Spatio-Temporal Multi-Scale Analysis of Landscape Ecological Risk in Minjiang River Basin Based on Adaptive Cycle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Land Use Classification Based on Random Forest
Classification System Construction
Classification Methods
2.3.2. Multi-Scenario Land Use Simulation and Prediction
Probability of Suitability
Multi-Scenario Prediction
Domain Factor Parameter Settings
Cost Matrix Parameter Settings
2.3.3. Construction of a 3D Assessment Framework for Adaptive Cyclic Landscape Risk
Establishment of the Index System
Construction of the Ecological Risk Index
3. Results
3.1. Spatial-Temporal Variations in Land Cover and Multi-Scenario Prediction
3.1.1. Temporal and Spatial Variations in Land Cover
3.1.2. Land Cover Multi-Scenario Prediction
3.2. Temporal and Spatial Variations in Landscape Ecological Risk
3.2.1. Spatial and Temporal Distribution of Adaptive Ecological Risk Eigenvalues
3.2.2. Spatial Variation Trends of the Ecological Risk Index
4. Discussion
4.1. Adaptive Cycle 3D Model Framework Applicability
4.2. Regional Risk Management Recommendations
4.3. Limitations and Future Works
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piet, G.J.; Knights, A.M.; Jongbloed, R.H.; Tamis, J.E.; de Vries, P.; Robinson, L.A. Ecological risk assessments to guide decision-making: Methodology matters. Environ. Sci. Policy 2017, 68, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Zhang, F.; Wu, F.; Chen, Y.X.; Qin, K.Y. Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in northern China. Ecol. Indic. 2022, 135, 108555. [Google Scholar]
- Li, W.J.; Wang, Y.; Xie, S.Y.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Understanding the Complexity of Economic, Ecological, and Social Systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Vázquez-González, C.; Ávila-Foucat, V.S.; Ortiz-Lozano, L.; Moreno-Casasola, P.; Granados-Barba, A. Analytical framework for assessing the social-ecological system trajectory considering the resilience-vulnerability dynamic interaction in the context of disasters. Int. J. Disaster Risk Reduct. 2021, 59, 102232. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Dong, S.K.; Yang, M.Y.; Dong, Q.M. Analysis of a pastoral social-ecological system in Qinghai-Tibet Plateau based on Panarchy. J. Nat. Res. 2021, 36, 2125–2138. [Google Scholar]
- Peter, U.; Peter, S.; Jan, P. Non-equilibrium thermodynamics and development cycles of temperate natural forest ecosystems. Folia Oecol. 2018, 45, 61–71. [Google Scholar]
- Sundstrom, S.M.; Allen, C.R. The adaptive cycle: More than a metaphor. Ecol. Complex. 2019, 39, 100767. [Google Scholar] [CrossRef]
- Zhang, Q.; Xue, H.L.; Lan, X.; Dai, L.W.; Wang, B.J.; Cui, F.Q.; Tang, H.P. Livelihood vulnerability of pastoral households in the semiarid grasslands of northern China: Measurement and determinants. Ecol. Indic. 2022, 140, 109020. [Google Scholar]
- Li, J.Y.; Sun, C.; Zheng, X. Assessment of spatio temporal evolution of regionally ecological risks based on adaptive cycle theory; a case study of Y angtze River Delta urban agglomeration. Acta Ecol. Sinica. 2021, 41, 2609–2621. [Google Scholar]
