and Methods

2.1. General Architecture of ScienceEarth

The general architecture of ScienceEarth is illustrated in Figure 1. The system is built upon virtual
machines with OpenStack Cloud [32]. Cloud offers flexible and elastic containers in support of the
platform [33]. The resources such as storages and computation are elastic which means that users can
freely increase or decrease the resources for the platform. We make use of SSD, HHD, and HDD as
storage for different situations. CPUs and GPU are vitalized by cloud to support different types of
computational tasks. Furthermore, we are planning to add FPGA in our system. Cloud-based virtual
resources provide strong and secure support for ScienceEarth.

Remote Sens. 2020, 12, 607 3 of 20

Remote Sens. 2020, 12, 607 3 of 20

Figure 1. Architecture of ScienceEarth prototype.

The body of ScienceEarth consists of three main parts, that is, ScienceGeoData, ScienceGeoIndex,
and ScienceGeoSpark. ScienceGeoData is a remote sensing data storage framework. ScienceGeoData
is in charge of storing and sharing remote sensing data where the Hadoop Distributed File System
HDFS [34] is placed as the basic file system. NoSQL database, namely HBase [35], is applied to store
heterogeneous tiled remote sensing data. ScienceGeoIndex is a remote sensing index framework
following the basic rules of quad-tree [36] and Hilbert curve [37]. The framework rules the structure
of unique key for HBase and provides access for efficient and flexible query. ScienceGeoSpark is an
easy-to-use computing framework on top of the Hadoop YARN [38]. The core computation engine
of ScienceGeoSpark is Spark [39] which supports distributed in-memory computation.

2.2. ScienceGeoData: A Remote Sensing Data Storage Framework

For intensive data subscription and distribution service, it is essential to guarantee high
availability of remote sensing data. ScienceGeoData take charge of storage and I/O of remote sensing
data of ScienceEarth. We expect the system to maintain a large amount of ready-to-use data to
provide data services for various algorithms of clients. Following this pattern, data is prestored in
HBase or a HDFS; data is called and queried repeatedly in future usage and services. According to
the architecture of a whole system, data stored in HBase are provided according to the "one-time
storage, multiple-read" strategy. As is illustrated in Figure 1, the HDFS forms the base of
ScienceGeoData to provide high-throughput access to remote sensing data. Apart from the HDFS,
HBase stores formatted remote sensing data and metadata. On the basis of the HDFS, HBase provides
high-speed real-time database query and read-write capabilities.

A HDFS is a powerful distributed file system where we can safely store enormous remote
sensing data in any format in a cloud file system similar to the local file system. Furthermore, a HDFS
does not limit the file size and total storage; TB level single remote sensing image can also be stored

Figure 1. Architecture of ScienceEarth prototype.

The body of ScienceEarth consists of three main parts, that is, ScienceGeoData, ScienceGeoIndex,
and ScienceGeoSpark. ScienceGeoData is a remote sensing data storage framework. ScienceGeoData
is in charge of storing and sharing remote sensing data where the Hadoop Distributed File System
HDFS [34] is placed as the basic file system. NoSQL database, namely HBase [35], is applied to store
heterogeneous tiled remote sensing data. ScienceGeoIndex is a remote sensing index framework
following the basic rules of quad-tree [36] and Hilbert curve [37]. The framework rules the structure
of unique key for HBase and provides access for efficient and flexible query. ScienceGeoSpark is an
easy-to-use computing framework on top of the Hadoop YARN [38]. The core computation engine of
ScienceGeoSpark is Spark [39] which supports distributed in-memory computation.

2.2. ScienceGeoData: A Remote Sensing Data Storage Framework

For intensive data subscription and distribution service, it is essential to guarantee high availability
of remote sensing data. ScienceGeoData take charge of storage and I/O of remote sensing data of
ScienceEarth. We expect the system to maintain a large amount of ready-to-use data to provide
data services for various algorithms of clients. Following this pattern, data is prestored in HBase
or a HDFS; data is called and queried repeatedly in future usage and services. According to the
architecture of a whole system, data stored in HBase are provided according to the "one-time storage,
multiple-read" strategy. As is illustrated in Figure 1, the HDFS forms the base of ScienceGeoData to
provide high-throughput access to remote sensing data. Apart from the HDFS, HBase stores formatted
remote sensing data and metadata. On the basis of the HDFS, HBase provides high-speed real-time
database query and read-write capabilities.

Remote Sens. 2020, 12, 607 4 of 20

A HDFS is a powerful distributed file system where we can safely store enormous remote sensing
data in any format in a cloud file system similar to the local file system. Furthermore, a HDFS does not
limit the file size and total storage; TB level single remote sensing image can also be stored entirely in a
HDFS. As shown in Figure 2, the remote sensing dataset is replicated as three copies in the storage
system as default. Especially, some of the hotspot remote sensing data can replicate more copies to
meet the requirements of the frequent subscriptions. Following this manner, data are secured with
multi-transcript stored in different nodes which guarantees that central remote sensing data is not
lost even if some of the servers are down. For remote sensing stored in a HDFS, metadata is stored in
HBase. To reach the targeted remote sensing data, a query is performed on the related HBase table
to obtain the file path redirecting the file stored in a HDFS. Additionally, load balance is enabled
automatically to avoid network bottleneck of single node. To sum up, a HDFS provides safe and
massive cloud-based storage for remote sensing files.

Remote Sens. 2020, 12, 607 4 of 20

entirely in a HDFS. As shown in Figure 2, the remote sensing dataset is replicated as three copies in
the storage system as default. Especially, some of the hotspot remote sensing data can replicate more
copies to meet the requirements of the frequent subscriptions. Following this manner, data are
secured with multi-transcript stored in different nodes which guarantees that central remote sensing
data is not lost even if some of the servers are down. For remote sensing stored in a HDFS, metadata
is stored in HBase. To reach the targeted remote sensing data, a query is performed on the related
HBase table to obtain the file path redirecting the file stored in a HDFS. Additionally, load balance is
enabled automatically to avoid network bottleneck of single node. To sum up, a HDFS provides safe
and massive cloud-based storage for remote sensing files.

Figure 2. Remote sensing data system with a Hadoop Distributed File System (HDFS) and HBase.

In addition to direct storage in a HDFS, we propose to also save remote sensing raster data in
HBase. HBase is a columnar NoSQL database. Built upon the HDFS, HBase offers the same ability as
the HDFS and guarantees security and load balance, as previously mentioned. HBase supports the
storage of large quantities of data, as well as efficient query with row key. Remote sensing data stored
in HBase is stored as files in the form of PNG, and each image has a fixed size. Each image in PNG
format is able to store three bands of data. Such images are called tiles which is similar to the data
stored in map service. The difference is that we store this data in a NoSQL database, which improves
the indexing and I/O capabilities. First, giant remote sensing files are preprocessed and divided into
small tile files with the same pixel size, for example, 256 pixels x 256 pixels. Each tile is, then, marked
with a unique indexing row key which we can use to find the tile in a large table. In this way, users
can accurately locate the spatiotemporal data required through the ScienceGeoIndex module. The
large amount of remote sensing data in the data warehouse becomes "live" data. In the process of
data storage, data standards and projections have also been unified. There is an interactive connection
between datasets and the storage metadata has also been standardized. Under certain circumstances,
for example, change detection, the task is relatively difficult if we would like to retrieve data from
series of time series remote sensing data. Large amounts of related data should be queried, and
certain data should be cut and mosaicked. On the contrary, serval tiles in a targeted range in different
time slices are needed if we retrieve from ScienceGeoData. In such case, the efficiency has been
greatly improved thanks to ScienceGeoData and ScienceGeoIndex.

2.3. ScienceGeoIndex: Remote Sensing Tile Data Index and Query Framework

Figure 2. Remote sensing data system with a Hadoop Distributed File System (HDFS) and HBase.

In addition to direct storage in a HDFS, we propose to also save remote sensing raster data in
HBase. HBase is a columnar NoSQL database. Built upon the HDFS, HBase offers the same ability as
the HDFS and guarantees security and load balance, as previously mentioned. HBase supports the
storage of large quantities of data, as well as efficient query with row key. Remote sensing data stored
in HBase is stored as files in the form of PNG, and each image has a fixed size. Each image in PNG
format is able to store three bands of data. Such images are called tiles which is similar to the data
stored in map service. The difference is that we store this data in a NoSQL database, which improves
the indexing and I/O capabilities. First, giant remote sensing files are preprocessed and divided into
small tile files with the same pixel size, for example, 256 pixels × 256 pixels. Each tile is, then, marked
with a unique indexing row key which we can use to find the tile in a large table. In this way, users
can accurately locate the spatiotemporal data required through the ScienceGeoIndex module. The
large amount of remote sensing data in the data warehouse becomes "live" data. In the process of data
storage, data standards and projections have also been unified. There is an interactive connection
between datasets and the storage metadata has also been standardized. Under certain circumstances,
for example, change detection, the task is relatively difficult if we would like to retrieve data from
series of time series remote sensing data. Large amounts of related data should be queried, and certain
data should be cut and mosaicked. On the contrary, serval tiles in a targeted range in different time

Remote Sens. 2020, 12, 607 5 of 20

slices are needed if we retrieve from ScienceGeoData. In such case, the efficiency has been greatly
improved thanks to ScienceGeoData and ScienceGeoIndex.

2.3. ScienceGeoIndex: Remote Sensing Tile Data Index and Query Framework

It is very important to efficiently index and query remote sensing tile data. As illustrated in
Figure 2, index metadata of remote sensing data stored in the HDFS is stored in HBase and remote
sensing tiles in HBase are queried according to certain indexing rules. Compared with data stored in
the HDFS, tiles in HBase have greater query requirements. The efficiency of index and query directly
affects the overall efficiency of ScienceEarth. However, HBase’s query and indexing capabilities are not
inherently powerful as only key-based queries are supported. Therefore, HBase storage indexes and
queries for remote sensing data need to be optimized. In this section, we discuss the index and query
of remote sensing tile data with quad-tree and Hilbert curve.

HBase supports immense unstructured data storage, as well as rapid row key index, where the
efficiency of the index relies on the design of the row key. First, the row key should be as short as
possible while the row key is uniquely pointed to each tile. For HBase, data are listed and indexed
with the ASCII order of the row key, while continuous query is very efficient in regard to single query.
Hence, we should guarantee the continuity of the row keys of which the data are spatial and time
related. As illustrated in Figure 3, an example of a row key structure designed for tile data is composed
of four main parts which take approximately nine chars. The first two chars represent the dataset the
file belongings to. The band and year information take approximately one and two chars, respectively.
The last part of the row key indicates the space location of the tile in the image.

