Environmental Conditions in Middle Eastern Megacities: A Comparative Spatiotemporal Analysis Using Remote Sensing Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Data Sets
2.3. Methodology
2.3.1. CEI Derivation
2.3.2. Trend Analysis
3. Results
3.1. Inter-Annual Variation and Trends in PM2.5, LST, and VC
3.2. Inter-Annual Variation and Trends in CEI
3.3. Regression Analysis between ACEI Abnormality and Normalized Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barresi, A.; Pultrone, G. European strategies for smarter cities. TeMA-J. Land Use Mobil. Environ. 2013, 6, 61–72. [Google Scholar]
- Gargiulo, C.; Zucaro, F. Smartness and urban resilience. A model of energy saving. TeMA-J. Land Use Mobil. Environ. 2015, 8, 81–102. [Google Scholar]
- Marans, R.W. Quality of urban life & environmental sustainability studies: Future linkage opportunities. Habitat Int. 2015, 45, 47–52. [Google Scholar]
- Cilliers, S.; Toit, M.D.; Cilliers, J.; Drewes, E.; Retief, F. Sustainable urban landscapes: South African perspectives on transdisciplinary possibilities. Landsc. Urban Plan. 2014, 125, 260–270. [Google Scholar] [CrossRef]
- Zarabi, A.; Saberi, H.; Mohammadi, J.; Varesi, H.R. Spatial Analysis of Smart Growth Indicators (The Case Study: Regions of Isfahan). Hum. Geogr. Res. 2011, 43, 1–18. [Google Scholar]
- Meshkini, A.; Moazzen, S.; Norouz, M. Measuring the Quality of Urban Environment in Small Cities in East Azerbaijan Province. Urban Ecol. Res. 2016, 6, 17–32. [Google Scholar]
- Ahmadi, F.; Nasiriani, K.; Abazari, P. Delphi technique, IJME-Iran. Med. Educ. 2008, 8, 175–185. [Google Scholar]
- Morais, P.; Camanho, A.S. Evaluation of performance of European cities with the aim to promote quality of life improvements. Omega 2011, 39, 398–409. [Google Scholar] [CrossRef] [Green Version]
- Ahmadian, S.; Morovati, M.; Robati, M.; Sadeghinia, M. Valuating urban environmental quality using factor analysis method (case study: Kermanshah metropolis). Environ. Sci. 2018, 16, 149–164. [Google Scholar]
- Wan, H.; Huo, F.; Niu, Y.; Zhang, W.; Zhang, Q. Dynamic monitoring and analysis of ecological environment change in Cangzhou City based on RSEI model considering PM2.5 concentration. Prog. Geophys. 2021, 3, 953–960. [Google Scholar]
- Rabiei-Dastjerdi, H.; Mohammadi, S.; Saber, M.; Amini, S.; McArdle, G. Spatiotemporal Analysis of NO2 Production Using TROPOMI Time-Series Images and Google Earth Engine in a Middle Eastern Country. Remote Sens. 2022, 14, 1725. [Google Scholar] [CrossRef]
- Rabiei-Dastjerdi, H.; Matthews, S.A. Who gets what, where, and how much? Composite index of spatial inequality for small areas in Tehran. Reg. Sci. Policy Pract. 2021, 13, 191–205. [Google Scholar] [CrossRef]
- Mohammadi, S.; Balouei, F.; Haji, K.; Khaledi Darvishan, A.; Karydas, C.G. Country-scale spatiotemporal monitoring of soil erosion in Iran using the G2 model. Int. J. Digit. Earth 2021, 14, 1019–1039. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Shruti, S.; Singh, K.; Ohri, A. Evaluating the environmental sustainability of smart cities in India: The design and application of the Indian smart city environmental sustainability index. Sustainability 2020, 13, 327. [Google Scholar] [CrossRef]
