Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation for Creating and Using the Local Quasigeoid
1.3. Research Methodology
- Using a very high number of ground control points (GCPs) and check points (ChPs), i.e., 142, to process the Pléiades images, all of them being measured in the field using GNSS-RTK technology, the vertical accuracy of DTMs and DSMs extracted from the small-convergence-angle stereo-pair being significantly improved.
- Improving the accuracy on the elevation of the dense image matching process calculated based on GCPs and ChPs leading to a 9 cm better accuracy, by correcting the LR ALS-DTM and the GNSS-RTK measurements with the local quasigeoid.
- Improving the accuracy of the Pléiades-DSM point cloud by introducing the DTM in the process of dense image matching, the systematic errors caused by buildings and vegetation being considerably reduced.
- Validation of four methods for deriving the building roof elevations: (i) calculating the mean and median heights for the points inside the building footprint; (ii) computing the centroid for which the elevation was interpolated in the Pléiades-DSM point cloud; (iii) calculating the elevation of the centroid in a buffer of 1 m radius through interpolation in the DSM point cloud; (iv) calculating the mean and median heights for the points inside the building footprint, modified with an interior buffer of 1 m to eliminate the facade points.
2. Study Area and Data Analysis
2.1. Study Area
2.2. Stereo Pléiades Satellite Images
2.3. LR ALS Measurements
2.4. Leveling Points of the Geospatial Control Network
2.5. GNSS-RTK Measurements for Ground Control Points and Check Points
2.6. Reference Data for Accuracy Assessment of Pléiades DTM and DSM Point Clouds
2.6.1. Leveling Measurements
- -
- Position dilution of precision (PDOP) 1.19 ÷ 2.69 (<3), mean PDOP = 1.59,
- -
- Horizontal dilution of precision (HDOP) 0.69 ÷ 1.77 (<2), mean HDOP = 0.86,
- -
- Vertical dilution of precision (VDOP) 0.88 ÷ 2.02 (<3), mean VDOP = 1.34.
2.6.2. HR ALS Point Cloud
3. Data Processing
3.1. Creating the Local Quasigeoid Model
3.2. LR ALS-DTM Derivation
3.2.1. LR ALS Point Cloud Filtering
3.2.2. LR ALS-DTM Generation
3.3. Pléiades Satellite Image Photogrammetric Processing
3.3.1. Image Orientation
3.3.2. Satellite Image Matching and 3D Reconstruction
3.3.3. Pléiades-DTM Generation
4. Results and Discussion
4.1. The Local Quasigeoid
4.2. Stereo Pléiades Satellite Image Processing
4.3. Evaluation of Pléiades Point Clouds Obtained by Using the Two Scenarios, Corrected and Not Corrected
4.3.1. Qualitative Evaluation of DSM Point Clouds Derived in Two Scenarios: Corrected and Not Corrected
4.3.2. Quantitative Evaluation of the Pléiades DTM and DSM Point Clouds Derived in Two Scenarios: Corrected and Not Corrected
Overall Quantitative Evaluation of the Pléiades DTM and DSM Point Clouds
Quantitative Evaluation of the Pléiades DTM and DSM Point Clouds Using the HR ALS Point Cloud
4.4. Three-Dimensional Building Modeling LOD1
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biljecki, F. Level of Detail in 3D City Models. Ph.D Thesis, Delf University of Technology, Delf, The Netherlands, 2017. [Google Scholar]
- Jovanović, D.; Milovanov, S.; Ruskovski, I.; Govedarica, M.; Sladić, D.; Radulović, A.; Pajić, V. Building Virtual 3D City Model for Smart Cities Applications: A Case Study on Campus Area of the University of Novi Sad. ISPRS Int. J. Geo-Inf. 2020, 9, 476. [Google Scholar] [CrossRef]
- Kirpes, C.; Hu, G.; Sly, D. The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review. Appl. Syst. Innov. 2022, 5, 29. [Google Scholar] [CrossRef]
- Bittner, K.; D’Angelo, P.; Körner, M.; Reinartz, P. DSM-to-LoD2: Spaceborne Stereo Digital Surface Model Refinement. Remote Sens. 2018, 10, 1926. [Google Scholar] [CrossRef] [Green Version]
- Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Plé iades-1A stereo images for 3D information extraction. ISPRS J. Photogramm. Remote Sens. 2015, 100, 35–47. [Google Scholar] [CrossRef]
- Loghin, A.-M.; Otepka-Schremmer, J.; Pfeifer, N. Potential of Pléiades and WorldView-3 Tri-Stereo DSMs to Represent Heights of Small Isolated Objects. Sensors 2020, 20, 2695. [Google Scholar] [CrossRef]
- Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Diac, M. 3D Modeling of Urban Area Based on Oblique UAS Images—An End-to-End Pipeline. Remote. Sens. 2022, 14, 422. [Google Scholar] [CrossRef]
- CityGML: OGC Standards. Available online: https://www.ogc.org/standards/citygml (accessed on 20 March 2022).