Remote Sens. 2020, 12, 607 5 of 20

sensing tiles in HBase are queried according to certain indexing rules. Compared with data stored in
the HDFS, tiles in HBase have greater query requirements. The efficiency of index and query directly
affects the overall efficiency of ScienceEarth. However, HBase's query and indexing capabilities are
not inherently powerful as only key-based queries are supported. Therefore, HBase storage indexes
and queries for remote sensing data need to be optimized. In this section, we discuss the index and
query of remote sensing tile data with quad-tree and Hilbert curve.

HBase supports immense unstructured data storage, as well as rapid row key index, where the
efficiency of the index relies on the design of the row key. First, the row key should be as short as
possible while the row key is uniquely pointed to each tile. For HBase, data are listed and indexed
with the ASCII order of the row key, while continuous query is very efficient in regard to single
query. Hence, we should guarantee the continuity of the row keys of which the data are spatial and
time related. As illustrated in Figure 3, an example of a row key structure designed for tile data is
composed of four main parts which take approximately nine chars. The first two chars represent the
dataset the file belongings to. The band and year information take approximately one and two chars,
respectively. The last part of the row key indicates the space location of the tile in the image.

Figure 3. Remote sensing data system with the HDFS and HBase.

Supposing that the remote sensing data are in the shape of rectangle, we divide the image into
four rectangle parts with the same size. Like a quad-tree, each subpart is divided into another four
parts. The upper part contains all of the four lower parts. Figure 4 shows a quad-tree with three
hierarchies. At the first hierarchy, the original image is divided into four subparts, another four parts
are created by each part at the next hierarchies, and the third hierarchy contains 43 tiles. Following
this pattern, we divided a 30 m Landsat TM/ETM dataset covering the territory of China into nine
hierarchies. The last hierarchy consisted of 49 tiles with the size of 256 x 256 pixels.

Figure 4. Remote sensing tiles segmentation and linearization.

Each cell in the last hierarchy is marked with a unique order. There are three main methods to
index each cell, hierarchy-based, space-filling curve (SFC) based, and coordinate-based indexing [21].
Hierarchy-based indexing is mostly applied for map services which provides a powerful hierarchy
traversal of the cells. Compared with coordinate-based indexing, space-filling curve retains the
spatial concentration of orders to the greatest extent. As illustrated in Figure 4, we propose applying
the Hilbert curve to index each tile. Compared with other linearization curves, for example, Morton,
Hilbert is more stable. There are more mutations in the Morton curve. For a range query in the shape
of a rectangle, Hilbert orders contained in the query range are segmented continuous. For the
example shown in Figure 4, the target range surrounded by red solid lines contains 12 tiles which are

Figure 3. Remote sensing data system with the HDFS and HBase.

Supposing that the remote sensing data are in the shape of rectangle, we divide the image into
four rectangle parts with the same size. Like a quad-tree, each subpart is divided into another four
parts. The upper part contains all of the four lower parts. Figure 4 shows a quad-tree with three
hierarchies. At the first hierarchy, the original image is divided into four subparts, another four parts
are created by each part at the next hierarchies, and the third hierarchy contains 43 tiles. Following
this pattern, we divided a 30 m Landsat TM/ETM dataset covering the territory of China into nine
hierarchies. The last hierarchy consisted of 49 tiles with the size of 256 × 256 pixels.

Remote Sens. 2020, 12, 607 5 of 20

sensing tiles in HBase are queried according to certain indexing rules. Compared with data stored in
the HDFS, tiles in HBase have greater query requirements. The efficiency of index and query directly
affects the overall efficiency of ScienceEarth. However, HBase's query and indexing capabilities are
not inherently powerful as only key-based queries are supported. Therefore, HBase storage indexes
and queries for remote sensing data need to be optimized. In this section, we discuss the index and
query of remote sensing tile data with quad-tree and Hilbert curve.

HBase supports immense unstructured data storage, as well as rapid row key index, where the
efficiency of the index relies on the design of the row key. First, the row key should be as short as
possible while the row key is uniquely pointed to each tile. For HBase, data are listed and indexed
with the ASCII order of the row key, while continuous query is very efficient in regard to single
query. Hence, we should guarantee the continuity of the row keys of which the data are spatial and
time related. As illustrated in Figure 3, an example of a row key structure designed for tile data is
composed of four main parts which take approximately nine chars. The first two chars represent the
dataset the file belongings to. The band and year information take approximately one and two chars,
respectively. The last part of the row key indicates the space location of the tile in the image.

Figure 3. Remote sensing data system with the HDFS and HBase.

Supposing that the remote sensing data are in the shape of rectangle, we divide the image into
four rectangle parts with the same size. Like a quad-tree, each subpart is divided into another four
parts. The upper part contains all of the four lower parts. Figure 4 shows a quad-tree with three
hierarchies. At the first hierarchy, the original image is divided into four subparts, another four parts
are created by each part at the next hierarchies, and the third hierarchy contains 43 tiles. Following
this pattern, we divided a 30 m Landsat TM/ETM dataset covering the territory of China into nine
hierarchies. The last hierarchy consisted of 49 tiles with the size of 256 x 256 pixels.

Figure 4. Remote sensing tiles segmentation and linearization.

Each cell in the last hierarchy is marked with a unique order. There are three main methods to
index each cell, hierarchy-based, space-filling curve (SFC) based, and coordinate-based indexing [21].
Hierarchy-based indexing is mostly applied for map services which provides a powerful hierarchy
traversal of the cells. Compared with coordinate-based indexing, space-filling curve retains the
spatial concentration of orders to the greatest extent. As illustrated in Figure 4, we propose applying
the Hilbert curve to index each tile. Compared with other linearization curves, for example, Morton,
Hilbert is more stable. There are more mutations in the Morton curve. For a range query in the shape
of a rectangle, Hilbert orders contained in the query range are segmented continuous. For the
example shown in Figure 4, the target range surrounded by red solid lines contains 12 tiles which are

Figure 4. Remote sensing tiles segmentation and linearization.

Remote Sens. 2020, 12, 607 6 of 20

Each cell in the last hierarchy is marked with a unique order. There are three main methods to
index each cell, hierarchy-based, space-filling curve (SFC) based, and coordinate-based indexing [21].
Hierarchy-based indexing is mostly applied for map services which provides a powerful hierarchy
traversal of the cells. Compared with coordinate-based indexing, space-filling curve retains the spatial
concentration of orders to the greatest extent. As illustrated in Figure 4, we propose applying the
Hilbert curve to index each tile. Compared with other linearization curves, for example, Morton,
Hilbert is more stable. There are more mutations in the Morton curve. For a range query in the shape
of a rectangle, Hilbert orders contained in the query range are segmented continuous. For the example
shown in Figure 4, the target range surrounded by red solid lines contains 12 tiles which are divided
into two continuous ranges. In this example, two queries should be performed to cover the target
region. For coordinate-based indexing, at least four continuous ranges should be queried. In addition,
if we expand the query range from 3 × 4 to 4 × 4 which is surrounded by red dotted line, tiles can be
covered by a single range. On the other hand, serval out of range tiles are queried which may cause
waste of I/O resources. Balance should be considered between the efficiency of query and the waste of
useless resources. We propose to optimize the query range at the last hierarchy which means all the
edges of the range are extended to evens.

ScienceGeoIndex manages metadata information of remote sensing data in a HDFS. We can
filter the dataset we need based on this metadata. On the basis of the quad-tree and Hilbert curve,
ScienceGeoIndex defines the rules of tile indexing and ROWKEYs of each tile in database. With the
indexing of remote sensing data, specialized queries could be performed easily and efficiently. Thanks
to ScienceGeoIndex, ScienceGeoSpark can access remote sensing data stored in ScienceGeoData.

2.4. ScienceGeoSpark: Remote Sensing Data Processing with Spark

In this subsection, we introduce the structure of ScienceGeoSpark. As illustrated in Figure 1, data
processing tasks submitted by users are uniformly scheduled by YARN. YARN is a comprehensive
scheduling management system that uniformly schedules and processes job resources such as Spark
and MapReduce, which provides a powerful interface for future expansion. At present, we propose
Spark to deal with large-scale remote sensing data processing data. Spark is an in-memory parallel
computation engine that is widely applied in different domains. As illustrated in Figure 5, according
to programming paradigm of Spark, the algorithm is implemented in some programming languages,
such as Java, Python, and Scala. Each programming language has a rich library of remote sensing
data processing, while Spark has a rich set of components for processing machine learning [40] and
databases [41]. We combine the extended library of programming languages with Spark’s operators
to solve various remote sensing processing problems. Python is recommended in ScienceGeoSpark.
Python is a popular programming language for image processing and machine learning thanks to its
abundant libraries such as GDAL, OpenCV, Tensorflow, Keras, PyTorch, etc.

The core concept of Spark is resilient distributed datasets (RDD). All Spark operators are operations
on RDD. Spark divides operators into two categories based on the principles of inertia, transformation
and action. The transformation operator only records the steps of the calculation. Transformation
is not executed and does not cache the results. For data-intensive computations, such as remote
sensing processing, the architecture effectively saves memory resources and achieves fault tolerance
and only the action operator is saved in memory. For the creation of general RDD, we need to import
remote sensing data. According to the method previously mentioned, data is directly obtained from
ScienceGeoData. Spark then analyzes the logic of the code, generating execution steps for calculations
and processing, which are represented in the form of a directed acyclic graph. The job is then divided
into a number of tasks and assigned to cluster for execution.

The advantage of this processing method is that it is suitable for the storage method of
ScienceGeoData, especially for tile data stored in HBase. The data storage method in units of
tiles allows calculations to be performed with any granular size. Spark’s "lazy principle" solves the
contradiction between a large amount of remote sensing data and insufficient memory, and also ensures

Remote Sens. 2020, 12, 607 7 of 20

the calculation speed. Spark’s error tolerance mechanism also guarantees the stable performance of
large remote sensing calculations.

Remote Sens. 2020, 12, 607 6 of 20

divided into two continuous ranges. In this example, two queries should be performed to cover the
target region. For coordinate-based indexing, at least four continuous ranges should be queried. In
addition, if we expand the query range from 3 x 4 to 4 x 4 which is surrounded by red dotted line,
tiles can be covered by a single range. On the other hand, serval out of range tiles are queried which
may cause waste of I/O resources. Balance should be considered between the efficiency of query and
the waste of useless resources. We propose to optimize the query range at the last hierarchy which
means all the edges of the range are extended to evens.

ScienceGeoIndex manages metadata information of remote sensing data in a HDFS. We can filter
the dataset we need based on this metadata. On the basis of the quad-tree and Hilbert curve,
ScienceGeoIndex defines the rules of tile indexing and ROWKEYs of each tile in database. With the
indexing of remote sensing data, specialized queries could be performed easily and efficiently.
Thanks to ScienceGeoIndex, ScienceGeoSpark can access remote sensing data stored in
ScienceGeoData.

