Numerical Modeling and Parameter Sensitivity Analysis for Understanding Scale-Dependent Topographic Effects Governing Anisotropic Reflectance Correction of Satellite Imagery
Abstract
:1. Introduction
- Simulate the direct irradiance and conduct a sensitivity analysis based upon the inclusion/exclusion of numerous RTP that are assumed to be significant/insignificant. We evaluate solar geometry, atmospheric attenuation, local topography, and cast shadows, where parameterization schemes are compared based upon different assumptions and parameter dependencies.
- Simulate the diffuse-skylight irradiance and conduct a sensitivity analysis based upon the inclusion/exclusion of numerous RTP that are assumed to be significant/insignificant. We evaluate the isotropic versus anisotropic assumption, the influence of secondary ground reflectance, local topography, and meso-scale relief, where parameterization schemes are compared based upon assumptions and parameter dependencies.
2. Background
2.1. Direct Irradiance
2.2. Diffuse-Skylight Irradiance
2.3. Adjacent-Terrain Irradiance
3. Study Area
4. Materials and Methods
4.1. Data
- Snow, where NDSI and altitude m.
- Vegetation, where there was no snow and NDVI .
- Water, where there was neither snow nor vegetation and NDSI .
- Rock and sediment in the remaining space.
4.2. Numerical Modeling
4.2.1. Orbital Dynamics
4.2.2. Atmospheric Transmittance
4.2.3. Direct Irradiance
4.2.4. Diffuse-Skylight Irradiance
4.3. Sensitivity Analysis
5. Results
5.1. Direct Irradiance
5.2. Diffuse-Skylight Irradiance
6. Discussion
6.1. Direct Irradiance
6.2. Diffuse-Skylight Irradiance
6.3. Anisotropic Reflectance Correction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Mathematical Symbol Notation
Symbol | Units | Description |
---|---|---|
[radians] | Solar angular width. | |
[radians] | Solar elevation angle. | |
[radians] | Solar declination. | |
dimensionless | Obliquity of Earth’s orbit about the Sun. | |
[m] | Wavelength of light. | |
[radians] | True longitude of the Earth relative to the vernal equinox. | |
[radians] | Azimuth angle. | |
[radians] | Azimuth angle of hemispherical incident energy. | |
[radians] | Solar azimuth angle. | |
[radians] | Effective slope-azimuth angle incident energy accounting for topographic correction. | |
[radians] | Effective slope-azimuth viewing angle accounting for topographic correction. | |
[kg m] | Density of dry air. | |
dimensionless | Surface BRDF. | |
dimensionless | Ground reflectance averaged over a 5 km radius. | |
dimensionless | Sky reflectance. | |
[radians] | Maximum relief angle to the horizon. | |
[radians] | Zenith angle of hemispherical incident energy. | |
[radians] | Solar zenith angle. | |
[radians] | Solar zenith angle at scene center. | |
[radians] | Near-angle of cast-shadow for extent of umbra. | |
[radians] | Far-angle of cast-shadow for extent of penumbra. | |
[radians] | Maximum horizon angle. | |
[radians] | Terrain slope angle. | |
[radians] | Viewing zenith angle. | |
[radians] | Effective zenith angle of incident energy accounting for topographic correction. | |
[radians] | Effective viewing zenith angle accounting for topographic correction. | |
[radians] | Geocentric solar zenith angle. | |
[radians] | Latitude. | |
[sr] | Solid angle for circumsolar region. | |
d | [km] | Distance. |
[km] | Earth-Sun distance. | |