- Rabiei-Dastjerdi, H.; Matthews, S.A.; Ardalan, A. Measuring spatial accessibility to urban facilities and services in Tehran. Spat. Demogr. 2018, 6, 17–34. [Google Scholar] [CrossRef]
- Musse, M.A.; Barona, D.A.; Rodriguez, L.M.S. Urban environmental quality assessment using remote sensing and census data. Int. Appl. Earth Obs. Geoinf. 2018, 71, 95–108. [Google Scholar] [CrossRef]
- He, C.; Gao, B.; Huang, Q.; Ma, Q.; Dou, Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Lu, L.; Weng, Q.; Guo, H.; Feng, S.; Li, Q. Assessment of urban environmental change using multi-source remote sensing time series (2000–2016): A comparative analysis in selected megacities in Eurasia. Sci. Total Environ. 2019, 684, 567–577. [Google Scholar] [CrossRef]
- Xia, X.; Jiao, C.; Song, S.; Zhang, L.; Feng, X.; Huang, Q. Developing a method for assessing environmental sustainability based on the Google Earth Engine platform. Environ. Sci. Pollut. Res. 2022, 29, 57437–57452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, R.; Yang, Y.; Li, L.; Chen, L. Assessing the Urban Eco-Environmental Quality by the Remote-Sensing Ecological Index: Application to Tianjin, North China. ISPRS Int. J. Geo-Inf. 2021, 10, 475. [Google Scholar] [CrossRef]
- Ostovari, Y.; Moosavi, A.A.; Mozaffari, H.; Poppiel, R.R.; Tayebi, M.; Demattê, J.A. Soil erodibility and its influential factors in the Middle East. In Computers in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 441–454. [Google Scholar]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Q.; Zhao, X.; Tao, Y.; Bai, Y.; Peng, L. Premature mortality attributable to PM2. 5 pollutions in China during 2008–2016: Underlying causes and responses to emission reductions. Chemosphere 2021, 263, 127925. [Google Scholar] [CrossRef]
- Xiao, Q.; Geng, G.; Liang, F.; Wang, X.; Lv, Z.; Lei, Y.; Huang, X.; Zhang, Q.; Liu, Y.; He, K. Changes in spatial patterns of PM2.5 pollutions in China 2000–2018: Impact of clean air policies. Environ. Int. 2020, 141, 105776. [Google Scholar] [CrossRef]
- Fenech, S.; Doherty, R.M.; Heaviside, C.; Macintyre, H.L.; O’Connor, F.M.; Vardoulakis, S.; Neal, L.; Agnew, P. Meteorological drivers and mortality associated with O3 and PM2.5 air pollution episodes in the UK in 2006. Atmos. Environ. 2019, 213, 699–710. [Google Scholar] [CrossRef]
- Etchie, T.O.; Etchie, A.T.; Adewuyi, G.O.; Pillarisetti, A.; Sivanesan, S.; Krishnamurthi, K.; Arora, N.K. The gains in life expectancy by ambient PM2.5 pollution reductions in localities in Nigeria. Environ. Pollut. 2018, 236, 146–157. [Google Scholar] [CrossRef]
- Zhengming, W.; Simon, H.; Glynn, H. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2015. Available online: https://lpdaac.usgs.gov/products/mod11a1v006/ (accessed on 16 September 2022).
