Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Nanga Parbat Himalaya

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 13124 KB  
Article
Numerical Modeling and Parameter Sensitivity Analysis for Understanding Scale-Dependent Topographic Effects Governing Anisotropic Reflectance Correction of Satellite Imagery
by Michael P. Bishop, Brennan W. Young and Jeffrey D. Colby
Remote Sens. 2022, 14(21), 5339; https://doi.org/10.3390/rs14215339 - 25 Oct 2022
Cited by 4 | Viewed by 2953
Abstract
Anisotropic reflectance correction (ARC) of satellite imagery is required to remove multi-scale topographic effects in imagery. Commonly utilized ARC approaches have not effectively accounted for atmosphere-topographic coupling. Furthermore, it is not clear which topographic effects need to be formally accounted for. Consequently, we [...] Read more.
Anisotropic reflectance correction (ARC) of satellite imagery is required to remove multi-scale topographic effects in imagery. Commonly utilized ARC approaches have not effectively accounted for atmosphere-topographic coupling. Furthermore, it is not clear which topographic effects need to be formally accounted for. Consequently, we simulate the direct and diffuse-skylight irradiance components and formally account for multi-scale topographic effects. A sensitivity analysis was used to determine if characterization schemes can account for a collective treatment of effects, using our parameterization scheme as a basis for comparison. We found that commonly used assumptions could not account for topographic modulation in our simulations. We also found that the use of isotropic diffuse irradiance and a topographic shielding parameter also failed to characterize topographic modulation. Our results reveal that topographic effects govern irradiance variations in a synergistic way, and that issues of ARC need to be formally addressed given atmosphere-topography coupling. Collectively, our results suggest that empirical ARC methods cannot be used to effectively address topographic effects, given inadequate parameterization schemes. Characterizing and removing spectral variation from multispectral imagery will most likely require numerical modeling efforts. More research is warranted to develop/evaluate parameterization schemes that better characterize the anisotropic nature of atmosphere-topography coupling. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

41 pages, 49880 KB  
Article
Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments
by Michael P. Bishop, Brennan W. Young, Jeffrey D. Colby, Roberto Furfaro, Enrico Schiassi and Zhaohui Chi
Remote Sens. 2019, 11(23), 2728; https://doi.org/10.3390/rs11232728 - 20 Nov 2019
Cited by 15 | Viewed by 3542
Abstract
Research involving anisotropic-reflectance correction (ARC) of multispectral imagery to account for topographic effects has been ongoing for approximately 40 years. A large body of research has focused on evaluating empirical ARC methods, resulting in inconsistent results. Consequently, our research objective was to evaluate [...] Read more.
Research involving anisotropic-reflectance correction (ARC) of multispectral imagery to account for topographic effects has been ongoing for approximately 40 years. A large body of research has focused on evaluating empirical ARC methods, resulting in inconsistent results. Consequently, our research objective was to evaluate commonly used ARC methods using first-order radiation-transfer modeling to simulate ASTER multispectral imagery over Nanga Parbat, Himalaya. Specifically, we accounted for orbital dynamics, atmospheric absorption and scattering, direct- and diffuse-skylight irradiance, land cover structure, and surface biophysical variations to evaluate their effectiveness in reducing multi-scale topographic effects. Our results clearly reveal that the empirical methods we evaluated could not reasonably account for multi-scale topographic effects at Nanga Parbat. The magnitude of reflectance and the correlation structure of biophysical properties were not preserved in the topographically-corrected multispectral imagery. The CCOR and SCS+C methods were able to remove topographic effects, given the Lambertian assumption, although atmospheric correction was required, and we did not account for other primary and secondary topographic effects that are thought to significantly influence spectral variation in imagery acquired over mountains. Evaluation of structural-similarity index images revealed spatially variable results that are wavelength dependent. Collectively, our simulation and evaluation procedures strongly suggest that empirical ARC methods have significant limitations for addressing anisotropic reflectance caused by multi-scale topographic effects. Results indicate that atmospheric correction is essential, and most methods failed to adequately produce the appropriate magnitude and spatial variation of surface reflectance in corrected imagery. Results were also wavelength dependent, as topographic effects influence radiation-transfer components differently in different regions of the electromagnetic spectrum. Our results explain inconsistencies described in the literature, and indicate that numerical modeling efforts are required to better account for multi-scale topographic effects in various radiation-transfer components. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