E | [W mm] | Surface irradiance. |
[W mm] | Exoatmospheric irradiance. | |
[W mm] | Solar irradiance at 1 AU. | |
[W mm] | Aerosol scattering irradiance component. | |
[W mm] | Direct-beam irradiance from the Sun. | |
[W mm] | Direct normal irradiance. | |
[W mm] | Diffuse-skylight irradiance. | |
[W mm] | Diffuse-skylight irradiance for a horizontal surface. | |
[W mm] | Anisotropic diffuse-skylight irradiance. | |
[W mm] | Diffuse-skylight irradiance. | |
[W mm] | Ground/sky backscattering irradiance component. | |
[W mm] | Irradiance due to Rayleigh scattering. | |
[W mm] | Adjacent-terrain irradiance. | |
dimensionless | Earth-Sun distance-correction factor. | |
dimensionless | Horizontal brightness. | |
dimensionless | Circumsolar coefficient. | |
dimensionless | Downward scattered flux. | |
dimensionless | Downward fraction of scattered radiation. | |
g | [m s] | Acceleration due to gravity. |
H | [radians] | Hour angle of the Sun. |
i | [radians] | Solar-terrain incidence angle. |
I | [radians] | Hemispherical incidence angle. |
[radians] | Adjacent terrain incidence angle. | |
L | [W m srm] | Incident surface-reflected radiance. |
[W m srm] | Hemispherical downward diffuse radiance. | |
[m] | Length of the penumbra. | |
[m] | Length of the umbra. | |
p | [mb] | Atmospheric pressure. |
[km] | The nominal solar radius. | |
dimensionless | Relative humidity. | |
S | dimensionless | Coefficient for cast shadows, fraction of incident on the landscape. |
dimensionless | Coefficient for terrain blockage for . | |
dimensionless | Coefficient for terrain shielding for . | |
T | [K] | Temperature. |
dimensionless | Transmittance due to aerosol scattering. | |
dimensionless | Transmittance due to aerosol scattering. | |
dimensionless | Transmittance due to aerosol absorption. | |
dimensionless | Transmittance due to primary gas absorption. | |
dimensionless | Transmittance due to ozone absorption. | |
dimensionless | Transmittance due to Rayleigh scattering. | |
dimensionless | Transmittance due to water vapor absorption. | |
dimensionless | Total downward transmittance. | |
dimensionless | Total atmospheric transmittance due to terrain relief. | |
dimensionless | Skyview-factor coefficient. | |
dimensionless | Longitude-component scalar of the solar azimuth angle. | |
dimensionless | Latitude-component scalar of the solar azimuth angle. |
References
- Thomas, Z.A. Using natural archives to detect climate and environmental tipping points in the Earth System. Quat. Sci. Rev. 2016, 152, 60–71. [Google Scholar] [CrossRef]
- Harrison, S.; Mighall, T.; Stainforth, D.A.; Allen, P.; Macklin, M.; Anderson, E.; Knight, J.; Mauquoy, D.; Passmore, D.; Rea, B.; et al. Uncertainty in geomorphological responses to climate change. Climactic Chang. 2019, 156, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Phil. Trans. R. Soc. B 2019, 375, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmann, J.; Castellana, D.; Ditlevsen, P.D.; Dijkstra, H.A. Abrupt climate change as a rate-dependent cascading tipping point. Earth Syst. Dyn. 2021, 12, 819–2021. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Gao, X. Increase in occurrence of large glacier-related landslides in the high mountains of Asia. Sci. Rep. 2021, 11, 1635. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.P.; Dobreva, I.D. Geomorphometry and Mountain Geodynamics: Issues of Scale and Complexity. In Integrating Scale in Remote Sensing and GIS; Remote Sensing Applications; Quattrochi, D., Wentz, E.A., Lam, N.S., Emerson, C.W., Eds.; CRC Press: New York, NY, USA, 2017; Chapter 7; pp. 189–228. [Google Scholar]
