Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. MODIS Data and Spectral Variables
2.2.2. FY-3C VIRR Data and Spectral Variables
2.2.3. Forest Inventory Data and Forest AGB Data
2.3. Sampling for Reference Data of Forest AGB
2.4. AGB Approaches for Estimating Forest AGB Using MODIS and FY-3C VIRR Data
2.5. Accuracy Assessment
3. Results
3.1. Selection of Spectral Variables
3.2. RF Approach Outperforms KNN and MLR Approach
3.3. Comparison of Forest AGB Estimation by RF Models Based on the Two Imageries
3.4. Mapping of Forest AGB Distribution by Forest Zones and Dominant Tree Species
4. Discussion
4.1. Contribution of Spectral Index Variables
4.2. The Ability of MOD09A1 and FY-3C VIRR to Map Forest AGB
4.3. Performance of Parametric and Nonparametric Approaches
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yin, G.; Zhang, Y.; Sun, Y.; Wang, T.; Zeng, Z.; Piao, S. MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS ONE 2015, 10, e0130143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S.R.; et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2002, 12, 891–899. [Google Scholar] [CrossRef]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World′s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, G.L.; Lv, Y.Y.; Xu, H.; Wang, G.X. Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of Southwest China by Spatial Regression using Landsat 8 Images. Remote Sens. 2019, 11, 2750. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Sun, G.Q.; Huang, J.L.; Guo, Z.F.; Ni, W.J.; Fu, A.M. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sens. 2015, 7, 5534–5564. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Dong, J.R.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Calvao, T.; Palmeirim, J.M. Mapping Mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. Int. J. Remote Sens. 2004, 25, 3113–3126. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Yang, L. A Review of Regional and Global Gridded Forest Biomass Datasets. Remote Sens. 2019, 11, 2744. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. Remote Sens. 2021, 13, 3910. [Google Scholar] [CrossRef]
- Cooper, S.; Okujeni, A.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Combining simulated hyperspectral EnMAP and Landsat time series for forest aboveground biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102307. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Boyd, D.S.; Cutler, M.E.J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J. Remote Sens. 2000, 21, 1139–1157. [Google Scholar] [CrossRef]
- Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data. Geophys. Res. Lett. 2004, 31, L10501. [Google Scholar] [CrossRef] [Green Version]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Rahman, M.M.; Csaplovics, E.; Koch, B. An efficient regression strategy for extracting forest biomass information from satellite sensor data. Int. J. Remote Sens. 2005, 26, 1511–1519. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhao, Z.; Zhao, Q.X.; Zhao, J.; Wang, H.Z. Quantification of aboveground forest biomass using Quickbird imagery, topographic variables, and field data. J. Appl. Remote Sens. 2013, 7, 073484. [Google Scholar] [CrossRef]
- Gomez, J.A.; Zarco-Tejada, P.J.; Garcia-Morillo, J.; Gama, J.; Soriano, M.A. Determining Biophysical Parameters for Olive Trees Using CASI-Airborne and Quickbird-Satellite Imagery. Agron. J. 2011, 103, 644–654. [Google Scholar] [CrossRef]
- Gomez, C.; Wulder, M.A.; Montes, F.; Delgado, J.A. Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART). Remote Sens. 2012, 4, 135–159. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.H.; Liu, K.; Liu, L.; Wang, S.G.; Liu, H.X. Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sens. 2015, 7, 12192–12214. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.H.; Wang, D.Z.; Zou, X.Q.; Yang, X.; Xie, G.Z.; Xu, S.J.; Zhong, Z.Q. Finer Resolution Estimation and Mapping of Mangrove Biomass Using UAV LiDAR and WorldView-2 Data. Forests 2019, 10, 871. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S.; Chen, Q.; Wang, G.X.; Liu, L.J.; Li, G.Y.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Zhang, J.L.; Lu, C.; Xu, H.; Wang, G.X. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data. J. For. Res. 2019, 30, 1689–1706. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Zhang, Q.L.; He, H.S.; Liang, Y.; Hawbaker, T.J.; Henne, P.D.; Liu, J.X.; Huang, S.L.; Wu, Z.W.; Huang, C. Integrating forest inventory data and MODIS data to map species-level biomass in Chinese boreal forests. Can. J. For. Res. 2018, 48, 461–479. [Google Scholar] [CrossRef]