- Ling, X.; Zhang, Y.; Xiong, J.; Huang, X.; Chen, Z. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery. Remote Sens. 2016, 8, 672. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Mishkin, D.; Mishchuk, A.; Matas, J.; Fua, P.; Yi, K.M.; Trulls, E. Image Matching Across Wide Baselines: From Paper to Practice. Int. J. Comput. Vis. 2021, 129, 517–547. [Google Scholar] [CrossRef]
- Trimble. Match-T DSM Reference Manual; Trimble Inc.: Sunnyvale, CA, USA, 2016. [Google Scholar]
- Partovi, T.; Fraundorfer, F.; Bahmanyar, R.; Huang, H.; Reinartz, P. Automatic 3-D Building Model Reconstruction from Very High Resolution Stereo Satellite Imagery. Remote Sens. 2019, 11, 1660. [Google Scholar] [CrossRef] [Green Version]
- Perko, R.; Raggam, H.; Roth, P.M. Mapping with Pléiades—End-to-End Workflow. Remote Sens. 2019, 11, 2052. [Google Scholar] [CrossRef]
- Loghin, A.M.; Otepka, J.; Karel, W.; Pöchtrager, M.; Pfeifer, N. Accuracy Analysis of Digital Elevation Models from very High Resolution Satellite Imagery. Publ. Der DGPF 2019, 28, 123–137. [Google Scholar]
- Rieg, L.; Klug, C.; Nicholson, L.; Sailer, R. Pléiades Tri-Stereo Data for Glacier Investigations—Examples from the European Alps and the Khumbu Himal. Remote Sens. 2018, 10, 1563. [Google Scholar] [CrossRef] [Green Version]
- Belart, J.M.C.; Berthier, E.; Magnússon, E.; Anderson, L.S.; Pálsson, F.; Thorsteinsson, T.; Howat, I.M.; Aðalgeirsdóttir, G.; Jóhannesson, T.; Jarosch, A.H. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images. Cryosphere 2017, 11, 1501–1517. [Google Scholar] [CrossRef] [Green Version]
- Wagnon, P.; Vincent, C.; Arnaud, Y.; Berthier, E.; Vuillermoz, E.; Gruber, S.; Ménégoz, M.; Gilbert, A.; Dumont, M.; Shea, J.M.; et al. Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere 2013, 7, 1769–1786. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.P.; Almar, R.; Bergsma, E.W.J.; Berthier, E.; Baptista, P.; Garel, E.; Dada, O.A.; Alves, B. Deriving High Spatial-Resolution Coastal Topography From Sub-meter Satellite Stereo Imagery. Remote. Sens. 2019, 11, 590. [Google Scholar] [CrossRef] [Green Version]
- Nurtyawan, R.; Fiscarina, N. Assessment of the Accuracy of Dem from Panchromatic Pleiades Imagery (Case Study: Bandung City. West Java). Int. J. Remote Sens. Earth Sci. (IJReSES) 2020, 17, 34–44. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.-P.; Allemand, P.; Ulrich, P. Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote. Sens. 2014, 95, 1–12. [Google Scholar] [CrossRef]
- Ok, A.O.; Ozdarici-Ok, A.; Baseski, E. Accuracy Assessment of Pleiades-1 Stereo/Tri-stereo Digital Surface Models: A Case-Study for Citrus Trees. J. Indian Soc. Remote Sens. 2018, 46, 1203–1212. [Google Scholar] [CrossRef]
- Palaseanu-Lovejoy, M.; Bisson, M.; Spinetti, C.; Buongiorno, M.F.; Alexandrov, O.; Cecere, T. High-Resolution and Accurate Topography Reconstruction of Mount Etna from Pleiades Satellite Data. Remote Sens. 2019, 11, 2983. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakis, E.; Chrysoulakis, N.; Charalampopoulou, V.; Poursanidis, D. Validation of Pleiades Tri-Stereo DSM in Urban Areas. ISPRS Int. J. Geo-Inf. 2018, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, S.; Duan, L.; Poujade, V.; Trastour, F.; Bauchet, J.-P.; Laurore, L.; Tarabalka, Y. Operational Pipeline for Large-scale 3D Reconstruction of Buildings from Satellite Images. In Proceedings of the IGARSS 2020-IEEE International Geoscience and Remote Sensing Symposium, Big Island, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Flamanc, D.; Maillet, G. Evaluation of 3D City Model Production from Pléiades Hr Satellite Images and 2D Ground Maps; URBAN: Tempe, AZ, USA, 2005. [Google Scholar]