- Zhang, Y.J.; Zeng, J.; Chen, W.X.; Huang, C. Assessment on Ecological Risk of Danjiangkou Reservoir Area Based on Adaptive Cycle. Res. Soil Water Conserv. 2022, 29, 349–360. [Google Scholar]
- Jimenez, M.; Perez-Belmont, P.; Schewenius, M.; Lerner, A.M.; Mazari-Hiriart, M. Assessing the historical adaptive cycles of an urban social-ecological system and its potential future resilience: The case of Xochimilco, Mexico City. Reg. Environ. Change 2020, 20, 7. [Google Scholar]
- Li, X.P.; Li, S.S.; Zhang, Y.F.; O’Connor, P.J.; Zhang, L.W.; Yan, J.P. Landscape Ecological Risk Assessment under Multiple Indicators. Land 2021, 10, 739. [Google Scholar] [CrossRef]
- Luo, F.H.; Liu, Y.X.; Peng, J.; Wu, J.S. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 2018, 180, 125–134. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wang, Y.L.; Peng, J.; Zhang, T.; Wei, H. Urban landscape ecological risk assessment based on the 3D framework of adaptive cycle. Acta Geogr. Sin. 2015, 70, 1052–1067. [Google Scholar]
- Brondizio, E.S.; Vogt, N.D.; Mansur, A.V.; Anthony, E.J.; Costa, S.; Hetrick, S. A conceptual framework for analyzing deltas as coupled social-ecological systems: An example from the Amazon River Delta. Sustain. Sci. 2016, 11, 591–609. [Google Scholar] [CrossRef]
- Ingalls, M.L.; Stedman, R.C. The power problematic: Exploring the uncertain terrains of political ecology and the resilience framework. Ecol. Soc. 2016, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y. Research on Ecological Risk Assessment of Beijing from the Perspective of Adaptive Cycle and Spatial Optimization Strategies; Beijing Forestry University: Beijing, China, 2021. [Google Scholar]
- Li, W.; Wang, L.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022, 829, 154595. [Google Scholar] [CrossRef]
- Ji, J.; Tang, Z.; Zhang, W.; Liu, W.; Jin, B.; Xi, X.; Wang, F.; Zhang, R.; Guo, B.; Xu, Z.; et al. Spatiotemporal and Multiscale Analysis of the Coupling Coordination Degree between Economic Development Equality and Eco-Environmental Quality in China from 2001 to 2020. Remote Sens. 2022, 14, 737. [Google Scholar]
- Chen, Z.Q.; Yu, B.L.; Yang, C.S.; Zhou, Y.Y.; Yao, S.J.; Qian, X.J.; Wang, C.X.; Wu, B.; Wu, J.P. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Xu, X.L. China GDP Spatial Distribution Kilometer Grid Data Set; Resource and Environmental Science Data Registration and Publishing System: Beijing, China, 2017. [Google Scholar]
- Ji, Q.L.; Liang, W.; Fu, B.J.; Lv, Y.H. Land use/cover change in the Yellow River Basin based on Google Earth Engine and complex network. Acta Ecol. Sin. 2022, 42, 2122–2135. [Google Scholar]
- Koley, S.; Chockalingam, J. Sentinel 1 and Sentinel 2 for cropland mapping with special emphasis on the usability of textural and vegetation indices. Adv. Space Res. 2022, 69, 1768–1785. [Google Scholar] [CrossRef]
- Lin, T.; Feng, Z.H.; Wu, D.F.; Yang, M.Z. Spatial-temporal Changes and Multi-scenario Prediction of Ecological Land in Karst Area Based on FLUS Model—A Case Study in Ningyuan County, Hunan Province. Bull. Soil Water Conserv. 2022, 42, 219–227. [Google Scholar]
- Hou, J.K.; Chen, J.J.; Zhang, K.Q.; Zhou, G.Q.; You, H.T.; Han, X.W. Temporal and Spatial Variation Characteristics of Carbon Storage in the Source Region of the Yellow River Based on InVEST and GeoSoS-FLUS Models and Its Response to Different Future Scenarios. Environ. Sci. 2022, 214, 1–14. [Google Scholar]