- Lu, J.; Feng, Z.; Zhu, Y. Estimation of Forest Biomass and Carbon Storage in China Based on Forest Resources Inventory Data. Forests 2019, 10, 650. [Google Scholar] [CrossRef] [Green Version]
- Forestry Department of Yunnan Province. Report of Forest Resource Survey in Yunnan Province; Yunnan Science and Technology Press: Kunming, China, 2017. [Google Scholar]
- Forestry Department of Yunnan Province. Forest Resources in Yunnan; Yunnan Science and Technology Press: Kunming, China, 2018. [Google Scholar]
- Chen, F.; Niu, S.; Tong, X.; Zhao, J.; Sun, Y.; He, T. The Impact of Precipitation Regimes on Forest Fires in Yunnan Province, Southwest China. Sci. World J. 2014, 326782. [Google Scholar] [CrossRef] [Green Version]
- Editting Committee of Yunnan Forest. Yunnan Forest; China Forestry Press: Beijing, China; Yunnan Science and Technology Press: Kunming, China, 1986. [Google Scholar]
- Weng, E.S.; Zhou, G.S. Modeling distribution changes of vegetation in China under future climate change. Env. Model Assess 2006, 11, 45–58. [Google Scholar] [CrossRef]
- Yongqian, W.; Dejun, Z.; Liang, S.; Shiqi, Y.; Tang, S.; Yanghua, G.; Qinyu, Y.; Hao, Z. Evaluating FY3C-VIRR reconstructed land surface temperature in cloudy regions. Eur. J. Remote Sens. 2021, 54, 266–280. [Google Scholar] [CrossRef]
- Guo, N.; Wang, X.; Cai, D.; Yang, J. Comparison and evaluation between MODIS vegetation indices in Northwest China. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–27 July 2007; p. 3366. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spe. 1974, 351, 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on forest floor. Ecology 1969, 50, 663. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetatiob index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Rock, B.N. Detection of Changes in Leaf Water-Content Using near-Infrared and Middle-Infrared Reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Bi, Y.; Yang, Z.; Zhang, P.; Sun, Y.; Bai, W.; Du, Q.; Yang, G.; Chen, J.; Liao, M. An introduction to China FY3 radio occultation mission and its measurement simulation. Adv. Sp. Res. 2012, 49, 1191–1197. [Google Scholar] [CrossRef]
- Dong, P.M.; Huang, J.P.; Liu, G.Q.; Zhang, T. Assimilation of FY-3A microwave observations and simulation of brightness temperature under cloudy and rainy condition. J. Trop. Meteorol. 2014, 30, 302–310. [Google Scholar]
- Yang, Y.M.; Du, M.B.; Zhang, J. Experiments of assimilating FY-3A microwave data in forecast of typhoon Morakot. J. Trop. Meteorol. 2012, 28, 23–30. [Google Scholar]
- Wang, W.; Zhang, X.; An, X.; Zhang, Y.; Huang, F.; Wang, Y.; Wang, Y.; Zhang, Z.; Lue, J.; Fu, L.; et al. Analysis for retrieval and validation results of FY-3 Total Ozone Unit (TOU). China Sci. Bull. 2010, 55, 3037–3043. [Google Scholar] [CrossRef]
- Fang, J.Y.; Wang, G.G.; Liu, G.H.; Xu, S.L. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecol. Appl. 1998, 8, 1084–1091. [Google Scholar]
- Mitchard, E.T.A.; Saatchi, S.S.; Lewis, S.L.; Feldpausch, T.R.; Woodhouse, I.H.; Sonke, B.; Rowland, C.; Meir, P. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens. Environ. 2011, 115, 2861–2873. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical Satellite Imagery-A Literature Review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Li, Z.; Bi, S.; Hao, S.; Cui, Y. Aboveground biomass estimation in forests with random forest and Monte Carlo-based uncertainty analysis. Ecol. Indic. 2022, 142, 109246. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Esteban, J.; McRoberts, R.E.; Fernandez-Landa, A.; Luis Tome, J.; Naesset, E. Estimating Forest Volume and Biomass and Their Changes Using Random Forests and Remotely Sensed Data. Remote Sens. 2019, 11, 1944. [Google Scholar] [CrossRef] [Green Version]
- Zeng, N.; Ren, X.; He, H.; Zhang, L.; Zhao, D.; Ge, R.; Li, P.; Niu, Z. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecol. Indic. 2019, 102, 479–487. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Naesset, E.; Gobakken, T. Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sens. Environ. 2015, 163, 13–22. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Yang, D.; Chen, D.; Huang, J. Retrieving crop physiological parameters and assessing water deficiency using MODIS data during the winter wheat growing period. Can. J. Remote Sens. 2007, 33, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, S.; Zhang, L.; Jiang, H. Accuracy and Sensitivity of Retrieving Vegetation Leaf Water Content. Remote Sens. Inf. 2016, 31, 48–57. [Google Scholar]