- Abduelmula Abdunaser, E. High Resolution Satellite Image Analysis and Rapid 3D Model Extraction for Urban Change Detection. PhD. Thesis, Faculty of Science University of Porto, Porto, Portugal, June 2015. [Google Scholar]
- Pepe, M.; Costantino, D.; Alfio, V.S.; Vozza, G.; Cartellino, E. A Novel Method Based on Deep Learning, GIS and Geomatics Software for Building a 3D City Model from VHR Satellite Stereo Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 697. [Google Scholar] [CrossRef]
- d’Angelo, P.; Kuschk, G. Dense multi-view stereo from satellite imagery. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6944–6947. [Google Scholar]
- Remondino, F.; Spera, M.G.; Nocerino, E.; Menna, F.; Nex, F.C. State of the art in high density image matching. Photogramm. Rec. 2014, 29, 144–166. [Google Scholar] [CrossRef] [Green Version]
- Alobeid, A.; Jacobsen, K.; Heipke, C. Comparison of Matching Algorithms for DSM Generation in Urban Areas from Ikonos Imagery. J. Photogramm. Eng. Remote Sens. 2010, 76, 1041–1050. [Google Scholar] [CrossRef]
- Alobeid, A. Assessment of Matching Algorithms for Urban DSM Generation from Very High Resolution Satellite Stereo Images; Scientific Papers Specializing in Geodesy and Geoinformatics at Leibniz Universität Hannover; Leibniz Universität Hannover: Hanover, Germany, 2011; ISSN 0174-1454. [Google Scholar]
- Iurist (Dumitrascu), N.-V.; Oniga, E.-V.; Statescu, F. Comparative study on digital terrain models created based on ALS data and Pléiades images. J. Geod. Cadastre RevCAD 2015, 19, 127–134. [Google Scholar]
- Piermattei, L.; Marty, M.; Karel, W.; Ressl, C.; Hollaus, M.; Ginzler, C.; Pfeifer, N. Impact of the acquisition geometry of Very High-Resolution Pléiades imagery on the accuracy of canopy height models over forested alpine regions. Remote Sens. 2018, 10, 1542. [Google Scholar] [CrossRef] [Green Version]
- Sofia, G.; Bailly, J.-S.; Chehata, N.; Tarolli, P.; Levavasseur, F. Comparison of Pléiades and LiDAR Digital Elevation Models for Terraces Detection in Farmlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Baybura, T.; Tiryakioğlu, İ.; Uğur, M.A.; Solak, H.İ.; Şafak, Ş. Examining the accuracy of network RTK and long base RTK methods with repetitive measurements. J. Sens. 2019, 2019, 3572605. [Google Scholar] [CrossRef] [Green Version]
- Elaksher, A.; Ali, T.; Kamtchang, F.; Wegmann, C.; Guerrero, A. Performance analysis of multi-GNSS static and RTK techniques in estimating height differences. Int. J. Digit. Earth 2020, 13, 586–601. [Google Scholar] [CrossRef]
- Van Sickle, J. GPS for Land Surveyors; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Romanian Position Determination System: Real Time Products. Available online: https://rompos.ro/index.php/en/technical-info/real-time-products (accessed on 20 April 2022).
- US Army Corps of Engineers. Engineering and Design. Control and Topographic Surveying, 2007, Engineer Manual, Department of the Army EM 1110-1-1005, CECW-CE Washington, DC 20314-1000. Available online: https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-1005.pdf?ver=7p8yphfzUR5LZG5faL9R9A%3d%3d (accessed on 20 April 2022).
- Lin, L.S. Orthometric Height Improvement in Tainan City Using RTK GPS and Local Geoid Corrector Surface Models. J. Surv. Eng. 2013, 140, 35–43. [Google Scholar] [CrossRef]
- Dragomir, P.I.; Rus, T.; Avramiuc, N.; Dumitru, P. EVRF2007 as Realization of the European Vertical Reference System (EVRS) in Romania. RevCAD–J. Geod. Cadastre 2011, 11, 51–63. [Google Scholar]
- Help TransDatRO: User Guide; National Agency for Cadastre and Land Registration; National Center for Cartography: Bucharest, Romania, 2022; Available online: https://cngcft.ro/index.php/ro/download/download/2-software/7-transdatro-4-07 (accessed on 20 April 2022).