- Jin, M.T.; Xu, L.P.; Xu, Q. FLUS-Markov model-based multiscenario evaluation and prediction of the landscape ecological risk in Kezhou, South Xinjiang. Arid Zone Res. 2021, 38, 1793–1804. [Google Scholar]
- Hu, Y.Y.; He, Y.; Li, Y.L. Urban Spatial Development Based on Multisource Data Analysis: A Case Study of Xianyang City’s Integration into Xi’an International Metropolis. Sustainability 2022, 14, 4090. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wei, M.; Li, Z.G.; Zeng, J. Multi-scenario simulation of urban growth boundaries with an ESP-FLUS model: A case study of the Min Delta region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Huo, J.E.; Shi, Z.Q.; Zhu, W.B.; Xue, H.; Chen, X. A Multi-Scenario Simulation and Optimization of Land Use with a Markov-FLUS Coupling Model: A Case Study in Xiong’an New Area, China. Sustainability 2022, 14, 2425. [Google Scholar] [CrossRef]
- Chen, L.T.; Cai, H.S.; Zhang, T.; Zhang, X.L. Land use multi-scenario simulation analysis of Rao River Basin based on Markov-FLUS model. Acta Ecol. Sin. 2022, 42, 3947–3958. [Google Scholar]
- Gao, Z.B.; Wang, X.R.; Sui, X.Y.; Wang, X. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models. J. Agric. Resour. Environ. 2021, 1–17, 6923. [Google Scholar]
- La, L.M.; Gou, M.M.; Li, L.; Wang, N. Spatiotemporal Dynamics and Scenarios Analysis on Trade- offs between Ecosystem Service in Three Gorges Reservoir Area: A Case Study of Zigui County. J. Ecol. Rural. Environ. 2021, 37, 1368–1377. [Google Scholar]
- Zhang, L.; Huang, Q.X.; He, C.Y.; Yue, H.B.; Zhao, Q.B. Assessing the dynamics of sustainability for social-ecological systems based on the adaptive cycle framework: A case study in the Beijing-Tianjin-Hebei urban agglomeration. Sust. Cities Soc. 2021, 70, 102899. [Google Scholar] [CrossRef]
- Azabdaftari, A.; Sunar, F. District-based urban expansion monitoring using multitemporal satellite data: Application in two mega cities. Environ. Monit. Assess. 2022, 194, 335. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; U.S. Department of Agriculture: Fort Collins, CO, USA, 1978. [Google Scholar]
- Xiao, R.; Cao, W.; Liu, Y.; Lu, B.B. The impacts of landscape patterns spatio-temporal changes on land surface temperature from a multi-scale perspective: A case study of the Yangtze River Delta. Sci. Total Environ. 2022, 821, 153381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Zhong, Q.L.; Cheng, D.L.; Xu, C.B.; Chang, Y.N.; Lin, Y.Y.; Li, B.Y. Coupling Coordination Analysis and Prediction of Landscape Ecological Risks and Ecosystem Services in the Min River Basin. Land 2022, 11, 222. [Google Scholar] [CrossRef]
- Hou, Y.F.; Chen, Y.N.; Ding, J.L.; Li, Z.; Li, Y.P.; Sun, F. Ecological Impacts of Land Use Change in the Arid Tarim River Basin of China. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Yao, G.H.; Li, H.D.; Wang, N.; Zhao, L.J.; Du, H.B.; Zhang, L.J.; Yan, S.G. Spatiotemporal Variations and Driving Factors of Ecological Land during Urbanization-A Case Study in the Yangtze River’s Lower Reaches. Sustainability 2022, 14, 4256. [Google Scholar] [CrossRef]