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512, 582–598. [Google Scholar] [CrossRef]
- Sellers, P.J.; Tucker, C.J.; Collatz, G.J.; Los, S.O.; Justice, C.O.; Dazlich, D.A.; Randall, D.A. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef]
- Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of three MODIS-derived vegetation index time series for dryland vegetation dynamics monitoring. Remote Sens. 2015, 7, 7597–7614. [Google Scholar] [CrossRef] [Green Version]
- Nazarenko, Y.; Pal, D.; Ariya, P.A. Air quality standards for the concentration of particulate matter 2.5, global descriptive analysis. Bull. World Health Organ. 2021, 99, 125. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, N.; Wang, J.; Li, H. Spatiotemporal evolution of the remotely sensed global continental PM2.5 concentrations from 2000–2014 based on Bayesian statistics. Environ. Pollut. 2018, 238, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardani, G.; Alikhani Faradonbeh, M.; Fatahian Kelishadrokhi, Z.; Raeisi Shahraki, H. Modeling trend changes of mean annual exposure to PM2.5 particles in the Middle East countries via growth mixture models. Arab. J. Geosci. 2021, 14, 1–6. [Google Scholar] [CrossRef]
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Qian, Y. Urbanization strategy and environmental changes: An insight with relationship between population change and fine particulate pollution. Sci. Total Environ. 2018, 642, 789–799. [Google Scholar] [CrossRef]
- Amini, S.; Saber, M.; Rabiei-Dastjerdi, H.; Homayouni, S. Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. Remote Sens. 2022, 14, 2654. [Google Scholar] [CrossRef]
- Bozorgi, M.; Nejadkoorki, F.; Bihamta Toosi, N. Trend analysis development of urban heat island using thermal remote sensing. Earth Obs. Geomat. Eng. 2020, 4, 119–131. [Google Scholar]
- El Kenawy, A.M.; Hereher, M.; Robaa, S.M.; McCabe, M.F.; Lopez-Moreno, J.I.; Domínguez-Castro, F.; Gaber, I.M.; Al-Awadhi, T.; Al-Buloshi, A.; Al Nasiri, N.; et al. Nocturnal surface urban heat island over Greater Cairo: Spatial morphology, temporal trends and links to land-atmosphere influences. Remote Sens. 2020, 12, 3889. [Google Scholar] [CrossRef]
- Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. ISPRS Int. J. Geo-Inf. 2015, 4, 1750–1769. [Google Scholar] [CrossRef] [Green Version]
- Karaburun, A.; Demirci, A. Suen, I.-S. Impacts of urban growth on forest cover in Istanbul (1987–2007). Environ. Monit. Assess. 2010, 166, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Gaffin, S.R.; Rosenzweig, C.; Kong, A.Y. Adapting to climate change through urban green infrastructure. Nat. Clim. Change 2012, 2, 704. [Google Scholar] [CrossRef]
- Riechers, M.; Barkmann, J.; Tscharntke, T. Perceptions of cultural ecosystem services from urban green. Ecosyst. Serv. 2016, 17, 33–39. [Google Scholar] [CrossRef]
- Shirani-Bidabadi, N.; Nasrabadi, T.; Faryadi, S.; Larijani, A.; Roodposhti, M.S. Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan City in Iran. Sustain. Cities Soc. 2019, 45, 686–692. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Hereher, M.E.; Robaa, S.M. An assessment of the accuracy of MODIS land surface temperature over Egypt using ground-based measurements. Remote Sens. 2019, 11, 2369. [Google Scholar] [CrossRef] [Green Version]