- Featherstone, W.E. GNSS-Based Heighting in Australia: Current, Emerging and Future Issues. J. Spat. Sci. 2018, 53, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Airbus Pléiades Imagery User Guide. Available online: https://www.intelligence-airbusds.com/automne/api/docs/v1.0/document/download/ZG9jdXRoZXF1ZS1kb2N1bWVudC01NTY0Mw==/ZG9jdXRoZXF1ZS1maWxlLTU1NjQy/airbus-pleiades-imagery-user-guide-15042021.pdf (accessed on 1 August 2022).
- Orfeo Toolbox. Available online: https://www.orfeo-toolbox.org/ (accessed on 8 February 2022).
- Chirila, C.; Oniga, V.E.; Dumitru, P.D. Quasigeoid fitting to the GNSS/levelling benchmarks in Iasi city area. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference SGEM 2014, Geodesy and Mine Surveying, Conference Proceedings, II, Albena, Bulgaria, 17–26 June 2014; pp. 411–418. [Google Scholar]
- Fotopoulos, G. An Analysis on the Optimal Combination of Geoid, Orthometric and Ellipsoidal Height Data. Ph.D. Thesis, University of Calgary, Calgary, Alberta, 2003. [Google Scholar]
- Surfer User’s Guide, Ch.4: Creating Grid Files, 201-307; Golden Software, LLC: Golden, CO, USA, 2022; Available online: https://downloads.goldensoftware.com/guides/Surfer23UserGuide.pdf (accessed on 20 April 2022).
- Iliffe, J.; Lott, R. Datums and Map Projections for Remote Sensing, GIS and Surveying, 2nd ed.; Whittles Publishing: Scotland, UK, 2008; pp. 128–129. [Google Scholar]
- Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser Scanning data analysis. Comput. Environ. Urban Syst. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- Pfeifer, N.; Mandlburger, G. Filtering and DTM Generation. In Topographic Laser Ranging and Scanning: Principles and Processing; Shan, J., Toth, C., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 307–333. ISBN 9781420051421. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Geospatial. Trimble Inpho Brochure. Available online: http://www.inpho.de (accessed on 31 January 2022).
- Förstner, W. A feature based correspondence algorithm for image matching. Int. Arch. Photogramm. 1986, 26, 150–166. [Google Scholar]
- Biljecki, F.; Ledoux, H.; Stoter, J. Height references of CityGML LOD1 buildings and their influence on applications. In Proceedings of the ISPRS 3D GeoInfo 2014 Conference, Dubai, United Arab Emirates, 11–13 November 2014. [Google Scholar] [CrossRef]
- Yu, D.; Ji, S.; Liu, J.; Wei, S. Automatic 3D building reconstruction from multi-view aerial images with deep learning. ISPRS J. Photogramm. Remote. Sens. 2021, 171, 155–170. [Google Scholar] [CrossRef]
Sensor Type & Acquisition Date | View | Acquisition Time (hh:hm:ss.s) | Incidence Angles (◦) | B/H Ratio | ||
---|---|---|---|---|---|---|
Across | Along | Global | ||||
Pléiades 7 February 2016 | Forward (F) | 09:05:45.031250 | −14.169 | −12.182 | 20.659 | 0.39 (FB) |
Backward (B) | 09:06:22.031250 | 18.037 | −5.539 | 18.766 |
Data | Arithmetic Mean (m) | Minimum (m) | Maximum (m) | Median (m) | σ (m) |
---|---|---|---|---|---|
li | −0.56 ± 0.02 | −0.80 | −0.25 | −0.59 | ±0.14 |
vi | 0.00 ± 0.02 | −0.31 | 0.21 | 0.04 | ±0.14 |
No. of GCPs and ChPs | Statistical Values (m/pixels) | ||||||
---|---|---|---|---|---|---|---|
Not Corrected | Corrected with Both the Local Quasigeoid and the LR ALS-DTM in the Process of Image Matching | ||||||