2.4. ScienceGeoSpark: Remote Sensing Data Processing with Spark

In this subsection, we introduce the structure of ScienceGeoSpark. As illustrated in Figure 1, data
processing tasks submitted by users are uniformly scheduled by YARN. YARN is a comprehensive
scheduling management system that uniformly schedules and processes job resources such as Spark
and MapReduce, which provides a powerful interface for future expansion. At present, we propose
Spark to deal with large-scale remote sensing data processing data. Spark is an in-memory parallel
computation engine that is widely applied in different domains. As illustrated in Figure 5, according
to programming paradigm of Spark, the algorithm is implemented in some programming languages,
such as Java, Python, and Scala. Each programming language has a rich library of remote sensing
data processing, while Spark has a rich set of components for processing machine learning [40] and
databases [41]. We combine the extended library of programming languages with Spark's operators
to solve various remote sensing processing problems. Python is recommended in ScienceGeoSpark.
Python is a popular programming language for image processing and machine learning thanks to its
abundant libraries such as GDAL, OpenCV, Tensorflow, Keras, PyTorch, etc.

Figure 5. Programming model with Spark and Python.

The core concept of Spark is resilient distributed datasets (RDD). All Spark operators are
operations on RDD. Spark divides operators into two categories based on the principles of inertia,
transformation and action. The transformation operator only records the steps of the calculation.
Transformation is not executed and does not cache the results. For data-intensive computations, such
as remote sensing processing, the architecture effectively saves memory resources and achieves fault
tolerance and only the action operator is saved in memory. For the creation of general RDD, we need
to import remote sensing data. According to the method previously mentioned, data is directly

Figure 5. Programming model with Spark and Python.

2.5. Dataflow between ScienceGeoData and ScienceGeoSpark

As we all known, the first step in processing remote sensing data is to find the data we really need
from the vast amount of data and, then, take targeted data out of the database to CPU or GPU for
calculation. In this case, it’s the most essential issue to efficiently retrieve data instead of recording
data. In this section, we focus on the dataflow of ScienceEarth.

Our main concern is to improve the comprehensive I/O efficiency of accessing these big data
storage containers through ScienceEarth. As previously mentioned, there are two types of storage in
ScienceGeoData. For remote sensing data stored directly in a HDFS, Spark is able to fetch data from the
HDFS directly. There have been many experiments and data on testing the I/O efficiency of Hadoop
and HBase [42–46], the I/O of both a HDFS and HBase can possibly reach serval gigabyte per second
depending on the size of the files and the cluster itself. However, Python or Spark do not originally
support fetching data from HBase. Therefore, we forward data with the help of Thrift. Remote sensing
data are transferred trough HBase, Thrift, Python and Spark. The process is complex, and it is hard to
define the overall speed by any individual step. As is illustrated in Figure 6, first, each job of Spark is
analyzed and divided into a list of tasks in the task pool by the master node. The dataset required by
the job is named U and consists of serval subsets corresponding to each task. Then, each idle thread of
worker node in Spark cluster is assigned a task and starts to process the Python code within the task.
Within each task, Python tries to demand data from HBase through Thrift. For example, Executor C
processes Task 7 with tiles in (e, f). This part of data is forwarded by the Thrift node from the HBase
node to Executor C. In order to reduce the workload of a single Thrift node, multiple Thrift nodes are
randomly allocated to each task. Both Thrift and HBase components are distributed. In this way, the
I/O load is shared by multiple executives and the entire cluster, effectively avoiding the I/O bottleneck
of a single node that limits the performance of the entire platform.

Remote Sens. 2020, 12, 607 8 of 20

Remote Sens. 2020, 12, 607 7 of 20

obtained from ScienceGeoData. Spark then analyzes the logic of the code, generating execution steps
for calculations and processing, which are represented in the form of a directed acyclic graph. The
job is then divided into a number of tasks and assigned to cluster for execution.

The advantage of this processing method is that it is suitable for the storage method of
ScienceGeoData, especially for tile data stored in HBase. The data storage method in units of tiles
allows calculations to be performed with any granular size. Spark's "lazy principle" solves the
contradiction between a large amount of remote sensing data and insufficient memory, and also
ensures the calculation speed. Spark's error tolerance mechanism also guarantees the stable
performance of large remote sensing calculations.

2.5. Dataflow between ScienceGeoData and ScienceGeoSpark

As we all known, the first step in processing remote sensing data is to find the data we really
need from the vast amount of data and, then, take targeted data out of the database to CPU or GPU
for calculation. In this case, it’s the most essential issue to efficiently retrieve data instead of recording
data. In this section, we focus on the dataflow of ScienceEarth.

Our main concern is to improve the comprehensive I/O efficiency of accessing these big data
storage containers through ScienceEarth. As previously mentioned, there are two types of storage in
ScienceGeoData. For remote sensing data stored directly in a HDFS, Spark is able to fetch data from
the HDFS directly. There have been many experiments and data on testing the I/O efficiency of
Hadoop and HBase [42–46], the I/O of both a HDFS and HBase can possibly reach serval gigabyte
per second depending on the size of the files and the cluster itself. However, Python or Spark do not
originally support fetching data from HBase. Therefore, we forward data with the help of Thrift.
Remote sensing data are transferred trough HBase, Thrift, Python and Spark. The process is complex,
and it is hard to define the overall speed by any individual step. As is illustrated in Figure 6, first,
each job of Spark is analyzed and divided into a list of tasks in the task pool by the master node. The
dataset required by the job is named U and consists of serval subsets corresponding to each task.
Then, each idle thread of worker node in Spark cluster is assigned a task and starts to process the
Python code within the task. Within each task, Python tries to demand data from HBase through
Thrift. For example, Executor C processes Task 7 with tiles in (e, f). This part of data is forwarded by
the Thrift node from the HBase node to Executor C. In order to reduce the workload of a single Thrift
node, multiple Thrift nodes are randomly allocated to each task. Both Thrift and HBase components
are distributed. In this way, the I/O load is shared by multiple executives and the entire cluster,
effectively avoiding the I/O bottleneck of a single node that limits the performance of the entire
platform.

Figure 6. Data flow between HBase and Spark.

2.6. Operation Mode of ScienceEarth

In the previous section, we explained the main components and principles of ScienceEarth and,
in this section, we describe ScienceEarth from the user's perspective. ScienceEarth is an easy-to-use
big data remote sensing platform that aims to enable remote sensing scientists to conveniently
experiment with large remote sensing data. ScienceEarth provides three service modules oriented for
users that are based on three main components, as is shown in Figure 7. ScienceEarth provides users
with data service, map service, and experiment support service.

Figure 6. Data flow between HBase and Spark.

2.6. Operation Mode of ScienceEarth

In the previous section, we explained the main components and principles of ScienceEarth and,
in this section, we describe ScienceEarth from the user’s perspective. ScienceEarth is an easy-to-use big
data remote sensing platform that aims to enable remote sensing scientists to conveniently experiment
with large remote sensing data. ScienceEarth provides three service modules oriented for users that
are based on three main components, as is shown in Figure 7. ScienceEarth provides users with data
service, map service, and experiment support service.Remote Sens. 2020, 12, 607 8 of 20

Figure 7. Service modules of ScienceEarth, i.e., experiment support service, data service, and map

service.

The data service module relies on ScienceGeoData and ScienceGeoIndex to store and manage
data. Raw remote sensing data needs to be preprocessed into a data warehouse. The data in
warehouse are organized with the same structure which means we can standardize the management
and use of this data. We gradually upload various data to the platform's database, hoping to provide
a powerful data warehouse. Users can access remote sensing data in the data warehouse online
through map service, similar to many other map services. Features such as downloading and online
browsing are supported. Experiment support service is the core service of ScienceEarth. Our purpose
is to provide a data-driven and algorithm-driven research service, and therefore remote sensing
scientists do not need to provide their own data and most of remote sensing common algorithms. In
a word, ScienceEarth provides a list of easy-to-use services.

Generally speaking, when remote sensing scientists perform experiments with ScienceEarth,
first, related algorithms and data should be provided or selected from library. Subsequently, users
post their task through Python or through web application online. We provide an online integrated
development environment (IDE) tool, Jupyter, to process the job with Python codes. We have
redeveloped many features with a simple Python application programming interface (API). The
Python code should contain the basic information about some tasks, i.e., the tag name and timestamp
of the dataset that are used by the ScienceGeoIndex to pinpoint the metadata stored in
ScienceGeoData. Users should also specify the ScienceGeoSpark built-in algorithms or provide their
own algorithm code for calculations. ScienceGeoSpark provides a standard interface for user who
define their own functions. Nevertheless, serval common algorithms are developed as web-based
applications. It is much easier to use application than code. Equally, the functions of web-based
application are more basic. Ultimately, results are returned in different forms, such as map service or
files.

3. Results

In this part of the study, we implanted an experimental ScienceEarth platform. The platform
consisted of 12 virtual machines. To verify the performance of ScienceEarth, some experiments were
conducted. First, we tested the I/O speed of HBase with three operations, PUT, SCAN, and ROW.
Secondly, we estimated the ability of spatial concentration of the Hilbert curve. In addition, we
applied ScienceEarth to perform a parallel remote sensing algorithm and compare the efficiency of
ScienceEarth with a single machine.

Figure 7. Service modules of ScienceEarth, i.e., experiment support service, data service, and
map service.

The data service module relies on ScienceGeoData and ScienceGeoIndex to store and manage data.
Raw remote sensing data needs to be preprocessed into a data warehouse. The data in warehouse
are organized with the same structure which means we can standardize the management and use of
this data. We gradually upload various data to the platform’s database, hoping to provide a powerful
data warehouse. Users can access remote sensing data in the data warehouse online through map
service, similar to many other map services. Features such as downloading and online browsing are
supported. Experiment support service is the core service of ScienceEarth. Our purpose is to provide a
data-driven and algorithm-driven research service, and therefore remote sensing scientists do not need
to provide their own data and most of remote sensing common algorithms. In a word, ScienceEarth
provides a list of easy-to-use services.

Generally speaking, when remote sensing scientists perform experiments with ScienceEarth, first,
related algorithms and data should be provided or selected from library. Subsequently, users post their

Remote Sens. 2020, 12, 607 9 of 20

task through Python or through web application online. We provide an online integrated development
environment (IDE) tool, Jupyter, to process the job with Python codes. We have redeveloped many
features with a simple Python application programming interface (API). The Python code should
contain the basic information about some tasks, i.e., the tag name and timestamp of the dataset
that are used by the ScienceGeoIndex to pinpoint the metadata stored in ScienceGeoData. Users
should also specify the ScienceGeoSpark built-in algorithms or provide their own algorithm code for
calculations. ScienceGeoSpark provides a standard interface for user who define their own functions.
Nevertheless, serval common algorithms are developed as web-based applications. It is much easier to
use application than code. Equally, the functions of web-based application are more basic. Ultimately,
results are returned in different forms, such as map service or files.