- Hereher, M.E. Time series trends of land surface temperatures in Egypt: A signal for global warming. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Elhacham, E.; Alpert, P. Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai. Sci. Total Environ. 2021, 784, 147168. [Google Scholar] [CrossRef]
- Aldogom, D.; Aburaed, N.; Al-Saad, M.; Al Mansoori, S.; Al Shamsi, M.R.; Al Maazmi, A.A. Multi temporal satellite images for growth detection and urban sprawl analysis; Dubai City, UAE. Remote Sens. Technol. Appl. Urban Environ. IV 2019, 11157, 71–81. [Google Scholar]
- Alqurashi, A.F.; Kumar, L. Land use and land cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Adv. Remote Sens. 2014, 3, 106. [Google Scholar] [CrossRef]
- Yagoub, M.; Alkaabi, K. Variation in land use/land cover and aircraft sound levels around Abu Dhabi International Airport. Eur. J. Geogr. 2019, 10, 68–84. [Google Scholar]
Rank | City | Country | Metropolitan (Population) | City (Population) |
---|---|---|---|---|
1 | Cairo | Egypt | 20,439,541 | 9,500,000 |
2 | Tehran | Iran | 16,672,000 | 9,134,000 |
3 | Istanbul | Turkey | 15,519,267 | 15,241,177 |
4 | Baghdad | Iraq | 10,500,000 | 8,126,755 |
5 | Riyadh | Saudi Arabia | 6,506,700 | 6,506,700 |
6 | Ankara | Turkey | 5,663,322 | 5,067,565 |
7 | Dubai | United Arab Emirates | 5,640,000 | 3,287,007 |
8 | Sharjah | United Arab Emirates | 5,640,000 | 1,405,000 |
9 | Ajman | United Arab Emirates | 5,640,000 | 490,035 |
10 | Alexandria | Egypt | 4,984,387 | 4,984,387 |
11 | Amman | Jordan | 4,642,000 | 4,061,150 |
12 | İzmir | Turkey | 4,394,694 | 5,067,565 |
13 | Jeddah | Saudi Arabia | 4,276,000 | 4,276,000 |
14 | Tel Aviv | Israel | 3,954,500 | 438,818 |
15 | Mosul | Iraq | 3,750,000 | 1,683,000 |
16 | Mashhad | Iran | 3,600,650 | 3,372,090 |
17 | Isfahan | Iran | 2,989,070 | 2,000,000 |
18 | Damascus | Syria | 2,900,000 | 2,078,000 |
19 | Abu Dhabi | United Arab Emirates | 2,784,490 | 2,784,490 |
20 | Basra | Iraq | 2,750,000 | 2,750,000 |
21 | Tabriz | Iran | 2,500,123 | 2,000,000 |
22 | Doha | Qatar | 2,382,000 | 1,850,000 |
23 | Kuwait | Kuwait | 2,380,000 | 2,380,000 |
24 | Sana’a | Yemen | 2,167,000 | 1,937,451 |
25 | Irbid | Jordan | 2,050,300 | 582,276 |
26 | Gaza | Palestine | 2,047,969 | 590,481 |
27 | Mecca | Saudi Arabia | 2,042,000 | 2,042,000 |
28 | Karaj | Iran | 1,967,000 | 1,967,000 |
29 | Shiraz | Iran | 1,869,001 | 1,869,001 |
30 | Aleppo | Syria | 1,800,000 | 1,800,000 |
31 | Erbil | Iraq | 1,750,564 | 1,750,564 |
32 | Najaf | Iraq | 1,500,000 | 1,389,500 |
Indicator | Data Generation | Country | Temporal Scale | Provider |
---|---|---|---|---|
PM2.5 | MODIS + MISR + SeaWiFS + GEOS-Chem | 1000 m | 2000–2019 | SEDAC |
LST | Terra/MODIS/Night/Daily | 1000 m | 2000–2019 | NASA |
NDVI | Terra/MODIS/NDVI/16 day | 250 m | 2000–2019 | NASA |
City Boundaries | Google Maps | - | - | - |