- Bush, A.B.G.; Bishop, M.P.; Huo, D.; Chi, Z.; Tiwari, U. Issues in Climate Analysis and Modeling for Understanding Mountain Erosion Dynamics. In Technology-Driven Geomorphology: Geospatial Data Science, 2nd ed.; Treatise in Geomorphology; Bishop, M.P., Giardino, J.R., Eds.; Elsevier Publishing Inc.: New York, NY, USA, 2022; Volume 1. [Google Scholar] [CrossRef]
- Richter, R. Correction of satellite imagery over mountainous terrain. Appl. Opt. 1998, 37, 4004–4015. [Google Scholar] [CrossRef]
- Chi, H.; Yan, K.; Yang, K.; Du, S.; Li, H.; Qi, J.; Wei, Z. Evaualtion of topographic correction models based upon 3-D Radiative Transfer Simulation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 3110907. [Google Scholar] [CrossRef]
- Jasrotia, A.S.; Kour, R.; Singh, K.K. Effect of Shadow on Atmospheric and Topographic Processed NDSI Values in Chenab Basin, western Himalayas. Cold Reg. Sci. Technol. 2022, 199, 103561. [Google Scholar] [CrossRef]
- Bishop, M.P.; Young, B.W.; Colby, J.D.; Furfaro, R.; Chi, Z. Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation Transfer Cascade in Mountain Environments. Remote Sens. 2019, 11, 2728. [Google Scholar] [CrossRef]
- Vartiainen, E. A new Approach to Estimating the Diffuse Irradiance on Inclined Surfaces. Renew. Energy 2000, 20, 45–64. [Google Scholar] [CrossRef]
- Jia, W.; Pang, Y.; Tortini, R.; Schläpfer, D.; Li, Z.; Roujean, J.L. A Kernel-Driven BRDF Approach to Correct Airborne Hyperspectral Imagery over Forested Areas with Rugged Topography. Remote Sens. 2020, 12, 432. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.; Yan, G.; Qi, J.; Mu, X.; Li, L.; Tong, Y.; Zhou, Y.; Liu, Y.; Xie, D.; Wild, M. Quantitative Analysis of Terrain Reflected Solar Radiation in Snow-Covered Mountains: A Case Study in Southeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2021, 126, e2020JD034294. [Google Scholar] [CrossRef]
- Bishop, M.P.; Bush, A.B.G.; Copland, L.; Kamp, U.; Owen, L.A.; Seong, Y.B.; Shroder, J.F., Jr. Climate Change and Mountain Topographic Evolution in the Central Karakoram, Pakistan. Ann. Assoc. Am. Geogr. 2010, 100, 772–793. [Google Scholar] [CrossRef]
- Huo, D.; Bishop, M.P.; Young, B.; Chi, Z. Modeling the Feedbacks between Surface Ablation and Morphological Variations on Debris-Covered Baltoro Glacier in the central Karakoram. Geomorphology 2021, 389, 107840. [Google Scholar] [CrossRef]
- Smith, J.A.; Lin, T.L.; Ranson, K.J. The Lambertian Assumption and LANDSAT Data. Photogramm. Eng. Remote Sens. 1980, 46, 1183–1189. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Gillespie, A. Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun–Canopy–Sensor Geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified Sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Cameron, M.; Kumar, L. Diffuse Skylight as a Surrogate for Shadow Detection in High-Resolution Imagery Acquired Under Clear Sky Conditions. Remote Sens. 2018, 10, 1185. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Stewart, R.; Arbogast, C.; Seals, R.; Scott, J. An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation. Sol. Energy 1986, 36, 481–497. [Google Scholar] [CrossRef]