- Zhang, B.F.; Zhang, J.; Miao, C.H. Urbanization Level in Chinese Counties: Imbalance Pattern and Driving Force. Remote Sens. 2022, 14, 2268. [Google Scholar] [CrossRef]
- Jing, P.Q.; Zhang, D.H.; Ai, Z.M.; Guo, B. Natural landscape ecological risk assessment based on the three-dimensional framework of pattern-process ecological adaptability cycle: A case in Loess Plateau. Acta Ecol. Sin. 2021, 41, 7026–7036. [Google Scholar]
- Nacher, M.E.; Ferreira, C.; Jones, M.; Kalantari, Z. Application of the Adaptive Cycle and Panarchy in La Marjaleria Social-Ecological System: Reflections for Operability. Land 2021, 10, 980. [Google Scholar] [CrossRef]
- Burkhard, B.; Fath, B.D.; Muller, F. Adapting the adaptive cycle: Hypotheses on the development of ecosystem properties and services. Ecol. Mod. 2011, 222, 2878–2890. [Google Scholar] [CrossRef]
- Tang, Z.X.; Zhou, Z.X.; Wang, D.; Luo, F.B.; Bai, J.Z.; Fu, Y. Impact of vegetation restoration on ecosystem services in the Loess plateau, a case study in the Jinghe Watershed, China. Ecol. Indic. 2022, 142, 109183. [Google Scholar] [CrossRef]
- Feng, Y.X.; He, S.W.; Li, G.D. Interaction between urbanization and the eco-environment in the Pan-Third Pole region. Sci. Total Environ. 2021, 789, 148011. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.H.; Sha, J.M.; Eladawy, A.; Li, X.M.; Wang, J.L.; Kurbanov, E.; Lin, Z.J.; Wu, L.B.; Han, R.; Su, Y.C. Evaluation of ecological security and ecological maintenance based on pressure-state-response (PSR) model, case study: Fuzhou city, China. Hum. Ecol. Risk Assess. 2022, 28, 734–761. [Google Scholar] [CrossRef]
- Li, M.; Zheng, P.; Pan, W.B. Spatial-Temporal Variation and Tradeoffs/Synergies Analysis on Multiple Ecosystem Services: A Case Study in Fujian. Sustainability 2022, 14, 3086. [Google Scholar] [CrossRef]
- Guan, H.Y.; Bai, Y.P.; Zhang, C.Y. Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin. Sustainability 2022, 14, 11599. [Google Scholar] [CrossRef]
- Ouyang, X.; Tang, L.S.; Wei, X.; Li, Y.H. Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations. Land Use Policies 2021, 109, 105587. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, X.G.; Qiu, Y.X.; Luo, J. Adaptability of traditional villages as tourist destinations in Yellow River Basin, China. Indoor Built Environ. 2022, 14, 1420326X221126056. [Google Scholar] [CrossRef]
- Westmont, V.C. Assessing the adaptive resilience of twentieth-century post-industrial fishing landscapes in Siglufjorour, Iceland. Landsc. Res. 2021, 46, 693–712. [Google Scholar] [CrossRef]
- Liu, H.X.; Gao, C.Y.; Wang, G.P. Considering the Adaptive Cycle and Resilience of the Ecosystem to Define Reference Conditions for Wetland Restoration. Earth Future 2022, 10, e2021EF002419. [Google Scholar] [CrossRef]
Name | Temporal/Spatial Resolution | Period | Code |
---|---|---|---|
Landsat5 | 30 m/120 m/16 days | 2001, 2005, 2010 | LANDSAT/LT05/C01/T1_SR |
Landsat8 | 30 m/16 days | 2015, 2020 | LANDSAT/LC08/C01/T1_SR |
WorldPop | 100 m/annual | 2005, 2020 | WorldPop/GP/100m/pop |
CHIRPS | 0.05°/5 days | 2010, 2020 | UCSB-CHG/CHIRPS/PENTAD |
ERA5-LAND | 11,132 m/hourly | 2010, 2020 | ECMWF/ERA5_LAND/HOURLY |