3. Results

In this part of the study, we implanted an experimental ScienceEarth platform. The platform
consisted of 12 virtual machines. To verify the performance of ScienceEarth, some experiments were
conducted. First, we tested the I/O speed of HBase with three operations, PUT, SCAN, and ROW.
Secondly, we estimated the ability of spatial concentration of the Hilbert curve. In addition, we applied
ScienceEarth to perform a parallel remote sensing algorithm and compare the efficiency of ScienceEarth
with a single machine.

3.1. Experiment Environment

The prototype of ScienceEarth consists of 12 nodes, of which two of the 12 are MASTER nodes
which control and guarantee the runtime of ScienceEarth. The nodes are virtual machines supported by
cloud. The CLIENT node is applied to submit all kinds of request by clients, communicating the clients
and the platform. CLIENT node is in charge of processing all the requests from clients, we expect
that the more memory should be needed for both CLIENT and MASTER nodes. For WORKER nodes,
memory should pair with cores. Data is stored in each WORKER node, therefore, the storage of
WORKER should be great. As illustrated in Table 1, WOEKER nodes possess 32 cores of Intel Core
Processor (Skylake 2.1 GHz), 64 G of memory, and 10 TB of storage space, whereas the MASTER and
CLIENT nodes possess 32 cores of Intel Core Processor (Skylake 2.1 GHz), 128 G of memory, and 5 TB
of storage space. In the test, we used a set of 30 m global remote sensing data from Landsat TM/ETM
dataset. This data was provided by the Institute of Remote sensing and Digital Earth.

Table 1. Configuration and parameters of virtual machines of prototype.

Name CPU Computer Configuration

Client Intel Core Processor (Skylake) 2.1 GHz 32 cores 128 GB 5 TB
Master-1 Intel Core Processor (Skylake) 2.1 GHz 32 cores 128 GB 5 TB
Master-2 Intel Core Processor (Skylake) 2.1 GHz 32 cores 128 GB 5 TB

Worker-1 ~ worker-9 Intel Core Processor (Skylake) 2.1 GHz 32 cores 64 GB 10 TB

3.2. Efficiency of I/O

We first tested the ability of ScienceGeoData to read and write remote sensing tile data, which
is our main concern. ScienceGeoData stores and fetches remote sensing data through HBase and
ScienceGeoSpark. As previously mentioned, we are mainly concerned with the remote sensing data
stored in the form of tiles in HBase. These tiles are all PNG picture files. In order to simulate this kind
of working situation, we randomly generated a binary file the size of which is 60 KB, simulating a
picture of size 60 KB. Specifically, there are three main operations, namely PUT, ROW, and SCAN.
The PUT and ROW operations separately write and read one piece of data during a single operation,
whereas SCAN continuously fetches a list of data within the specified ROWKEY range from database.
It should be noted that we are not encouraged to cover all targeted tiles within one SCAN operation.
The working mechanism of Spark requires that large jobs be divided into small individual tasks [39].

Remote Sens. 2020, 12, 607 10 of 20

Therefore, in order to make the work multithreaded, tiles should be covered by serval individual
SCAN operations which means that we should better limit the maximum number of tiles in each single
SCAN operation. Additionally, it should be noted that in the actual application situation, due to the
discontinuity of the ROWKEY of the tiles, the number of tiles that each SCAN can contain varies with
the situation. In this experiment, each SCAN contains 1000 tiles if not specified.

It should be considered that efficiency can be effected by the workload situation in cloud. The
results can have some impact which is not caused by our algorithms or models.

3.2.1. Efficiency of I/O with Different Numbers of Working Nodes and Workload

First of all, we would like to observe the general I/O performance. The I/O workload is jointly
performed by all nodes in cluster. Therefore, the number of tasks and the amount of data of the nodes
participating in the work can have a certain impact on efficiency. To investigate this possible influence,
we estimated the I/O efficiency under different nodes and different workloads. We tested the efficiency
of three operations with different workloads, 105 tiles (5.7 GB), 5 × 105 tiles (28.6 GB), 106 tiles (57.2 GB),
2 × 106 tiles (114.4 GB), and 5 × 106 tiles (286.1 GB). At the same time, same estimations are performed
with different nodes.

As is illustrated in Figure 8, the cyan wireframe represents the results of the PUT operation, and
the blue and red wireframes represent the results of the ROW and SCAN operations, separately. The
axis indicates the average time cost per tile. Figure 8a, on the right, shows the detail of one slice when
the tile amount is 106 tiles (57.2 GB). Under this workload, time cost declines inconspicuously with the
incensement of working nodes. As shown in Figure 8b, the time cost is greater and unstable when
the task load is scarce. When the tile amount is greater than 105, the efficiency stabilizes. Generally,
the time cost by SCAN is the smallest, following by ROW. The PUT operation has the greatest time cost.
The SCAN operation requires 0.094 ms in the most ideal situation and varies around 0.1 ms/opt. The
PUT operation takes approximately 0.22 ms to operate a single tile which is approximately 2.2 times
that of SCAN. The operation of PUT has the greatest time cost which varies between 0.76 ms/opt to
1.21 ms/opt. Additionally, the effect of the number of nodes and workload on efficiency is not obvious.

Remote Sens. 2020, 12, 607 10 of 20

the incensement of working nodes. As shown in Figure 8b, the time cost is greater and unstable when
the task load is scarce. When the tile amount is greater than 105, the efficiency stabilizes. Generally,
the time cost by SCAN is the smallest, following by ROW. The PUT operation has the greatest time
cost. The SCAN operation requires 0.094 ms in the most ideal situation and varies around 0.1 ms/opt.
The PUT operation takes approximately 0.22 ms to operate a single tile which is approximately 2.2
times that of SCAN. The operation of PUT has the greatest time cost which varies between 0.76 ms/opt
to 1.21 ms/opt. Additionally, the effect of the number of nodes and workload on efficiency is not
obvious.

Figure 8. Time cost per tile under different nodes and workloads for PUT, ROW, and SCAN. (a)

results with 106 operated tiles; (b) results with 5 participating nodes

3.2.2. Comparison of the Efficiency of Different Data Size

We store the raster remote sensing data in a NoSQL database. However, remote sensing raster
data is different from general data, its size is much larger than general vector data. The size of a single
piece of data can have a similar impact on I/O efficiency. In this section, eight sets of data, ranging in
size from 100 B to 60 KB, are generated randomly as the row object. Experiments of three operations
are performed based on these datasets. Each test consists of 106 pieces of data and is executed on nine
machines on the Spark cluster.

As shown in Figure 9, the line chart shows the speed of I/O in MB/s. This data is obtained through
calculations, as well which is not real-time speed. The histogram represents the average time required
to process each tile in milliseconds. The horizontal axis represents different tile sizes. We have
selected a series of representative sizes from 100 B to 100 KB. The left vertical axis represents the
average time required to operate each tile, and the right vertical axis represents the I/O speed. The
blue line and histogram indicate PUT data, orange lines present ROW data, and green lines show
SCAN operation related data. In this set of tests, SCAN operation fetches 1000 tiles per operation.

Figure 8. Time cost per tile under different nodes and workloads for PUT, ROW, and SCAN. (a) results
with 106 operated tiles; (b) results with 5 participating nodes

Remote Sens. 2020, 12, 607 11 of 20

3.2.2. Comparison of the Efficiency of Different Data Size

We store the raster remote sensing data in a NoSQL database. However, remote sensing raster
data is different from general data, its size is much larger than general vector data. The size of a single
piece of data can have a similar impact on I/O efficiency. In this section, eight sets of data, ranging in
size from 100 B to 60 KB, are generated randomly as the row object. Experiments of three operations
are performed based on these datasets. Each test consists of 106 pieces of data and is executed on nine
machines on the Spark cluster.

As shown in Figure 9, the line chart shows the speed of I/O in MB/s. This data is obtained through
calculations, as well which is not real-time speed. The histogram represents the average time required
to process each tile in milliseconds. The horizontal axis represents different tile sizes. We have selected
a series of representative sizes from 100 B to 100 KB. The left vertical axis represents the average time
required to operate each tile, and the right vertical axis represents the I/O speed. The blue line and
histogram indicate PUT data, orange lines present ROW data, and green lines show SCAN operation
related data. In this set of tests, SCAN operation fetches 1000 tiles per operation.Remote Sens. 2020, 12, 607 11 of 20

Figure 9. Time cost per tile and I/O speed with tiles of different sizes for PUT, ROW, and SCAN.

From the histogram, it can be found that as the size of a single tile increases, the execution time
required for operation also increases. It should be noted that there exist some data which are the
opposite of this rule. For example, the time cost of ROW with the tile of 90 KB is greater than the time
cost with the tile of 80 KB. We consider the results could have been influenced by the cloud
workloads. Conversely, the I/O speed is more complex. Although the time cost of small tile is
relatively low, the I/O speed is definitely not high. As is show in the line chart, at first, the speed
climbs with the increasement of tile size. At some point, the I/O speed begins to decrease. Specifically,
the speed of SCAN starts to fall with the size of 90 KB. The speed of ROW with the size of 60 KB is
the highest and this point appears at the size of 20 KB for ROW. Additionally, when the size of tiles
is smaller that 10 KB, the efficiency increases dramatically along with the size, especially for SCAN.
Between 10 KB to 80 KB, the I/O speed is relatively stable.

3.2.3. Comparison of the Efficiency of SCAN

SCAN is used to obtain a series of continuous tile data in a range. By specifying a starting
ROWKEY and an ending ROWKEY, SCAN sequentially obtains all the data in the interval sorted by
ASCII code. It is impossible for SCAN to cover all tile data in the target at one time. First of all, the
ASCII order of the ROWKEY of the tiles in the target cannot always be continuous. Secondly, the
single SCAN conflicts with Spark work modes, as mentioned in Section 2.5. Meanwhile, the amount
of data of each SCAN can also have a certain impact on I/O efficiency. We estimated how SCAN can
affect I/O efficiency through this set of tests. Figure 10 shows the results of tests. We varied the
amount of each SCAN from five tiles up to 40,000 tiles. The tested dataset consisted of 106 tiles with
a size of 60 KB. Because the interval span was relatively large, we selected some characteristic points
for the experiments. The abscissa represents the data amount of the tile for each SCAN query. We
performed a logarithmic operation on these values in order to analyze the feature points in different
intervals more intuitively and clearly. The ordinate indicates the speed of I/O in MB/s. Similarly,
speed is the calculated as an average instead of real-time I/O speed.