- Proy, C.; Tanré, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C. SMARTS2, a Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment; Florida Solar Energy Center: Cocoa, FL, USA, 1995. [Google Scholar]
- Zhang, Y.; Li, X.; Wen, J.; Liu, Q.; Yan, G. Improved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF. Remote Sens. 2015, 7, 6558–6575. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Frew, J. Rapic Calculation of Terrain Parameters for Radiation from Digital Elevation Models. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Shepard, J.D.; Dymond, J.R. COrrecting Satellite Imagery for the Variance of Reflectance and Illumination with Topography. Int. J. Remote Sens. 2003, 24, 3503–3514. [Google Scholar] [CrossRef]
- Hung, H.; Gong, P.; Clinton, N.; Hui, F. Reduction in Atmospheric and Topographic Effect on Landsat TM Data for Forect CLassification. Int. J. Remote Sens. 2008, 29, 5623–5642. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Colby, J.D. Topographic normalization in rugged terrain. Photogramm. Eng. Remote Sens. 1991, 57, 531–537. [Google Scholar]
- Bishop, M.P.; Colby, J.D. Topographic normalization of multispectral satellite imagery. In Encyclopedia of Snow, Ice and Glaciers; Springer: Dordrecht, The Netherlands, 2011; pp. 1187–1196. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.B.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Shroder, J.F., Jr.; Bishop, M.P. Unroofing of the Nanga Parbat Himalaya. In Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya; Number 170 in Special Publication; Khan, M.A., Treloar, P.J., Searle, M.P., Jan, M.Q., Eds.; The Geological Society of London: London, UK, 2000; pp. 163–179. [Google Scholar]
- Zeitler, P.K.; Koons, P.O.; Bishop, M.P.; Chamberlain, C.P.; Craw, D.; Edwards, M.A.; Hamidullah, S.; Jan, M.Q.; Khan, M.A.; Khattak, M.U.K.; et al. Crustal Reworking at Nanga Parbat, Pakistan: Metamorphic Consequences of Thermal-Mechanical Coupling Facilitated by Erosion. Tectonics 2001, 20, 712–728. [Google Scholar] [CrossRef]
- Bishop, M.P.; Shroder, J.F., Jr.; Bonk, R.; Olsenholler, J. Geomorphic Change in High Mountains: A Western Himalayan Perspective. Glob. Planet. Chang. 2002, 32, 311–329. [Google Scholar] [CrossRef]
- Schneider, D.A.; Edwards, M.A.; Kidd, W.S.F.; Asif Khan, M.; Seeber, L.; Zeitler, P.K. Tectonics of Nanga Parbat, western Himalaya: Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure. Geology 1999, 27, 999–1002. [Google Scholar] [CrossRef]
- Owen, L.A.; Scott, C.H.; Derbyshire, E. The Quaternary glacial history of Nanga Parbat. Quat. Int. 2000, 65–66, 63–79. [Google Scholar] [CrossRef] [Green Version]
- NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER GDEM Version 2; Data Set. NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2009. [CrossRef]
- Berger, A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- Corbard, T.; Ikhlef, R.; Morand, F.; Meftah, M.; Renaud, C. On the importance of astronomical refraction for modern solar astrometric measurements. Mon. Not. R. Astron. Soc. 2018, 483, 3865–3877. [Google Scholar] [CrossRef]
- United Kingdom Hydrographic Office. The Astronomical Almanac for the Year 2013; United Kingdom Hydrographic Office: Taunton, UK; United States Government Printing Office: Washington, DC, USA, 2012.
