Spatio-Temporal Heterogeneity of Ecological Quality in Hangzhou Greater Bay Area (HGBA) of China and Response to Land Use and Cover Change
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
2.2.1. Remote Sensing Data
2.2.2. Auxiliary Data
3. Methods
3.1. RSEI Construction
3.1.1. Index Calculation
3.1.2. Percentile De-Noising and Normalization
3.1.3. PCA Transformation and Analysis
3.2. Land Use Classification and Assessment
3.3. Exploratory Spatial Data Analysis
4. Results
4.1. Spatio-Temporal Heterogeneity in Ecological Quality
4.2. Hot Spots of Ecological Quality Change
4.3. Response of Ecological Quality to Land Use
5. Discussion
5.1. Potential Reasons for Ecological Quality Change
5.2. Contributions and Limitations of Our Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.; Elahi, E.; Wei, G. Evaluation and Prediction of the Ecological Footprint and Ecological Carrying Capacity for Yangtze River Urban Agglomeration Based on the Grey Model. Int. J. Environ. Res. Public Health 2018, 15, 2543. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Li, H.; Wang, L.; Tudi, M.; Yang, L. Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019-A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 3099. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Qi, K.; Wang, W.; Cai, W.; Chen, N. Research and Analysis of Ecological Environment Quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Mcdonnell, M.; Macgregor-Fors, I. The ecological future of cities. Science 2016, 352, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Verbavatz, V.; Barthelemy, M. The growth equation of cities. Nature 2020, 587, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; Tian, P.; Pu, R.; Cao, L. Construction of ecological security patterns and ecological restoration zones in the city of Ningbo, China. J. Geogr. Sci. 2022, 32, 663–681. [Google Scholar] [CrossRef]
- Ochoa-Gaona, S.; Kampichler, C.; de Jong, B.; Hernández, S.; Geissen, V.; Huerta, E. A multi-criterion index for the evaluation of local tropical forest conditions in Mexico. For. Ecol. Manag. 2010, 260, 618–627. [Google Scholar] [CrossRef]
- Jose, M.; William, K. Regional patterns of normalized difference vegetation index in North American shrublands and grasslands. Ecology 1995, 76, 1888–1898. [Google Scholar]
- Mouchot, M.C.; Alföldi, T.; De Lisle, D.; McCullough, G. Monitoring the water bodies of the mackenzie delta by remote sensing methods. Arctic 1991, 44, 21–28. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, H.; Xue, B.; Zhang, H. Assessment of surface urban heat island effects and associated surface biophysical indicators using MODIS imagery. In Geoinformatics 2007: Remotely Sensed Data and Information; SPIE: Bellingham, WA, USA, 2007; Volume 6752, pp. 622–630. [Google Scholar]
- HJ 192-2006; Technical Criterion for Ecosystem Status Evaluation. The Ministry of Ecology and Environment: Beijing, China, 2006. (In Chinese)
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Warren, D.; Seifert, S. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Mildrexler, D.; Zhao, M.; Running, S. Testing a MODIS Global Disturbance Index across North America. Remote Sens. Environ. 2009, 113, 2103–2117. [Google Scholar] [CrossRef]
- Xu, H. A Remote Sensing Urban Ecological Index and its Application. Acta Ecol. Sin. 2013, 33, 7853–7862. (In Chinese) [Google Scholar]
- OECD. OECD Environmental Indicators: Development, Measurement and Use; OECD: Paris, France, 2003. [Google Scholar]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Remote sensing Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ. Sci. Pollut. Res. 2020, 27, 15716–15728. [Google Scholar] [CrossRef]