As shown in Figure 10, it is obvious that the I/O speed, firstly, grows along with the increasement
of queried tiles per SCAN. When SCAN takes 10,000 tiles each time, the efficiency reaches the highest
point. Subsequently, the speed starts to go down. At the top point, the I/O speed reaches 1468.3 MB/s
which is 1.88 times the speed when SCAN takes 10,000 tiles each time (776.758 MB/S) and 5.49 times
the speed when SCAN takes five tiles each time (267.507 MB/s). Followed by the I/O speed, the range
is divided into five subranges out of three kinds. As is shown in the figure, the green range is regarded
as the most efficient region while the yellow region beside the green range is acceptable. The two red

Figure 9. Time cost per tile and I/O speed with tiles of different sizes for PUT, ROW, and SCAN.

From the histogram, it can be found that as the size of a single tile increases, the execution time
required for operation also increases. It should be noted that there exist some data which are the
opposite of this rule. For example, the time cost of ROW with the tile of 90 KB is greater than the time
cost with the tile of 80 KB. We consider the results could have been influenced by the cloud workloads.
Conversely, the I/O speed is more complex. Although the time cost of small tile is relatively low,
the I/O speed is definitely not high. As is show in the line chart, at first, the speed climbs with the
increasement of tile size. At some point, the I/O speed begins to decrease. Specifically, the speed of
SCAN starts to fall with the size of 90 KB. The speed of ROW with the size of 60 KB is the highest and
this point appears at the size of 20 KB for ROW. Additionally, when the size of tiles is smaller than
10 KB, the efficiency increases dramatically along with the size, especially for SCAN. Between 10 KB to
80 KB, the I/O speed is relatively stable.

3.2.3. Comparison of the Efficiency of SCAN

SCAN is used to obtain a series of continuous tile data in a range. By specifying a starting
ROWKEY and an ending ROWKEY, SCAN sequentially obtains all the data in the interval sorted
by ASCII code. It is impossible for SCAN to cover all tile data in the target at one time. First of all,
the ASCII order of the ROWKEY of the tiles in the target cannot always be continuous. Secondly,
the single SCAN conflicts with Spark work modes, as mentioned in Section 2.5. Meanwhile, the amount

Remote Sens. 2020, 12, 607 12 of 20

of data of each SCAN can also have a certain impact on I/O efficiency. We estimated how SCAN can
affect I/O efficiency through this set of tests. Figure 10 shows the results of tests. We varied the amount
of each SCAN from five tiles up to 40,000 tiles. The tested dataset consisted of 106 tiles with a size of
60 KB. Because the interval span was relatively large, we selected some characteristic points for the
experiments. The abscissa represents the data amount of the tile for each SCAN query. We performed
a logarithmic operation on these values in order to analyze the feature points in different intervals
more intuitively and clearly. The ordinate indicates the speed of I/O in MB/s. Similarly, speed is the
calculated as an average instead of real-time I/O speed.

Remote Sens. 2020, 12, 607 12 of 20

regions at the both sides are of low efficiency. The results show that the I/O speed has a great
relationship with the size of the SCAN.

Figure 10. I/O speed with different amounts of tiles per SCAN.

In order to ensure the consistency of experimental conditions, previous tests were based on
simulated tile data. However, for a real dataset, the size of each tile is not identical. We experimented
on real datasets. The experimental dataset is a set of global 30 m three-band data, as previously
mentioned. The dataset was provided by the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences. We estimated the speed of ROW and SCAN. As illustrated in Figure 11, when
the task size is larger than 105, the latency of ROW and SCAN stabilized gradually corresponding
with the results of experiments in Figure 8. The average time required by ROW is approximately 0.2
ms, while SCAN takes approximately 0.1 ms, which is similar to the results of test dataset.

Figure 11. Time cost per tile with 30 m Mosaic data.

3.3. Efficiency of Index and Query

The first three sets of experiments tested the I/O efficiency of the platform. However, there are
many differences between the actual conditions and the experimental conditions. Experiments
provide guidance for the performance improvement of the platform, but we should consider

Figure 10. I/O speed with different amounts of tiles per SCAN.

As shown in Figure 10, it is obvious that the I/O speed, firstly, grows along with the increasement
of queried tiles per SCAN. When SCAN takes 10,000 tiles each time, the efficiency reaches the highest
point. Subsequently, the speed starts to go down. At the top point, the I/O speed reaches 1468.3 MB/s
which is 1.88 times the speed when SCAN takes 10,000 tiles each time (776.758 MB/S) and 5.49 times
the speed when SCAN takes five tiles each time (267.507 MB/s). Followed by the I/O speed, the range
is divided into five subranges out of three kinds. As is shown in the figure, the green range is regarded
as the most efficient region while the yellow region beside the green range is acceptable. The two
red regions at the both sides are of low efficiency. The results show that the I/O speed has a great
relationship with the size of the SCAN.

In order to ensure the consistency of experimental conditions, previous tests were based on
simulated tile data. However, for a real dataset, the size of each tile is not identical. We experimented
on real datasets. The experimental dataset is a set of global 30 m three-band data, as previously
mentioned. The dataset was provided by the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences. We estimated the speed of ROW and SCAN. As illustrated in Figure 11, when
the task size is larger than 105, the latency of ROW and SCAN stabilized gradually corresponding with
the results of experiments in Figure 8. The average time required by ROW is approximately 0.2 ms,
while SCAN takes approximately 0.1 ms, which is similar to the results of test dataset.

Remote Sens. 2020, 12, 607 13 of 20

Remote Sens. 2020, 12, 607 12 of 20

regions at the both sides are of low efficiency. The results show that the I/O speed has a great
relationship with the size of the SCAN.

Figure 10. I/O speed with different amounts of tiles per SCAN.

In order to ensure the consistency of experimental conditions, previous tests were based on
simulated tile data. However, for a real dataset, the size of each tile is not identical. We experimented
on real datasets. The experimental dataset is a set of global 30 m three-band data, as previously
mentioned. The dataset was provided by the Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences. We estimated the speed of ROW and SCAN. As illustrated in Figure 11, when
the task size is larger than 105, the latency of ROW and SCAN stabilized gradually corresponding
with the results of experiments in Figure 8. The average time required by ROW is approximately 0.2
ms, while SCAN takes approximately 0.1 ms, which is similar to the results of test dataset.

Figure 11. Time cost per tile with 30 m Mosaic data.

3.3. Efficiency of Index and Query

The first three sets of experiments tested the I/O efficiency of the platform. However, there are
many differences between the actual conditions and the experimental conditions. Experiments
provide guidance for the performance improvement of the platform, but we should consider

Figure 11. Time cost per tile with 30 m Mosaic data.

3.3. Efficiency of Index and Query

The first three sets of experiments tested the I/O efficiency of the platform. However, there are
many differences between the actual conditions and the experimental conditions. Experiments provide
guidance for the performance improvement of the platform, but we should consider carefully the
influence originated from the differences. Actually, the target area requested by the client is often
restricted in a spatial polygon (we assume and simplify it into a rectangle). This range is overwritten
by multiple tiles. Then, we calculate the ROWKEY of all the tiles in the range. The platform requests
the corresponding data from HBase according to these ROWKEYs and performs calculations. The
difference between the experiment and the actual situation is mainly reflected in two aspects. First
of all, ROWKEY of the in-range data cannot be permanently contiguous, we can only represent it as
multiple consecutive sets. Secondly, the size of the data is not constant. The size of a single piece
of tile depends on some characteristics of each tile itself. The first question is essentially a problem
associated with index methods. As mentioned in Section 3.2, continuity of ROWKEY has a significant
impact on I/O efficiency. In this section, we compare the performance of the Hilbert curve with the
coordinate-based method.

We estimated the ability of the spatial concentration of Hilbert curve and the coordinate-based
method, which is shown in Figure 12. We simulated 5000 random rectangles that represent 5000
random query regions. The size of the queried regions varied from 100 × 100 to 1000 × 1000. The
tests are performed on an 11-order quad-tree map which contains 411 × 411 tiles. The abscissa axis
represents the number of tiles contained within the rectangular region, and the ordinate axis represents
the number of queries required to cover all tiles in the region. Each point denotes a single simulation
of region and the curves are fitted curves of the results of three different methods. Among 5000 trial
queries, Hilbert (in blue) and coordinate-based (in brown) methods required a similar average number
of queries. As shown in Figure 12, the fitted curves of these two methods are extremely close. It should
be explained that the maximum of the coordinate-based method is defined by the number of rows or
columns of the queried region. As a result, the maximum of the coordinate-based method is 1000 for
the region below 1000 × 1000. Optimized Hilbert requires fewer queries to cover the same regions.
When the selected area is small (0 to 4 × 105 tiles), this gap is even larger.

Remote Sens. 2020, 12, 607 14 of 20

Remote Sens. 2020, 12, 607 13 of 20

carefully the influence originated from the differences. Actually, the target area requested by the
client is often restricted in a spatial polygon (we assume and simplify it into a rectangle). This range
is overwritten by multiple tiles. Then, we calculate the ROWKEY of all the tiles in the range. The
platform requests the corresponding data from HBase according to these ROWKEYs and performs
calculations. The difference between the experiment and the actual situation is mainly reflected in
two aspects. First of all, ROWKEY of the in-range data cannot be permanently contiguous, we can
only represent it as multiple consecutive sets. Secondly, the size of the data is not constant. The size
of a single piece of tile depends on some characteristics of each tile itself. The first question is
essentially a problem associated with index methods. As mentioned in Section 3.2, continuity of
ROWKEY has a significant impact on I/O efficiency. In this section, we compare the performance of
the Hilbert curve with the coordinate-based method.

We estimated the ability of the spatial concentration of Hilbert curve and the coordinate-based
method, which is shown in Figure 12. We simulated 5000 random rectangles that represent 5000
random query regions. The size of the queried regions varied from 100 x 100 to 1000 x 1000. The tests
are performed on a 11-order quad-tree map which contains 411 x 411 tiles. The abscissa axis
represents the number of tiles contained within the rectangular region, and the ordinate axis
represents the number of queries required to cover all tiles in the region. Each point denotes a single
simulation of region and the curves are fitted curves of the results of three different methods. Among
5000 trial queries, Hilbert (in blue) and coordinate-based (in brown) methods required a similar
average number of queries. As shown in Figure 12, the fitted curves of these two methods are
extremely close. It should be explained that the maximum of the coordinate-based method is defined
by the number of rows or columns of the queried region. As a result, the maximum of the coordinate-
based method is 1000 for the region below 1000 x 1000. Optimized Hilbert requires fewer queries to
cover the same regions. When the selected area is small (0 to 4 x 105 tiles), this gap is even larger.