- Bird, R.E.; Riordan, C. Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. J. Clim. Appl. Meteorol. 1986, 25, 87–97. [Google Scholar] [CrossRef]
- Dozier, J.; Bruno, J.; Downey, P. A faster solution to the horizon problem. Comput. Geosci. 1981, 7, 145–151. [Google Scholar] [CrossRef]
- Rossi, R.E.; Dungan, J.L.; Beck, L.R. Kriging in the shadows: Geostatistical interpolation for remote sensing. Remote Sens. Environ. 1994, 49, 32–40. [Google Scholar] [CrossRef]
- Giles, P.T. Remote sensing and cast shadows in mountainous terrain. Photogramm. Eng. Remote Sens. 2001, 67, 833–839. [Google Scholar]
- Meftah, M.; Corbard, T.; Hauchecorne, A.; Morand, F.; Ikhlef, R.; Chauvineau, B.; Renaud, C.; Sarkissian, A.; Damé, L. Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared. Astron. Astrophys. 2018, 616, A64. [Google Scholar] [CrossRef]
- Perez, R.; Seals, R.; Ineichen, P.; Stewart, R.; Menicucci, D. A New Simplified Version of the Perez DIffuse Irradiance MOdel for Tilted Surfaces. Sol. Energy 1987, 39, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Maleki, S.A.M.; Hizam, H.; Gomes, C. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited. Energies 2017, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Perers, B.; Furbo, S.; Fan, J.; Deng, J.; Dragsted, J. A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions. Energies 2018, 11, 1315. [Google Scholar] [CrossRef] [Green Version]
- Darlu, S.; Kittler, R. CIE Gneral sky standard Defining Luminaance Distributions. In Proceedings of the Canadian Conference on Building Energy, Montreal, QC, Canada, 12–13 September 2002; pp. 1–8. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimple, U.; Sitthi, A.; Simonetti, D.; Pungkul, S.; Leadprathom, K.; Chidthaisong, A. Topographic Correction of Landsat TM-5 and Landsat OLI-8 Imagery to Improve Performance of Forest CLassification in the Mountainous Terrain of Northeast Thailand. Sustainability 2017, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Li, J.; Liu, Q.; Zhang, Q.; Yin, G.; Li, A.; Zeng, Y.; Xu, B.; Xu, X.; Zhou, G.; et al. Topographic Correction of Forest Image Data Based on the Canopy Reflectance Model for Sloping Terrains in Multiple Forward Mode. Remote Sens. 2018, 10, 717. [Google Scholar] [CrossRef]
10 | 8.617 | −0.001 | 8.770 | 0.152 | 8.618 |
30 | 28.205 | −0.003 | 28.716 | 0.508 | 28.208 |
50 | 58.145 | −0.005 | 59.274 | 1.124 | 58.150 |
70 | 133.087 | −0.007 | 137.094 | 4.000 | 133.094 |
80 | 267.663 | 0.252 | 271.224 | 3.813 | 267.411 |
85 | 512.147 | 17.971 | 503.393 | 9.217 | 494.176 |
Atmosphere Vertical Profiles | Atmospheric Effective Pathlengths | ||||||||
---|---|---|---|---|---|---|---|---|---|
z | T | p | g | O | CO | H | O | ||
[km] | [K] | [mb] | [kg m] | [m s] | [%] | [km] | [km] | [cm] | [atm-cm] |
0 | 288.20 | 1013.25 | 1.2250 | 9.8006 | 55.0 | 4.9292 | 4.8655 | 1.4220 | 0.3434 |
1 | 281.71 | 898.84 | 1.1117 | 9.7975 | 50.1 | 3.9490 | 3.7725 | 0.8625 | |
2 | 275.23 | 795.15 | 1.0066 | 9.7944 | 46.7 | 3.1476 | 2.9082 | 0.5231 | |
3 | 268.77 | 701.41 | 0.9093 | 9.7913 | 44.5 | 2.4956 | 2.2283 | 0.3173 | |
4 | 262.31 | 616.85 | 0.8194 | 9.7883 | 43.4 | 1.9676 | 1.6965 | 0.1924 | |
5 | 255.85 | 540.78 | 0.7365 | 9.7852 | 43.6 | 1.5422 | 1.2829 | 0.1167 | |
6 | 249.39 | 472.51 | 0.6602 | 9.7821 | 45.1 | 1.2014 | 0.9633 | 0.0708 | |