- Huang, H.; Chen, W.; Zhang, Y.; Qiao, L.; Du, Y. Analysis of ecological quality in Lhasa Metropolitan Area during 1990–2017 based on remote sensing and Google Earth Engine platform. J. Geogr. Sci. 2021, 31, 265–280. [Google Scholar] [CrossRef]
- Hui, J.; Bai, Z.; Ye, B. Eco-Environment evaluation of grassland based on remote sensing ecological index: A case in hulunbuir area, China. J. Comput. Commun. 2021, 9, 203–213. [Google Scholar] [CrossRef]
- Li, X.; Sun, C.; Sun, J.; Chen, W.; Li, X. Ecological security characteristics of main irrigated agricultural areas on the Loess Plateau based on remote sensing information. Chin. J. Appl. Ecol. 2021, 32, 3177–3184. (In Chinese) [Google Scholar]
- Zhou, J.; Liu, W. Monitoring and evaluation of Eco-Environment quality based on remote Sensing-Based ecological index (RSEI) in taihu lake basin, China. Sustainability 2022, 14, 2345. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Hou, Y.; Zhao, Y.; Xue, X. Spatiotemporal evolution of island ecological quality under different urban densities: A comparative analysis of Xiamen and Kinmen Islands, southeast China. Ecol. Indic. 2021, 124, 107438. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, T.; Wang, Z.; Niu, R. Detecting ecological spatial-temporal changes by Remote Sensing Ecological Index with local adaptability. J. Environ. Manag. 2021, 299, 113655. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Biswas, A.; Homaee, M.; Alavipanah, S.K. Land Surface Ecological Status Composition Index (LSESCI): A Novel Remote Sensing-Based Technique for Modeling Land Surface Ecological Status. Ecol. Indic. 2021, 123, 107375. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Alavipanah, S.K. A Novel Method to Quantify Urban Surface Ecological Poorness Zone: A Case Study of Several European Cities. Sci. Total Environ. 2021, 757, 143755. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Min, S.; Liang, X. Dynamic monitoring and analysis of ecological environment in Weinan City, Northwest China based on RSEI model. Chin. J. Appl. Ecol. 2016, 27, 3913–3919. (In Chinese) [Google Scholar]
- Han, Y.; Huang, Y.; Tang, X.; Lin, G. Ecological environment evaluation of yibin city based on remote sensing ecological index. Int. Core J. Eng. 2020, 6, 235–242. [Google Scholar]
- Main Meteorological Indicators in Shanghai. Available online: http://tjj.sh.gov.cn/ (accessed on 8 September 2022).
- Average Temperature of Major Cities in Zhejiang. Available online: http://data.tjj.zj.gov.cn (accessed on 9 September 2022).
- GDP of Shanghai (1978–2019). Available online: http://tjj.sh.gov.cn (accessed on 9 September 2022).
- GDP of Zhejiang Province (1978–2019). Available online: http://data.tjj.zj.gov.cn (accessed on 9 September 2022).
- Cao, Y.; Fang, X.; Wang, J.; Li, G.; Cao, Y.; Li, Y. Measuring the urban particulate matter island effect with rapid urban expansion. International. Int. J. Environ. Res. Public Health 2020, 17, 5535. [Google Scholar] [CrossRef]
- Landsat 7 ETM Plus Collection 2 Level-2 Science Products Active. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-7-etm-plus-collection-2-level-2 (accessed on 9 September 2022).
- Cook, M.; Schott, J.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ban, Y.; Li, S. China: Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Lin, J.; Lin, T.; Cui, S. Quantitative selection model of ecological indicators and its solving method. Ecol. Indic. 2012, 13, 294–302. [Google Scholar] [CrossRef]
- Liu, D.; Hao, S. Ecosystem health assessment at county-scale using the pressure-state-response framework on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2017, 14, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Chang, N.; Opp, C. Using SPOT-VGT NDVI as a successive ecological indicator for understanding the environmental implications in the Tarim River Basin, China. J. Appl. Remote Sens. 2010, 4, 844–862. [Google Scholar]