Type | Improved | Moderately Improved | No Change | Moderately Degraded | Degraded |
---|---|---|---|---|---|
Classification | <µ − 1.5δ | µ − 1.5δ to µ − 0.5δ | µ − 0.5δ to µ + 0.5δ | µ + 0.5δ to µ + 1.5δ | >µ + 1.5δ |
CEI | 36.30 | 36.30 to 41.56 | 41.56 to 46.83 | 46.83 to 52.1 | 52.1< |
City Name | LST | PM2.5 | VC | CEI | City Name | LST | PM2.5 | VC | CEI |
---|---|---|---|---|---|---|---|---|---|
Cairo | 0.102 ** | −0.139 * | −0.001 ** | 1.165 | Isfahan | 0.012 | 0.103 | −0.002 ** | 1.864 ** |
Tehran | 0.031 | 0.207 * | 0 | 1.999 * | Damascus | 0.03 * | 0.145 | −0.002 | 1.533 |
Istanbul | 0.061 * | 0.044 | 0 | 1.249 * | Abu Dhabi | 0.081 ** | 0.212 | 0.001 ** | 1.843 ** |
Baghdad | 0.08 * | 0.163 | −0.002 | 2.618 ** | Al−Basrah | 0.107 ** | 0.19 | −0.003 ** | 2.863 ** |
Riyadh | 0.087 ** | 0.41 | −0.001 | 2.853 ** | Tabriz | −0.008 | 0.171 | 0.002 * | 0.391 |
Ankara | 0.05 | 0.122 | 0.001 | 1.063 | Doha | 0.118 ** | 0.404 | 0.002 ** | 2.843 ** |
Dubai | 0.123 ** | 0.293 | 0.003 ** | 2.248 ** | Kuwait | 0.068 | 0.229 | 0 | 2.618 ** |
Sharjah | 0.088 ** | 0.23 | 0.001 | 2.437 ** | Sana’a | 0.069 ** | 0.445 ** | 0 | 2.852 ** |
Ajman | 0.103 ** | 0.219 | 0.003 ** | 2.396 ** | Irbid | 0.068 ** | 0.199 * | −0.001 | 2.689 ** |
Alexandria | 0.062 ** | −0.174 * | 0.001 ** | 0.034 | Gaza | 0.070 ** | 0.003 | 0.001 | 0.849 |
Amman | 0.065 ** | 0.162 | 0.001 | 1.960 * | Makkah | 0.057 ** | 0.929 ** | −0.002 | 3.833 ** |
Izmir | 0.043 | 0.124 * | 0.001 | 1.676 ** | Karaj | 0.016 | 0.265 * | −0.001 | 2.335 ** |
Jeddah | 0.101 ** | 0.919 ** | 0.002 * | 3.231 ** | Shiraz | 0.019 | 0.08 | −0.001 | 1.925 * |
Tel Aviv | 0.049 * | 0.046 | 0.003 ** | 0.37 | Aleppo | 0.021 | 0.135 | 0.001 | 0.673 |
Mosul | 0.08 * | 0.132 | −0.001 | 2.012 ** | Erbil | 0.141 ** | 0.072 | −0.001 | 2.388 * |
Mashhad | 0.036 | 0.253 | 0.002 | 1.013 | Najaf | 0.112 ** | 0.241 | −0.002 * | 2.780 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, S.; Saber, M.; Amini, S.; Mostafavi, M.A.; McArdle, G.; Rabiei-Dastjerdi, H. Environmental Conditions in Middle Eastern Megacities: A Comparative Spatiotemporal Analysis Using Remote Sensing Time Series. Remote Sens. 2022, 14, 5834. https://doi.org/10.3390/rs14225834
Mohammadi S, Saber M, Amini S, Mostafavi MA, McArdle G, Rabiei-Dastjerdi H. Environmental Conditions in Middle Eastern Megacities: A Comparative Spatiotemporal Analysis Using Remote Sensing Time Series. Remote Sensing. 2022; 14(22):5834. https://doi.org/10.3390/rs14225834
Chicago/Turabian StyleMohammadi, Shahin, Mohsen Saber, Saeid Amini, Mir Abolfazl Mostafavi, Gavin McArdle, and Hamidreza Rabiei-Dastjerdi. 2022. "Environmental Conditions in Middle Eastern Megacities: A Comparative Spatiotemporal Analysis Using Remote Sensing Time Series" Remote Sensing 14, no. 22: 5834. https://doi.org/10.3390/rs14225834
APA StyleMohammadi, S., Saber, M., Amini, S., Mostafavi, M. A., McArdle, G., & Rabiei-Dastjerdi, H. (2022). Environmental Conditions in Middle Eastern Megacities: A Comparative Spatiotemporal Analysis Using Remote Sensing Time Series. Remote Sensing, 14(22), 5834. https://doi.org/10.3390/rs14225834