7 | 242.93 | 411.42 | 0.5901 | 9.7791 | 48.1 | 0.9299 | 0.7180 | 0.0429 | |
8 | 236.48 | 356.92 | 0.5259 | 9.7760 | 53.0 | 0.7149 | 0.5310 | 0.0260 | |
9 | 230.07 | 308.43 | 0.4671 | 9.7729 | 60.4 | 0.5456 | 0.3896 | 0.0158 |
SS | Description | |
---|---|---|
S1S1 | Solar zenith angle only at scene center. | |
S1S2 | Parallax correction omitted. | |
S1S3 | Atmospheric refraction correction omitted. | |
S1S4 | Parallax and refraction corrections omitted. | |
S1S5 | Total downward Atmospheric transmittance term omitted. | |
S1S6 | Cosine of the incidence angle omitted. | |
S1S7 | Cast shadows using solar disk omitted. | |
S1S8 | Cast shadows using point-source assumption. | |
S1S9 | Base for comparisons using Equation (2). | |
S2S1 | Skylight irradiance of Rayleigh component omitted. | |
S2S2 | Skylight irradiance of aerosol component omitted. | |
S2S3 | Skylight irradiance of ground scattering component omitted. | |
S2S4 | Isotropic skylight irradiance computed as on a horizontal surface. | |
S2S5 | Isotropic skylight irradiance using shielding coefficient. | |
S2S6 | Perez skylight irradiance model. | |
S2S7 | Local topographic effects omitted. | |
S2S8 | Meso-scale topographic shielding omitted. | |
S2S9 | Base for comparisons using Equation (4). |
RMSE | SSI | t | F | ||||||
---|---|---|---|---|---|---|---|---|---|
[m] | |||||||||
S1S1 | 0.00 | 1102.29 | 681.00 | 283.70 | 55.46 | 0.99 | 243.85 | 1.16 | |
S1S2 | 0.00 | 1109.92 | 680.99 | 283.89 | 55.05 | 0.99 | 243.83 | 1.15 | |
S1S3 | 0.00 | 1109.85 | 680.72 | 283.97 | 55.27 | 0.99 | 245.09 | 1.15 | |
S1S4 | 0.00 | 1109.86 | 680.74 | 283.96 | 55.25 | 0.99 | 244.99 | 1.15 | |
S1S5 | 0.00 | 1363.54 | 837.55 | 349.15 | 114.57 | 0.97 | −456.17 | 0.76 | |
S1S6 | 0.00 | 1110.23 | 1075.77 | 167.42 | 447.93 | 0.11 | −1976.82 | 3.32 | |
S1S7 | 0.00 | 1109.92 | 683.35 | 279.22 | 60.08 | 0.98 | 234.30 | 1.19 | |
S1S8 | 0.00 | 1109.92 | 680.99 | 283.88 | 55.14 | 0.99 | 243.83 | 1.15 | |
S1S9 | 0.00 | 1192.28 | 731.80 | 305.08 | 0.00 | 1.00 | 0.00 | 1.00 | |
[m] | |||||||||
S1S1 | 0.00 | 993.76 | 613.96 | 255.77 | 28.43 | 0.99 | 139.08 | 1.09 | |
S1S2 | 0.00 | 1000.20 | 613.94 | 255.93 | 27.86 | 0.99 | 139.11 | 1.09 | |
S1S3 | 0.00 | 1000.16 | 613.71 | 256.01 | 28.04 | 0.99 | 140.32 | 1.08 | |
S1S4 | 0.00 | 1000.16 | 613.73 | 256.00 | 28.02 | 0.99 | 140.22 | 1.08 | |
S1S5 | 0.00 | 1135.56 | 697.52 | 290.78 | 62.69 | 0.99 | −293.35 | 0.84 | |
S1S6 | 0.00 | 1000.46 | 969.86 | 150.94 | 415.18 | 0.11 | −2155.28 | 3.12 | |
S1S7 | 0.00 | 1000.19 | 616.07 | 251.73 | 35.31 | 0.99 | 128.62 | 1.12 | |
S1S8 | 0.00 | 1000.19 | 613.94 | 255.92 | 28.00 | 0.99 | 139.10 | 1.09 | |
S1S9 | 0.00 | 1041.86 | 639.65 | 266.66 | 0.00 | 1.00 | 0.00 | 1.00 | |
[m] | |||||||||
S1S1 | 0.00 | 639.14 | 394.87 | 164.50 | 6.46 | 0.99 | 42.85 | 1.03 | |
S1S2 | 0.00 | 642.97 | 394.86 | 164.60 | 5.45 | 0.99 | 42.94 | 1.03 | |
S1S3 | 0.00 | 642.96 | 394.72 | 164.65 | 5.56 | 0.99 | 44.10 | 1.03 | |
S1S4 | 0.00 | 642.96 | 394.73 | 164.65 | 5.55 | 0.99 | 44.00 | 1.03 | |
S1S5 | 0.00 | 671.43 | 412.43 | 171.93 | 13.58 | 0.99 | −104.71 | 0.94 | |
S1S6 | 0.00 | 643.13 | 623.77 | 97.07 | 273.96 | 0.10 | −2321.12 | 2.95 | |
S1S7 | 0.00 | 642.97 | 396.23 | 161.89 | 14.99 | 0.99 | 31.51 | 1.06 | |
S1S8 | 0.00 | 642.97 | 394.86 | 164.59 | 5.73 | 0.99 | 42.92 | 1.03 | |
S1S9 | 0.00 | 651.13 | 399.89 | 166.70 | 0.00 | 1.00 | 0.00 | 1.00 |