- Seddon, A.W.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Goward, S.; Xue, Y.; Czajkowski, K. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sens. Environ. 2002, 79, 225–242. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Carlos-Jimenez, J.; Antonio-Sobrino, J. LST retrieval algorithm adapted to the Amazon evergreen forests using MODIS data. Remote Sens. Environ. 2018, 204, 401–411. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, WA, USA, 10–14 December 1973; Volume 351, pp. 309–317. [Google Scholar]
- Crist, E. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Vladimir, C. The nature of statistical learning theory. IEEE Trans. Neural Netw. 1997, 8, 409. [Google Scholar]
- Oommen, T.; Misra, D.; Twarakavi, N.K.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An objective analysis of support vector machine based classification for remote sensing. Math. Geosci. 2008, 40, 409–424. [Google Scholar] [CrossRef]
- Basukala, A.K.; Oldenburg, C.; Schellberg, J.; Sultanov, M.; Dubovyk, O. Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches. Eur. J. Remote Sens. 2017, 50, 187–201. [Google Scholar] [CrossRef]
- Foody, G. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- David, F.N. Exploratory data analysis. Biometrics 1977. [Google Scholar] [CrossRef]
- Moran, P. The interpretation of statistical maps. J. R. Stat. Soc. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Luc, A. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Luo, X.; Jia, B.; Lai, X. Contributions of climate change, land use change and CO2 to changes in the gross primary productivity of the Tibetan Plateau. Atmos. Ocean Sci. Lett. 2020, 13, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, X. Public landscape regeneration design strategy in the old city reconstruction based on the restoration ecology. Adv. Mater. Res. 2014, 3593, 505–508. [Google Scholar] [CrossRef]
- Ma, X. Influence Research on the Industrial Transformation and Upgrading Based on Internet Plus Strategy. J. Comput. Theor. Nanosci. 2017, 14, 4384–4390. [Google Scholar] [CrossRef]
- Chen, D.; Long, X.; Li, Z.; Liao, C.; Xie, C.; Che, S. Exploring the determinants of urban green space utilization based on microblog Check-In data in Shanghai, China. Forests 2021, 12, 1783. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Li, C.; Zhong, C.; Chen, X. An Investigation on Shenzhen Urban Green Space Changes and their Effect on Local Eco-Environment in Recent Decades. Sustainability 2021, 13, 12549. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Lin, J.; Xie, J.; Su, K. The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. J. Geogr. Sci. 2022, 32, 44–64. [Google Scholar] [CrossRef]
- Zheng, Y.; Long, H.; Chen, K. Spatio-temporal patterns and driving mechanism of farmland fragmentation in the Huang-Huai-Hai Plain. J. Geogr. Sci. 2022, 32, 1020–1038. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Cheng, Y. The impact of cultivated land loss on China’s food security in the process of urbanization. RUDN J. Econ. 2019, 27, 514–524. [Google Scholar] [CrossRef]
- Yan, N.; Jia, B.; Jiang, H. Connotation analysis of “13th five year plan for ecological environment protection”. Environ. Prot. 2017, 45, 48–51. (In Chinese) [Google Scholar]
- Dong, Z. Major measures for the reform of ecological civilization system. Governance 2017, 42, 27–31. (In Chinese) [Google Scholar]
- Yang, X.; Meng, F.; Fu, P.; Wang, Y.; Liu, Y. Time-frequency optimization of RSEI: A case study of Yangtze River Basin. Ecol. Indic. 2022, 141, 109080. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.; Liu, Y.; Cao, L.; Zheng, J.; Yang, Z.; Ye, J.; Li, Y. Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). Gisci Remote Sens. 2022, 59, 1793–1816. [Google Scholar] [CrossRef]