Figure 12. Number of queries required to cover the queried region of 3 method out of a 11-order quad-
tree map.

As is illustrated in Table 2, Hilbert needs 552.0326 queries while the coordinate-based method
requires 546.4178 times. For optimized Hilbert, it is very obvious that after optimization, efficiency
of Hilbert has been significantly improved. The number of queries required for the optimized of
Hilbert is 275.4384 times on average, which is just half of the two previous methods. We extended
the size of the test map to a 11-order map which contained 413 x 413 tiles. The results are illustrated
in Table 2 which is almost the same as the former one. The optimized Hilbert covers the same area
with fewer sets, and the size of the base map has little effect on connectivity.

Figure 12. Number of queries required to cover the queried region of 3 method out of a 11-order
quad-tree map.

As is illustrated in Table 2, Hilbert needs 552.0326 queries while the coordinate-based method
requires 546.4178 times. For optimized Hilbert, it is very obvious that after optimization, efficiency of
Hilbert has been significantly improved. The number of queries required for the optimized of Hilbert
is 275.4384 times on average, which is just half of the two previous methods. We extended the size of
the test map to an 11-order map which contained 413 × 413 tiles. The results are illustrated in Table 2
which is almost the same as the former one. The optimized Hilbert covers the same area with fewer
sets, and the size of the base map has little effect on connectivity.

Table 2. Average number of queries of three methods with different map sizes.

The Size of Map Coordinate-Based SFC: Hilbert SFC: Optimized Hilbert

411 × 411 tiles 546.4178 queries 552.0326 queries 275.4384 queries
413 × 413 tiles 543.1366 queries 548.6832 queries 275.1958 queries

3.4. Calculation Performance

In this section, we try to study the performance of ScienceGeoSpark. Previous experiments tested
the I/O performance and query performance of ScienceGeoData and ScienceGeoIndex. In fact, these
tasks are performed in the form of ScienceGeoSpark tasks and, although a certain amount of computing
power is required in the data transmission process, the results do not reflect calculation performance.
In this section, tests are based on two algorithms, high-pass filtering and edge detection, both of which
are embedded originally within OpenCV.

High-pass filtering is finished through filter2D of OpenCV with a 3 × 3 kernel and edge detection
is performed through operation Canny of OpenCV. For this part of the experiment, we used a set of
global 30 m three-band remote sensing image data of land (without data of ocean). The row data is in
the form of GeoTIFF, with a size of approximately 687 GB. In the first step, we split the data into tiles in
PNG format and store the data in ScienceGeoData. It should be noted that the data in the database
is approximately 296.4 GB after transformation, because the compression ratio of the PNG format is
higher than that of GeoTIFF. Figure 13 shows the origin data, and data after high-pass filtering and
Canny edge detection.

As is shown in Figure 14, we estimated the time cost of two algorithms with different working
nodes. Among these tests, the data are fetched by SCAN. As previously mentioned, SCAN data takes
some of the time. In this section, we aim to eliminate this kind of influence and focus on the cost of

Remote Sens. 2020, 12, 607 15 of 20

only calculation. Therefore, we add a set of control tests with purely SCAN operations. Generally,
the time cost declines when more working nodes are participating. When the working nodes increase
to five, the time cost decreases slowly. With nine nodes, it takes approximately 275 s and 285 s for
high-pass filtering and Canny edge detection, separately, whereas with SCAN for all the data the time
cost is 205 s.

Remote Sens. 2020, 12, 607 14 of 20

Table 2. Average number of queries of three methods with different map sizes.

The size of map Coordinate-based SFC: Hilbert SFC: Optimized Hilbert
411 x 411 tiles 546.4178 queries 552.0326 queries 275.4384 queries
413 x 413 tiles 543.1366 queries 548.6832 queries 275.1958 queries

3.4. Calculation Performance

In this section, we try to study the performance of ScienceGeoSpark. Previous experiments tested
the I/O performance and query performance of ScienceGeoData and ScienceGeoIndex. In fact, these
tasks are performed in the form of ScienceGeoSpark tasks and, although a certain amount of
computing power is required in the data transmission process, the results do not reflect calculation
performance. In this section, tests are based on two algorithms, high-pass filtering and edge detection,
both of which are embedded originally within OpenCV.

High-pass filtering is finished through filter2D of OpenCV with a 3 x 3 kernel and edge detection
is performed through operation Canny of OpenCV. For this part of the experiment, we used a set of
global 30 m three-band remote sensing image data of land (without data of ocean). The row data is
in the form of GeoTIFF, with a size of approximately 687 GB. In the first step, we split the data into
tiles in PNG format and store the data in ScienceGeoData. It should be noted that the data in the
database is approximately 296.4 GB after transformation, because the compression ratio of the PNG
format is higher than that of GeoTIFF. Figure 13 shows the origin data, and data after high-pass
filtering and Canny edge detection.

As is shown in Figure 14, we estimated the time cost of two algorithms with different working
nodes. Among these tests, the data are fetched by SCAN. As previously mentioned, SCAN data takes
some of the time. In this section, we aim to eliminate this kind of influence and focus on the cost of
only calculation. Therefore, we add a set of control tests with purely SCAN operations. Generally,
the time cost declines when more working nodes are participating. When the working nodes increase
to five, the time cost decreases slowly. With nine nodes, it takes approximately 275 s and 285 s for
high-pass filtering and Canny edge detection, separately, whereas with SCAN for all the data the
time cost is 205 s.

Figure 13. Origin, high-pass filtering, and Canny edge detection. Figure 13. Origin, high-pass filtering, and Canny edge detection.Remote Sens. 2020, 12, 607 15 of 20

Figure 14. Time cost of two algorithms and SCAN.

4. Discussion

4.1. Performace of the ScienceGeoData

ScienceGeoData inherits characteristics of HDFS and HBase, and ScienceGeoData is highly
available and able to satisfy high I/O requests. Specifically, we store tiles data in PNG format in the
database. To achieve this, we split remote sensing data into tiles with certain size of 256 x 256 pixels,
following the rules of quad-trees. Following this manner, users can efficiently query and fetched data.
Various complex data requirements are easily implemented in such databases. Figure 8 shows the
general I/O efficiency of ScienceGeoData with tiles, there are two operations to read data from the
database, SCAN and ROW, and one operation, PUT, to write into the database. Generally, speed of
writing data is much lower than reading, and the performance of SCAN is more excellent than that
of PUT.

In order to further explore I/O characteristics of ScienceGeoData, more experiments were carried
out. Figure 9 indicates that when the tiles are in the size between 10 KB and 80 KB, the I/O speed of
three main operations of HBase is stable and fine. For a PNG tile of 256 x 256 pixels with three
channels, the size is exactly within the range. That is to say, the size of tile is suitable for
ScienceGeoData and can reach the most efficient working condition. Figure 10 shows the I/O speed
of SCAN with different SCAN sizes. We divided the range of 5 to 4e5, into five subranges which are
indicated by colors. The results suggest that SCAN size is better within 500 to 2e5, which are shown
in yellow and green.

Under experimental conditions, the I/O speed of tiles stored in HBase reach approximately 1400
MB/s when the SCAN size is 2e4 and the single size of a tile is 60 KB. By the time this article was
written, more than 80 terabytes of remote sensing data and copies had been stored in ScienceGeoData.
In the whole test phase, the system of ScienceGeoData and ScienceGeoIndex has maintained stable
performance.

4.2. Performance of ScienceGeoIndex

ScienceGeoIndex offers an index solution for tiles stored in SharaData. According to the quad-
tree and Hilbert curve, ScienceGeoIndex retains the contiguity of ROWKEYs of the tiles. From Figure
12, the optimized Hilbert doubles the performance as compared with the coordinate-based method.
When performing the same query task, optimized Hilbert only needs about half the queries as that
of the coordinate-based method.

As is illustrated in Figure 15, we analyze the distribution of tiles during the simulation
mentioned in Figure 12. The top bar shows the distribution of tiles in different query regions by
coordinate-based index, indicating that 25% of the tiles are queried in the size of 0 to 500 tiles per

Figure 14. Time cost of two algorithms and SCAN.

4. Discussion

4.1. Performace of the ScienceGeoData

ScienceGeoData inherits characteristics of HDFS and HBase, and ScienceGeoData is highly
available and able to satisfy high I/O requests. Specifically, we store tiles data in PNG format in the
database. To achieve this, we split remote sensing data into tiles with certain size of 256 × 256 pixels,
following the rules of quad-trees. Following this manner, users can efficiently query and fetched data.
Various complex data requirements are easily implemented in such databases. Figure 8 shows the
general I/O efficiency of ScienceGeoData with tiles, there are two operations to read data from the
database, SCAN and ROW, and one operation, PUT, to write into the database. Generally, speed of
writing data is much lower than reading, and the performance of SCAN is more excellent than that
of PUT.

In order to further explore I/O characteristics of ScienceGeoData, more experiments were carried
out. Figure 9 indicates that when the tiles are in the size between 10 KB and 80 KB, the I/O speed of

Remote Sens. 2020, 12, 607 16 of 20

three main operations of HBase is stable and fine. For a PNG tile of 256 × 256 pixels with three channels,
the size is exactly within the range. That is to say, the size of tile is suitable for ScienceGeoData and can
reach the most efficient working condition. Figure 10 shows the I/O speed of SCAN with different
SCAN sizes. We divided the range of 5 to 4 × 105, into five subranges which are indicated by colors.
The results suggest that SCAN size is better within 500 to 2 × 105, which are shown in yellow and green.

Under experimental conditions, the I/O speed of tiles stored in HBase reach approximately
1400 MB/s when the SCAN size is 2 × 104 and the single size of a tile is 60 KB. By the time this
article was written, more than 80 terabytes of remote sensing data and copies had been stored in
ScienceGeoData. In the whole test phase, the system of ScienceGeoData and ScienceGeoIndex has
maintained stable performance.

4.2. Performance of ScienceGeoIndex

ScienceGeoIndex offers an index solution for tiles stored in SharaData. According to the quad-tree
and Hilbert curve, ScienceGeoIndex retains the contiguity of ROWKEYs of the tiles. From Figure 12,
the optimized Hilbert doubles the performance as compared with the coordinate-based method. When
performing the same query task, optimized Hilbert only needs about half the queries as that of the
coordinate-based method.