X | Y | Z | X | Y | Z | ||
64 GCPs | μ | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 | 0.00/0.00 |
σ | 0.13/0.27 | 0.14/0.29 | 0.07/0.14 | 0.14/0.29 | 0.14/0.29 | 0.08/0.16 | |
RMSE | 0.13/0.27 | 0.14/0.29 | 0.07/0.14 | 0.13/0.27 | 0.14/0.29 | 0.08/0.16 | |
78 ChPs | μ | −0.10/−0.21 | 0.05/0.11 | 0.07/0.14 | −0.12/0.24 | 0.05/0.11 | 0.04/0.08 |
σ | 0.65/1.32 | 0.78/1.60 | 0.71/1.44 | 0.64/1.31 | 0.78/1.59 | 0.71/1.44 | |
RMSE | 0.66/1.34 | 0.78/1.60 | 0.70/1.43 | 0.62/1.26 | 0.74/1.51 | 0.67/1.37 |
No. of GCPs, ChPs, TPs | RMSE Values (Z) for the Used Points (m) | |
---|---|---|
Not Corrected | Corrected | |
64 GCPs and 78 ChPs | 0.698 | 0.609 |
1258 TPs | 1.094 | 1.093 |
Stereo Pléiades Products | Reference Points (without Outliers) | ||||
---|---|---|---|---|---|
Leveling | GNSS-RTK | ||||
Corrected (cm) | Not Corrected (cm) | Corrected (cm) | Not Corrected (cm) | ||
DTM | μ | 32.7 | 39.2 | 39.5 | 46.1 |
σ | 83.8 | 84.4 | 62.5 | 64.0 | |
RMSE | 90 | 93.0 | 71.3 | 75.8 | |
DSM | μ | 76.1 | 84.8 | 31.1 | 44.6 |
σ | 121.3 | 137.1 | 62.0 | 64.1 | |
RMSE | 87.3 | 92.1 | 66.2 | 74.6 |
Stereo Pléiades Products | Comparison with HR ALS-DTM and HR ALS-DSM | ||||
---|---|---|---|---|---|
Not Filtered | Filtered (−1 m ÷ +1 m) | ||||
Corrected (m) | Not Corrected (m) | Corrected (m) | Not Corrected (m) | ||
DTM | σ | 2.782 | 2.833 | 0.421 | 0.424 |
σMAD | 1.073 | 1.092 | 0.420 | 0.430 | |
DSM | σ | 5.078 | 5.102 | 0.464 | 0.465 |
σMAD | 1.252 | 1.253 | 0.479 | 0.481 |
Building Number | Standard Deviation | |||
---|---|---|---|---|
Mean Height | Median Height | |||
Corrected (m) | Not Corrected (m) | Corrected (m) | Not Corrected (m) | |
All buildings | 4.1 | 4.2 | 4.1 | 4.2 |
5 buildings | 2.65 | 2.8 | 2.37 | 3.9 |
Buildings with heights improved by proposed methodology | 4.0 | 4.15 | 3.9 | 3.95 |
Standard Deviation (m) | |||||||
---|---|---|---|---|---|---|---|
Height Value | Mean Height | Median Height | |||||
Not Corrected | Corrected | Not Corrected | Corrected | Not Corrected | Corrected | ||
Centroid | σ | 1.82 | 1.75 | - | - | - | - |
Centroid buffer 1 m | σ | - | - | 1.76 | 1.70 | - | - |
Footprint inside buffer 1 m | σ | - | - | 1.73 | 1.68 | 1.67 | 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breaban, A.-I.; Oniga, V.-E.; Chirila, C.; Loghin, A.-M.; Pfeifer, N.; Macovei, M.; Nicuta Precul, A.-M. Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery. Remote Sens. 2022, 14, 6293. https://doi.org/10.3390/rs14246293
Breaban A-I, Oniga V-E, Chirila C, Loghin A-M, Pfeifer N, Macovei M, Nicuta Precul A-M. Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery. Remote Sensing. 2022; 14(24):6293. https://doi.org/10.3390/rs14246293
Chicago/Turabian StyleBreaban, Ana-Ioana, Valeria-Ersilia Oniga, Constantin Chirila, Ana-Maria Loghin, Norbert Pfeifer, Mihaela Macovei, and Alina-Mihaela Nicuta Precul. 2022. "Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery" Remote Sensing 14, no. 24: 6293. https://doi.org/10.3390/rs14246293
APA StyleBreaban, A. -I., Oniga, V. -E., Chirila, C., Loghin, A. -M., Pfeifer, N., Macovei, M., & Nicuta Precul, A. -M. (2022). Proposed Methodology for Accuracy Improvement of LOD1 3D Building Models Created Based on Stereo Pléiades Satellite Imagery. Remote Sensing, 14(24), 6293. https://doi.org/10.3390/rs14246293