- Musse, M.; Barona, D.; Santana, R. Urban environmental quality assessment using remote sensing and census data. Int. J. Appl. Earth Obs. Geoinf. 2017, 71, 95–108. [Google Scholar] [CrossRef]
Satellite/ Sensor | Path/ Row | Acquisition Date | Cloud Cover | Satellite/ Sensor | Path/ Row | Acquisition Date | Cloud Cover |
---|---|---|---|---|---|---|---|
Landsat-5 TM | 118/38 | 1995-05-08 | 0.0% | Landsat-5 TM | 118/40 | 2007-07-28 | 1.0% |
Landsat-5 TM | 118/39 | 1995-08-12 | 0.0% | Landsat-5 TM | 119/39 | 2008-05-02 * | 1.0% |
Landsat-5 TM | 118/40 | 1995-05-08 | 4.0% | Landsat-8 OLI | 118/38 | 2015-08-03 | 0.0% |
Landsat-5 TM | 119/39 | 1994-05-12 * | 0.0% | Landsat-8 OLI | 118/39 | 2015-08-03 | 0.3% |
Landsat-7 ETM+ | 118/38 | 2000-09-18 | 0.0% | Landsat-8 OLI | 118/40 | 2015-08-03 | 0.7% |
Landsat-7 ETM+ | 118/39 | 2000-09-18 | 0.0% | Landsat-8 OLI | 119/39 | 2015-05-22 | 9.3% |
Landsat-7 ETM+ | 118/40 | 2000-09-18 | 0.0% | Landsat-8 OLI | 118/38 | 2020-08-16 | 0.0% |
Landsat-5 TM | 119/39 | 2000-09-17 | 0.0% | Landsat-8 OLI | 118/39 | 2020-08-16 | 0.3% |
Landsat-5 TM | 118/38 | 2007-07-28 | 0.0% | Landsat-8 OLI | 118/40 | 2020-08-16 | 12.2% ** |
Landsat-5 TM | 118/39 | 2007-07-28 | 0.0% | Landsat-8 OLI | 119/39 | 2020-05-19 | 4.2% |
Index | Formula | Description | |
---|---|---|---|
NDVI | and respectively denote the surface reflectance from NIR band and red band in the Landsat product [48]. | ||
WET | Landsat TM: | and respectively denote the surface reflectance from blue band, green band, red band, NIR band, SWIR1 band and SWIR2 band in the Landsat product [49,50,51]. | |
Landsat ETM+: | |||
Landsat OLI: | |||
NDBSI | respectively denote the surface reflectance from the blue band, green band, red band, NIR band, and SWIR1 band in the Landsat product [52]. | ||
LST | A linear conversion is used to stretch the data to real surface temperature [38]. is the temporal band in the Landsat product; and are 0.00341802 and 149, respectively. |
Build-Up | Farmland | Forest | Water | Wetland | User’s Accuracy (%) | |
---|---|---|---|---|---|---|
Build-up | 518 (965) | 206 (38) | 26 (188) | 20 (21) | 7 (4) | 66.7 (79.4) |
Farmland | 87 (19) | 1133 (1655) | 75 (251) | 32 (3) | 0 (2) | 85.4 (85.8) |
Forest | 13 (249) | 78 (210) | 1546 (981) | 8 (23) | 0 (18) | 94.0 (66.2) |
Water | 7 (13) | 26 (15) | 5 (40) | 284 (289) | 0 (2) | 88.2 (80.5) |
Wetland | 0 (7) | 1 (0) | 1 (1) | 0 (1) | 87 (83) | 97.7 (90.2) |
Producer’s accuracy (%) | 82.9 (77.0) | 78.5 (86.3) | 93.5 (67.1) | 82.6 (85.8) | 92.6 (76.1) | 66.7 (79.4) |
Overall accuracy = 85.7% (78.2%), Kappa coefficient = 0.762 (0.690) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Sun, C.; Ye, J.; Gan, C.; Li, Y.; Wang, L.; Chen, Y. Spatio-Temporal Heterogeneity of Ecological Quality in Hangzhou Greater Bay Area (HGBA) of China and Response to Land Use and Cover Change. Remote Sens. 2022, 14, 5613. https://doi.org/10.3390/rs14215613
Yang Z, Sun C, Ye J, Gan C, Li Y, Wang L, Chen Y. Spatio-Temporal Heterogeneity of Ecological Quality in Hangzhou Greater Bay Area (HGBA) of China and Response to Land Use and Cover Change. Remote Sensing. 2022; 14(21):5613. https://doi.org/10.3390/rs14215613
Chicago/Turabian StyleYang, Zhenjie, Chao Sun, Junwei Ye, Congying Gan, Yue Li, Lingyu Wang, and Yujun Chen. 2022. "Spatio-Temporal Heterogeneity of Ecological Quality in Hangzhou Greater Bay Area (HGBA) of China and Response to Land Use and Cover Change" Remote Sensing 14, no. 21: 5613. https://doi.org/10.3390/rs14215613
APA StyleYang, Z., Sun, C., Ye, J., Gan, C., Li, Y., Wang, L., & Chen, Y. (2022). Spatio-Temporal Heterogeneity of Ecological Quality in Hangzhou Greater Bay Area (HGBA) of China and Response to Land Use and Cover Change. Remote Sensing, 14(21), 5613. https://doi.org/10.3390/rs14215613