As is illustrated in Figure 15, we analyze the distribution of tiles during the simulation mentioned
in Figure 12. The top bar shows the distribution of tiles in different query regions by coordinate-based
index, indicating that 25% of the tiles are queried in the size of 0 to 500 tiles per SCAN, and 75% are
queried in the 501 to 2000 tiles per SCAN. According to the five regions in Figure 10, the speed of 25%
of the tiles is extremely low, and the speed of 75% of the tiles is relatively low. For the distribution of
Hilbert in the next two bars, only 4% of tiles are in the first two regions, separately, and 37% tiles are
in the third region (in green), and 42% and 12% of tiles in the two following regions. For the tiles in
these two regions, we can manually split these tiles into the group of ideal size (in green). As a result,
approximately 92% of tiles can be queried with high efficiency.

Remote Sens. 2020, 12, 607 16 of 20

SCAN, and 75% are queried in the 501 to 2000 tiles per SCAN. According to the five regions in Figure
10, the speed of 25% of the tiles is extremely low, and the speed of 75% of the tiles is relatively low.
For the distribution of Hilbert in the next two bars, only 4% of tiles are in the first two regions,
separately, and 37% tiles are in the third region (in green), and 42% and 12% of tiles in the two
following regions. For the tiles in these two regions, we can manually split these tiles into the group
of ideal size (in green). As a result, approximately 92% of tiles can be queried with high efficiency.

Figure 15. Proportion of SCAN operations of different sizes with ScienceGeoIndex.

Above all, the index ability of ScienceGeoIndex is good and corresponds to the requirements of
ScienceGeoData. When performing a range query, ScienceGeoIndex requires fewer queries and the
structure of query is remarkable.

4.3. Performance of ScienceGeoSpark.

ScienceGeoSpark offers a powerful calculation performance based on Spark, which can interact
with the data in ScienceGeoData. Figure 14 shows the tests of calculation performance. It only takes
about 300 s to perform edge detection on a 30 m three-band global remote sensing product with
ScienceGeoSpark.

As is shown in Table 3, we compared the efficiency of ScienceGeoSpark with a normal server.
The configuration of a normal server is the same as the configuration of WORKER in cluster. We
processed high-pass filtering and Canny edge detection on two types of platforms with the same
algorithms. First, we compared the performance for a single scene. Compared with a normal server,
ScienceEarth improved the performance by 235.7% and 278.3%, separately. Although the data
amount is relatively small, the advantage of ScienceEarth is limited by the basic expenditure of the
system. With respect to processing the global data, the improvement reaches 2726.2% and 2406.2%.
It needs to be explained that in the example with a single machine, only a single core participates in
the calculation, whereas ScienceEarth has 32 cores that participate in the calculation. The same
algorithm was tested on a server with 32 core parallel operations but failed because the memory
required for parallel computing is too large. Although the average performance per core is reduced,
ScienceEarth can calculate large tasks in parallel. At the same time, we noticed that when the number
of nodes used by ScienceEarth increased from four to nine, the speed remained basically stable
because the test algorithm we choose is relatively simple. The algorithm overhead is relatively small
as compared with the overhead required for communication and other tasks.

Above all, the results manifest that ScienceEarth is a potential prototype for remote sensing big
data. More complex algorithms combined with significant practical research should be tried with
ScienceGeoSpark in future experiments. For example, large scale vegetation indices calculation is as
suitable for cloud-based cluster framework as Google Earth Engine or ScienceEarth [47].

Figure 15. Proportion of SCAN operations of different sizes with ScienceGeoIndex.

Above all, the index ability of ScienceGeoIndex is good and corresponds to the requirements of
ScienceGeoData. When performing a range query, ScienceGeoIndex requires fewer queries and the
structure of query is remarkable.

4.3. Performance of ScienceGeoSpark

ScienceGeoSpark offers a powerful calculation performance based on Spark, which can interact
with the data in ScienceGeoData. Figure 14 shows the tests of calculation performance. It only
takes about 300 s to perform edge detection on a 30 m three-band global remote sensing product
with ScienceGeoSpark.

As is shown in Table 3, we compared the efficiency of ScienceGeoSpark with a normal server. The
configuration of a normal server is the same as the configuration of WORKER in cluster. We processed
high-pass filtering and Canny edge detection on two types of platforms with the same algorithms.

Remote Sens. 2020, 12, 607 17 of 20

First, we compared the performance for a single scene. Compared with a normal server, ScienceEarth
improved the performance by 235.7% and 278.3%, separately. Although the data amount is relatively
small, the advantage of ScienceEarth is limited by the basic expenditure of the system. With respect to
processing the global data, the improvement reaches 2726.2% and 2406.2%. It needs to be explained
that in the example with a single machine, only a single core participates in the calculation, whereas
ScienceEarth has 32 cores that participate in the calculation. The same algorithm was tested on a server
with 32 core parallel operations but failed because the memory required for parallel computing is
too large. Although the average performance per core is reduced, ScienceEarth can calculate large
tasks in parallel. At the same time, we noticed that when the number of nodes used by ScienceEarth
increased from four to nine, the speed remained basically stable because the test algorithm we choose is
relatively simple. The algorithm overhead is relatively small as compared with the overhead required
for communication and other tasks.

Table 3. Comparison of efficiency with ScienceEarth and a normal server.

Globe Remote Sensing Data with 3
Channels

(30 m, 687 GB)
Single Scene (1 GB)

Single
Machine
(1 nodes)

ScienceEarth
(4 nodes) Improvement

Single
Machine
(1 nodes)

ScienceEarth
(1 nodes) Improvement

High-pass
filtering 8590.1 s 315.1 s 2726.2% 9.9 s 4.2 s 235.7%

Canny edge
detection 9367.4 s 389.3 s 2406.2% 12.8 s 4.6 s 278.3%

Above all, the results manifest that ScienceEarth is a potential prototype for remote sensing big
data. More complex algorithms combined with significant practical research should be tried with
ScienceGeoSpark in future experiments. For example, large scale vegetation indices calculation is as
suitable for cloud-based cluster framework as Google Earth Engine or ScienceEarth [47].

5. Conclusions

With the explosive growth of remote sensing data, the storage and use of remote sensing data
has become a hot topic. On the other side, the development of big data technology in recent years
has provided solutions and open source tools for remote sensing big data applications. Driven by the
advancement of demand and the development of technology, it is possible to solve the traditional
remote sensing problem through big data approaches.

In this article, we introduce a cloud-based remote sensing big data platform prototype, ScienceEarth.
Composed of three main parts, i.e., ScienceGeoData, ScienceGeoIndex and ScienceGeoSpark,
ScienceEarth offers a throughout solution for remote sensing data. SharaEarth is capable of storing
massive amounts of heterogeneous remote sensing data and provides fast indexing of data based
on various characteristics. Thanks to ScienceGeoIndex, the data stored in ScienceEarth is no longer
independent and unusable raw data. ScienceEarth combines the data and processing. Remote sensing
data can be directly used for fast and efficient cloud computing. Since the underlying storage and
indexing of this series is transparent to users, ScienceEarth has a very low threshold for use. Thanks to
the support for mainstream programming languages, ScienceEarth can be quickly and easily used by
remote sensing scientists. This convenient feature allows remote sensing scientists to independently
use ScienceEarth for scientific research and development. Preliminary experimental results show that
the performance of ScienceEarth is excellent and it is a very promising prototype of a remote sensing
data processing platform.

In subsequent work, we expect to make more progress. First, we plan to optimize the
ScienceGeoIndex index structure to provide standard map services. In addition, we hope that

Remote Sens. 2020, 12, 607 18 of 20

ScienceEarth can automate the processing of raw satellite data, including geometric correction and
partial radiation correction functions. Finally, we plan to introduce support for vector data and combine
vector data with raster data to provide services. Machine learning and deep learning frameworks
based on remote sensing images are also under consideration.

Author Contributions: Conceptualization, X.D., Z.Y. and X.F.; methodology, C.X. and X.D.; formal analysis,
C.X; writing—original draft preparation, C.X. and Z.Y.; writing—review and editing, X.F., X.D. and Z.Y.; project
administration, X.D. and X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,
Project CASEarth (XDA19080103 and XDA19080101), the National Key Research and Development Project
(2018YFC1504201D), the National Natural Science Foundation of China (41974108) and the Key Research Program
of the Chinese Academy of Sciences(KFZD-SW-317).

Acknowledgments: We thank the Open Spatial Data Sharing Project, RADI (http://ids.ceode.ac.cn/EN/) for the
experimental data of Landsat TM/ETM images. At the same time, we also thank Mr. Dong Yi for his support with
the experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very High-resolution remote sensing: Challenges and
opportunities point of view. Proc. IEEE 2012, 100, 1907–1910. [CrossRef]

2. Data, F.M.; Hou, W.; Su, J.; Xu, W.; Li, X. Inversion of the Fraction of Absorbed Photosynthetically Active
Radiation (FPAR) from FY-3C MERSI Data. Remote Sens. 2020, 12, 67.

3. Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6,
6929–6960. [CrossRef]

4. Ansper, A.; Alikas, K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union water
framework directive reporting purposes. Remote Sens. 2019, 11, 64. [CrossRef]

5. Drahansky, M.; Paridah, M.; Moradbak, A.; Mohamed, A.; Owolabi, F.; Abdulwahab, T.; Asniza, M.;
Abdul, K.S.H. A Review: Remote Sensing Sensors. IntechOpen 2016, 17, 777.

6. Gamba, P.; Du, P.; Juergens, C.; Maktav, D. Foreword to the Special Issue on Human Settlements: A Global
Remote Sensing Challenge. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 5–7. [CrossRef]

7. He, G.; Wang, L.; Ma, Y.; Zhang, Z.; Wang, G.; Peng, Y.; Long, T.; Zhang, X. Processing of earth observation
big data: Challenges and countermeasures. Kexue Tongbao Chin. Sci. Bull. 2015, 60, 470–478.

8. Bhardwaj, A.; Sam, L.; Akanksha, B.; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in
glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [CrossRef]

9. Zhang, X.; Zhang, F.; Qi, Y.; Deng, L.; Wang, X.; Yang, S. New research methods for vegetation information
extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl.
Earth Obs. Geoinf. 2019, 78, 215–226. [CrossRef]

10. Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview.
J. Coast. Res. 2015, 315, 1260–1267. [CrossRef]

11. Prinz, T.; Lasar, B.; Krüger, K.P. High-resolution remote sensing and GIS techniques for geobase data
supporting archaeological surveys: A case study of ancient doliche, southeast Turkey. Geoarchaeology 2010,
25, 352–374. [CrossRef]

12. Guo, H.; Wang, L.; Chen, F.; Liang, D. Scientific big data and Digital Earth. Chin. Sci. Bull. 2014, 59, 5066–5073.
[CrossRef]

13. Wang, L.; Ma, Y.; Zomaya, A.Y.; Ranjan, R.; Chen, D. A parallel file system with application-aware data
layout policies for massive remote sensing image processing in digital earth. IEEE Trans. Parallel Distrib. Syst.
2015, 26, 1497–1508. [CrossRef]

14. Oliveira, S.F.; Fürlinger, K.; Kranzlmüller, D. Trends in computation, communication and storage and the
consequences for data-intensive science. In Proceedings of the 2012 IEEE 14th International Conference on
High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded
Software and Systems, Liverpool, UK, 25–27 June 2012; pp. 572–579.