RMSE | SSI | t | F | ||||||
---|---|---|---|---|---|---|---|---|---|
m | |||||||||
S2S1 | 19.24 | 144.89 | 99.56 | 19.14 | 37.49 | 0.8414 | 2268.84 | 1.85 | |
S2S2 | 10.67 | 97.84 | 58.16 | 11.92 | 79.48 | 0.3665 | 5454.76 | 4.77 | |
S2S3 | 22.07 | 166.54 | 114.67 | 21.95 | 22.04 | 0.9483 | 1264.84 | 1.40 | |
S2S4 | 142.41 | 190.18 | 165.36 | 7.53 | 39.42 | 0.0031 | −2153.75 | 11.95 | |
S2S5 | 41.37 | 180.06 | 138.21 | 12.09 | 24.12 | 0.1184 | −140.60 | 4.63 | |
S2S6 | 100.99 | 245.08 | 172.27 | 26.33 | 38.04 | 0.7567 | −1949.39 | 0.98 | |
S2S7 | 38.07 | 339.38 | 218.03 | 32.35 | 83.97 | 0.5219 | −3942.42 | 0.65 | |
S2S8 | 72.39 | 222.37 | 154.96 | 26.16 | 21.70 | 0.8197 | −1017.37 | 0.99 | |
S2S9 | 25.99 | 199.78 | 136.20 | 26.01 | 0.00 | 1.0000 | 0.00 | 1.00 | |
m | |||||||||
S2S1 | 11.08 | 82.46 | 57.33 | 11.00 | 17.38 | 0.8902 | 1894.18 | 1.66 | |
S2S2 | 4.99 | 46.17 | 27.34 | 5.63 | 47.85 | 0.2769 | 6162.25 | 6.33 | |
S2S3 | 12.36 | 92.02 | 63.96 | 12.22 | 10.59 | 0.9628 | 1106.97 | 1.34 | |
S2S4 | 79.03 | 101.58 | 90.21 | 3.53 | 21.49 | 0.0010 | −2177.18 | 16.09 | |
S2S5 | 22.71 | 96.32 | 75.41 | 6.42 | 13.16 | 0.1179 | −140.34 | 4.86 | |
S2S6 | 57.46 | 135.22 | 95.81 | 14.49 | 22.57 | 0.7335 | −2121.24 | 0.96 | |
S2S7 | 20.82 | 185.75 | 118.99 | 17.71 | 45.85 | 0.5206 | −3939.70 | 0.64 | |
S2S8 | 39.63 | 118.81 | 84.54 | 14.12 | 11.80 | 0.8200 | −1022.00 | 1.01 | |
S2S9 | 14.21 | 108.19 | 74.32 | 14.17 | 0.00 | 1.0000 | 0.00 | 1.00 | |
m | |||||||||
2S1 | 3.38 | 24.52 | 17.33 | 3.32 | 3.50 | 0.9524 | 1322.80 | 1.42 | |
S2S2 | 1.04 | 9.52 | 5.61 | 1.18 | 15.41 | 0.1915 | 7329.21 | 11.31 | |
S2S3 | 3.60 | 26.52 | 18.55 | 3.54 | 2.24 | 0.9839 | 827.40 | 1.25 | |
S2S4 | 22.57 | 27.64 | 25.17 | 0.80 | 5.99 | 0.0001 | −2194.15 | 24.30 | |
S2S5 | 6.38 | 26.36 | 21.05 | 1.76 | 3.68 | 0.1378 | −139.41 | 5.05 | |
S2S6 | 16.80 | 38.03 | 27.25 | 4.09 | 6.81 | 0.7103 | −2285.81 | 0.94 | |
S2S7 | 5.88 | 51.87 | 33.22 | 4.99 | 12.81 | 0.5261 | −3919.38 | 0.63 | |
S2S8 | 11.05 | 32.32 | 23.59 | 3.90 | 3.28 | 0.8214 | −1024.32 | 1.03 | |
S2S9 | 4.01 | 29.75 | 20.74 | 3.96 | 0.00 | 1.0000 | 0.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishop, M.P.; Young, B.W.; Colby, J.D. Numerical Modeling and Parameter Sensitivity Analysis for Understanding Scale-Dependent Topographic Effects Governing Anisotropic Reflectance Correction of Satellite Imagery. Remote Sens. 2022, 14, 5339. https://doi.org/10.3390/rs14215339
Bishop MP, Young BW, Colby JD. Numerical Modeling and Parameter Sensitivity Analysis for Understanding Scale-Dependent Topographic Effects Governing Anisotropic Reflectance Correction of Satellite Imagery. Remote Sensing. 2022; 14(21):5339. https://doi.org/10.3390/rs14215339
Chicago/Turabian StyleBishop, Michael P., Brennan W. Young, and Jeffrey D. Colby. 2022. "Numerical Modeling and Parameter Sensitivity Analysis for Understanding Scale-Dependent Topographic Effects Governing Anisotropic Reflectance Correction of Satellite Imagery" Remote Sensing 14, no. 21: 5339. https://doi.org/10.3390/rs14215339
APA StyleBishop, M. P., Young, B. W., & Colby, J. D. (2022). Numerical Modeling and Parameter Sensitivity Analysis for Understanding Scale-Dependent Topographic Effects Governing Anisotropic Reflectance Correction of Satellite Imagery. Remote Sensing, 14(21), 5339. https://doi.org/10.3390/rs14215339