NASADEM | 30 m/annual (2020) | 2020 | NASA/NASADEM_HGT/001 |
MOD17A3HGF V6 | 500 m/annual | 2001, 2010, 2020 | MODIS/006/MOD17A3HGF |
Scenario Modes | Land Use Type | Forest | Water | Plowland | Building | Unused | Grassland |
---|---|---|---|---|---|---|---|
Natural development | Forest | 1 | 1 | 1 | 1 | 1 | 1 |
Water | 1 | 1 | 1 | 1 | 1 | 1 | |
Plowland | 1 | 1 | 1 | 1 | 1 | 1 | |
Building | 0 | 0 | 0 | 1 | 0 | 0 | |
Unused | 1 | 1 | 1 | 1 | 1 | 1 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Economic development | Forest | 1 | 0 | 1 | 1 | 0 | 1 |
Water | 1 | 1 | 1 | 1 | 0 | 1 | |
Plowland | 0 | 0 | 1 | 1 | 1 | 1 | |
Building | 0 | 0 | 0 | 1 | 0 | 0 | |
Unused | 1 | 0 | 1 | 1 | 1 | 1 | |
Grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Ecological protection | Forest | 1 | 0 | 0 | 1 | 0 | 1 |
Water | 1 | 1 | 1 | 1 | 1 | 1 | |
Plowland | 1 | 1 | 1 | 1 | 1 | 1 | |
Building | 0 | 0 | 0 | 1 | 0 | 0 | |
Unused | 1 | 1 | 1 | 1 | 1 | 1 | |
Grassland | 1 | 0 | 0 | 0 | 0 | 1 |
Criteria Layer (Weight) | Effects of Risk Sources | Indicators (Weights) | Normalization |
---|---|---|---|
Potential (0.479) | Exposure | Slope (0.182) | + |
Land cover index (0.198) | + | ||
Vegetation coverage (0.27) | − | ||
Disturbance | Surface temperature (0.078) | + | |
Annual mean temperature (0.116) | + | ||
Rainfall erosivity (0.156) | + | ||
connectivity (0.319) | Exposure | Shannon diversity index (0.158) | − |
Aggregation index (0.308) | − | ||
Disturbance | Distance to construction land (0.225) | − | |
Density of road network (0.309) | + | ||
Resilience (0.202) | Exposure | Net primary productivity trends (0.625) | − |
Disturbance | Nighttime light intensity trends (0.375) | + |
Scenario Modes | Forest | Water | Plowland | Building | Unused | Grassland |
---|---|---|---|---|---|---|
2020 | 49,888.61 | 622.31 | 2922.98 | 2059.98 | 254.11 | 3539.55 |
Natural development | 50,687.09 | 649.22 | 2334.31 | 2574.93 | 241.51 | 2800.49 |
Economic development | 50,386.48 | 613.45 | 2140.43 | 3198.13 | 217.91 | 2731.14 |
Ecological protection | 51,091.16 | 689.99 | 2250.12 | 2143.07 | 239.45 | 2873.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, T.; Wang, R.; Song, L.; Liu, X.; Zhong, S.; Liu, J.; Yu, K.; Wang, F. Spatio-Temporal Multi-Scale Analysis of Landscape Ecological Risk in Minjiang River Basin Based on Adaptive Cycle. Remote Sens. 2022, 14, 5540. https://doi.org/10.3390/rs14215540
Bao T, Wang R, Song L, Liu X, Zhong S, Liu J, Yu K, Wang F. Spatio-Temporal Multi-Scale Analysis of Landscape Ecological Risk in Minjiang River Basin Based on Adaptive Cycle. Remote Sensing. 2022; 14(21):5540. https://doi.org/10.3390/rs14215540
Chicago/Turabian StyleBao, Tiantian, Ruifan Wang, Linghan Song, Xiaojie Liu, Shuangwen Zhong, Jian Liu, Kunyong Yu, and Fan Wang. 2022. "Spatio-Temporal Multi-Scale Analysis of Landscape Ecological Risk in Minjiang River Basin Based on Adaptive Cycle" Remote Sensing 14, no. 21: 5540. https://doi.org/10.3390/rs14215540
APA StyleBao, T., Wang, R., Song, L., Liu, X., Zhong, S., Liu, J., Yu, K., & Wang, F. (2022). Spatio-Temporal Multi-Scale Analysis of Landscape Ecological Risk in Minjiang River Basin Based on Adaptive Cycle. Remote Sensing, 14(21), 5540. https://doi.org/10.3390/rs14215540