15. Zhong, Y.; Ma, A.; Ong, Y.S.; Zhu, Z.; Zhang, L. Computational intelligence in optical remote sensing image
processing. Appl. Soft Comput. J. 2018, 64, 75–93. [CrossRef]

http://ids.ceode.ac.cn/EN/
http://dx.doi.org/10.1109/JPROC.2012.2190811
http://dx.doi.org/10.3390/rs6086929
http://dx.doi.org/10.3390/rs11010064
http://dx.doi.org/10.1109/JSTARS.2011.2106332
http://dx.doi.org/10.1016/j.rse.2015.12.029
http://dx.doi.org/10.1016/j.jag.2019.01.001
http://dx.doi.org/10.2112/JCOASTRES-D-15-00005.1
http://dx.doi.org/10.1002/gea.20312
http://dx.doi.org/10.1007/s11434-014-0645-3
http://dx.doi.org/10.1109/TPDS.2014.2322362
http://dx.doi.org/10.1016/j.asoc.2017.11.045

Remote Sens. 2020, 12, 607 19 of 20

16. Huang, B.; Jin, L.; Lu, Z.; Yan, M.; Wu, J.; Hung, P.C.K.; Tang, Q. RDMA-driven MongoDB: An approach of
RDMA enhanced NoSQL paradigm for large-Scale data processing. Inf. Sci. 2019, 502, 376–393. [CrossRef]

17. Li, C.; Yang, W. The distributed storage strategy research of remote sensing image based on Mongo DB. In
Proceedings of the 2014 3rd International Workshop on Earth Observation and Remote Sensing Applications
(EORSA), Changsha, China, 11–14 June 2014; pp. 101–104.

18. Liu, X.; Han, J.; Zhong, Y.; Han, C.; He, X. Implementing WebGIS on Hadoop: A case study of improving
small file I/O performance on HDFS. In Proceedings of the 2009 IEEE International Conference on Cluster
Computing and Workshops, New Orleans, Louisiana, 31 August–4 September 2009; pp. 1–8.

19. Lin, F.C.; Chung, L.K.; Ku, W.Y.; Chu, L.R.; Chou, T.Y. The framework of cloud computing platform for
massive remote sensing images. In Proceedings of the 2013 IEEE 27th International Conference on Advanced
Information Networking and Applications (AINA), Barcelona, Spain, 25–28 March 2013; pp. 621–628.

20. Xiao, Z.; Liu, Y. Remote sensing image database based on NOSQL database. In Proceedings of the 2011 19th
International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 3–7.

21. Mahdavi-Amiri, A.; Alderson, T.; Samavati, F. A Survey of Digital Earth. Comput. Graph. 2015, 53, 95–117.
[CrossRef]

22. Fan, J.; Yan, J.; Ma, Y.; Wang, L. Big data integration in remote sensing across a distributed metadata-based
spatial infrastructure. Remote Sens. 2018, 10, 7. [CrossRef]

23. Wei, L.Y.; Hsu, Y.T.; Peng, W.C.; Lee, W.C. Indexing spatial data in cloud data managements.
Pervasive Mob. Comput. 2014, 15, 48–61. [CrossRef]

24. Lin, A.; Chang, C.F.; Lin, M.C.; Jan, L.J. High-performance computing in remote sensing image compression.
High. Perform. Comput. Remote Sens. 2011, 8183, 81830C.

25. Yan, J.; Ma, Y.; Wang, L.; Choo, K.K.R.; Jie, W. A cloud-based remote sensing data production system.
Futur. Gener. Comput. Syst. 2018, 86, 1154–1166. [CrossRef]

26. Ayguadé, E.; Copty, N.; Duran, A.; Hoeflinger, J.; Lin, Y.; Massaioli, F.; Teruel, X.; Unnikrishnan, P.; Zhang, G.
The design of OpenMP tasks. IEEE Trans. Parallel Distrib. Syst. 2009, 20, 404–418. [CrossRef]

27. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51,
107–113. [CrossRef]

28. Lv, Z.; Hu, Y.; Zhong, H.; Wu, J.; Li, B.; Zhao, H. Parallel K-Means Clustering of Remote Sensing images
Based on Mapreduce. Available online: https://www.researchgate.net/publication/220774985_Parallel_K-
Means_Clustering_of_Remote_Sensing_Images_Based_on_MapReduce (accessed on 11 February 2020).

29. Wang, L.; Ma, Y.; Yan, J.; Chang, V.; Zomaya, A.Y. pipsCloud: High performance cloud computing for remote
sensing big data management and processing. Futur. Gener. Comput. Syst. 2018, 78, 353–368. [CrossRef]

30. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

31. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral
remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]

32. Sefraoui, O.; Aissaoui, M.; Eleuldj, M. OpenStack: Toward an Open-source Solution for Cloud Computing.
Int. J. Comput. Appl. 2012, 55, 38–42. [CrossRef]

33. Grossman, R.L. The case for cloud computing. IT Prof. 2009, 11, 23–27. [CrossRef]
34. Borthakur, D. HDFS Architecture Guide. Available online: https://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-hdfs/HdfsDesign.html (accessed on 11 February 2020).
35. Vora, M.N. Hadoop-HBase for large-scale data. In Proceedings of the 2011 International Conference on

Computer Science and Network Technology, Harbin, China, 24–26 December 2011; Volume 1, pp. 601–605.
36. Zhang, J.; You, S.; Gruenwald, L. Parallel quadtree coding of large-scale raster geospatial data on GPGPUs. In

Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, Gosier, Guadeloupe, France, 23–28 February 2011; pp. 457–460.

37. Jing, W.; Tian, D. An improved distributed storage and query for remote sensing data. Procedia Comput. Sci.
2018, 129, 238–247. [CrossRef]

38. Vavilapalli, V.; Murthy, A. Apache Hadoop Yarn: Yet Another Resource Negotiator Big Data Resources
Scheduling. Available online: https://www.cse.ust.hk/~{}weiwa/teaching/Fall15-COMP6611B/reading_list/
YARN.pdf (accessed on 11 February 2020).

39. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working
sets. HotCloud 2010, 10, 95.

http://dx.doi.org/10.1016/j.ins.2019.06.048
http://dx.doi.org/10.1016/j.cag.2015.08.005
http://dx.doi.org/10.3390/rs10010007
http://dx.doi.org/10.1016/j.pmcj.2013.07.001
http://dx.doi.org/10.1016/j.future.2017.02.044
http://dx.doi.org/10.1109/TPDS.2008.105
http://dx.doi.org/10.1145/1327452.1327492
https://www.researchgate.net/publication/220774985_Parallel_K-Means_Clustering_of_Remote_Sensing_Images_Based_on_MapReduce
https://www.researchgate.net/publication/220774985_Parallel_K-Means_Clustering_of_Remote_Sensing_Images_Based_on_MapReduce
http://dx.doi.org/10.1016/j.future.2016.06.009
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.5120/8738-2991
http://dx.doi.org/10.1109/MITP.2009.40
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://dx.doi.org/10.1016/j.procs.2018.03.071
https://www.cse.ust.hk/~{}weiwa/teaching/Fall15-COMP6611B/reading_list/YARN.pdf
https://www.cse.ust.hk/~{}weiwa/teaching/Fall15-COMP6611B/reading_list/YARN.pdf

Remote Sens. 2020, 12, 607 20 of 20

40. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.B.; Amde, M.;
Owen, S.; et al. MLlib: Machine learning in Apache Spark. J. Mach. Learn. Res. 2016, 17, 1–7.

41. Qin, V.L. Spark SQL Relational Data Processing in Spark. Acad. Psychiatry 2017, 41, 763. [CrossRef]
42. Zhang, Y.; Liu, D. Improving the efficiency of storing for small files in hdfs. In Proceedings of the Computer

Science & Service System (CSSS), Nanjing, China, 11–13 August 2012; pp. 2239–2242.
43. Xue, S.J.; Pan, W.B.; Fang, W. A novel approach in improving I/O performance of small meteorological files

on HDFS. Appl. Mech. Mater. 2012, 117, 1759–1765. [CrossRef]
44. Yang, X.; Yin, Y.; Jin, H.; Sun, X.H. SCALER: Scalable parallel file write in HDFS. In Proceedings of the 2014

IEEE International Conference on Cluster Computing (CLUSTER), Madrid, Spain, 22–26 September 2014;
pp. 203–211.

45. Chebotko, A.; Abraham, J.; Brazier, P.; Piazza, A.; Kashlev, A.; Lu, S. Storing, indexing and querying large
provenance data sets as RDF graphs in apache HBase. In Proceedings of the Services (SERVICES), 2013 IEEE
Ninth World Congress on Services, Santa Clara, CA, USA, 28 June–3 July 2013; pp. 1–8.

46. Azqueta-Alzuaz, A.; Patino-Martinez, M.; Brondino, I.; Jimenez-Peris, R. Massive data load on distributed
database systems over HBase. In Proceedings of the 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 776–779.

47. Silva-Junior, C.A.D.; Leonel-Junior, A.H.S.; Rossi, F.S.; Correia-Filho, W.L.F.; Santiago D de, B.; de
Oliveira-Júnior, J.F.; Teodoro, P.E.; Lima, M.; Capristo-Silva, G.F. Mapping soybean planting area in
midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine
platform. Comput. Electron. Agric. 2020, 169, 105194. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40596-017-0796-z
http://dx.doi.org/10.4028/www.scientific.net/AMM.117-119.1759
http://dx.doi.org/10.1016/j.compag.2019.105194
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	General Architecture of ScienceEarth
	ScienceGeoData: A Remote Sensing Data Storage Framework
	ScienceGeoIndex: Remote Sensing Tile Data Index and Query Framework
	ScienceGeoSpark: Remote Sensing Data Processing with Spark
	Dataflow between ScienceGeoData and ScienceGeoSpark
	Operation Mode of ScienceEarth

	Results
	Experiment Environment
	Efficiency of I/O
	Efficiency of I/O with Different Numbers of Working Nodes and Workload
	Comparison of the Efficiency of Different Data Size
	Comparison of the Efficiency of SCAN

	Efficiency of Index and Query
	Calculation Performance

	Discussion
	Performace of the ScienceGeoData
	Performance of ScienceGeoIndex
	Performance of ScienceGeoSpark

	Conclusions
	References