- Xing, M.; He, B.; Li, X. Integration method to estimate above-ground biomass in arid prairie regions using active and passive remote sensing data. J. Appl. Remote Sens. 2014, 8, 083677. [Google Scholar] [CrossRef]
- Momen, M.; Wood, J.D.; Novick, K.A.; Pangle, R.; Pockman, W.T.; McDowell, N.G.; Konings, A.G. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth. J. Geophys. Res. Biogeo. 2017, 122, 3031–3046. [Google Scholar] [CrossRef]
- Salajanu, D.; Jacobs, D.M. Accuracy assessment of biomass and forested area classification from modis, landstat-tm satellite imagery and forest inventory plot data. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007. [Google Scholar]
- Jha, N.; Tripathi, N.K.; Barbier, N.; Virdis, S.G.P.; Chanthorn, W.; Viennois, G.; Brockelman, W.Y.; Nathalang, A.; Tongsima, S.; Sasaki, N.; et al. The real potential of current passive satellite data to map aboveground biomass in tropical forests. Remote Sens. Ecol. Conserv. 2021, 7, 504–520. [Google Scholar] [CrossRef]
- Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 160–168. [Google Scholar]
Band# | Name | Spectral Range (nm) | Center Wavelength (nm) | Bandwidth (nm) |
---|---|---|---|---|
1 | Red | 620–670 | 645 | 50 |
2 | Near Infrared (NIR) | 841–876 | 859 | 35 |
3 | Blue | 459–479 | 469 | 20 |
4 | Green | 545–565 | 555 | 20 |
5 | Shortwave infrared (SWIR1240) | 1230–1250 | 1240 | 20 |
6 | Shortwave infrared (SWIR1640) | 1628–1652 | 1640 | 24 |
7 | Shortwave infrared (SWIR2130) | 2105–2155 | 2130 | 50 |
Index | Formula | MOD09A1 | FY-3C VIRR | Reference | |
---|---|---|---|---|---|
Vegetation greenness indices | NDVI | (NIR − RED)/(NIR + RED) | √ | √ | Rouse et al. [36] |
EVI | 2.5(NIR − RED)/[(NIR + 6RED − 7.5BLUE) + 1] | √ | √ | Huete et al. [37] | |
RVI | NIR/RED | √ | √ | Jordan [38] | |
ARVI | [NIR − (2 RED − BLUE)]/[NIR) + (2RED − BLUE)] | √ | √ | Kaufman and Tanre [39] | |
SAVI | (1 + 0.5)(NIR − RED)/(NIR + RED + 0.5) | √ | √ | Huete [40] | |
MSAVI | [2NIR + 1 − − 8(NIR − RED)]/2 | √ | √ | Qi et al. [41] | |
VARI | (GREEN − RED)/(GREEN + RED − BLUE) | √ | √ | Gitelson et al. [42] | |
Vegetation water indices | NDIIb6 | (NIR − SWIR1640)/(NIR + SWIR1640) | √ | √ * | Hunt and Rock [43] |
NDIIb7 | (NIR − SWIR2130)/(NIR + SWIR2130) | √ | NA | Hunt and Rock [43] | |
NDMI | (NIR − SWIR1240)/(NIR + SWIR1240) | √ | NA | Gao [44], Wilson [45] | |
NDWI | (GREEN − NIR)/(GREEN + NIR) | √ | √ | Mcfeeters [46] |
Band# | Name | Spectral Range (nm) | Center Wavelength (nm) | Bandwidth (nm) |
---|---|---|---|---|
1 | Red | 580–680 | 630 | 100 |
2 | Near Infrared (NIR) | 840–890 | 865 | 50 |
3 | Shortwave infrared (SWIR1595) | 1550–1640 | 1595 | 90 |
4 | Blue | 430–480 | 455 | 50 |
5 | Cyan | 480–530 | 505 | 50 |
6 | Green | 530–580 | 555 | 50 |
7 | Shortwave infrared (SWIR1360) | 1325–1395 | 1360 | 70 |
Model | R2 | RMSE (t/ha) | MAE (t/ha) | |||
---|---|---|---|---|---|---|
MODIS | FY | MODIS | FY | MODIS | FY | |
MLR | 0.32 | 0.29 | 49.76 | 51.32 | 43.28 | 46.87 |
KNN | 0.65 | 0.58 | 36.82 | 40.52 | 33.61 | 37.13 |
RF | 0.84 | 0.81 | 23.18 | 23.43 | 21.94 | 17.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Qin, Z.; Zhai, D.-L.; Ou, G.; Li, X.; Zhao, G.; Fan, J.; Zhao, C.; Xu, H. Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest. Remote Sens. 2022, 14, 5456. https://doi.org/10.3390/rs14215456
Chen H, Qin Z, Zhai D-L, Ou G, Li X, Zhao G, Fan J, Zhao C, Xu H. Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest. Remote Sensing. 2022; 14(21):5456. https://doi.org/10.3390/rs14215456
Chicago/Turabian StyleChen, Huafang, Zhihao Qin, De-Li Zhai, Guanglong Ou, Xiong Li, Gaojuan Zhao, Jinlong Fan, Chunliang Zhao, and Hui Xu. 2022. "Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest" Remote Sensing 14, no. 21: 5456. https://doi.org/10.3390/rs14215456
APA StyleChen, H., Qin, Z., Zhai, D. -L., Ou, G., Li, X., Zhao, G., Fan, J., Zhao, C., & Xu, H. (2022). Mapping Forest Aboveground Biomass with MODIS and Fengyun-3C VIRR Imageries in Yunnan Province, Southwest China Using Linear Regression, K-Nearest Neighbor and Random Forest. Remote Sensing, 14(21), 5456. https://doi.org/10.3390/rs14215456