27 pages, 8830 KB  
Article
Multimineral Fingerprinting of Transhimalayan and Himalayan Sources of Indus-Derived Thal Desert Sand (Central Pakistan)
by Wendong Liang, Eduardo Garzanti, Sergio Andò, Paolo Gentile and Alberto Resentini
Minerals 2019, 9(8), 457; https://doi.org/10.3390/min9080457 - 26 Jul 2019
Cited by 20 | Viewed by 7979
Abstract
As a Quaternary repository of wind-reworked Indus River sand at the entry point in the Himalayan foreland basin, the Thal Desert in northern Pakistan stores mineralogical information useful to trace erosion patterns across the western Himalayan syntaxis and the adjacent orogenic segments that [...] Read more.
As a Quaternary repository of wind-reworked Indus River sand at the entry point in the Himalayan foreland basin, the Thal Desert in northern Pakistan stores mineralogical information useful to trace erosion patterns across the western Himalayan syntaxis and the adjacent orogenic segments that fed detritus into the Indus delta and huge deep-sea fan throughout the Neogene. Provenance analysis of Thal Desert sand was carried out by applying optical and semi-automated Raman spectroscopy on heavy-mineral suites of four eolian and 11 fluvial sand samples collected in selected tributaries draining one specific tectonic domain each in the upper Indus catchment. In each sample, the different types of amphibole, garnet, epidote and pyroxene grains—the four dominant heavy-mineral species in orogenic sediment worldwide—were characterized by SEM-EDS spectroscopy. The chemical composition of 4249 grains was thus determined. Heavy-mineral concentration, the relative proportion of heavy-mineral species, and their minerochemical fingerprints indicate that the Kohistan arc has played the principal role as a source, especially of pyroxene and epidote. Within the western Himalayan syntaxis undergoing rapid exhumation, the Southern Karakorum belt drained by the Hispar River and the Nanga Parbat massif were revealed as important sources of garnet, amphibole, and possibly epidote. Sediment supply from the Greater Himalaya, Lesser Himalaya, and Subhimalaya is dominant only for Punjab tributaries that join the Indus River downstream and do not contribute sand to the Thal Desert. The detailed compositional fingerprint of Thal Desert sand, if contrasted with that of lower course tributaries exclusively draining the Himalaya, provides a semi-actualistic key to be used, in conjunction with complementary provenance datasets and geological information, to reconstruct changes in paleodrainage and unravel the relationship between climatic and tectonic forces that controlled the erosional evolution of the western Himalayan-Karakorum orogen in space and time. Full article
(This article belongs to the Special Issue Heavy Minerals: Methods & Case Histories)
Show Figures

Figure 1

22 pages, 32952 KB  
Article
DEM Generation from Multi Satellite PlanetScope Imagery
by Sajid Ghuffar
Remote Sens. 2018, 10(9), 1462; https://doi.org/10.3390/rs10091462 - 13 Sep 2018
Cited by 68 | Viewed by 19492
Abstract
Planet Labs have recently launched a large constellation of small satellites (3U cubesats) capable of imaging the whole Earth landmass everyday. These small satellites capture multiple images of an area on consecutive days or sometimes on the same day with a spatial resolution [...] Read more.
Planet Labs have recently launched a large constellation of small satellites (3U cubesats) capable of imaging the whole Earth landmass everyday. These small satellites capture multiple images of an area on consecutive days or sometimes on the same day with a spatial resolution of 3–4 m. Planet Labs endeavors to operate the constellation in a nadir pointing mode, however, the view angle of these satellites currently varies within a few degrees from the nadir leading to varying B/H ratio for overlapping image pairs. Due to relatively small scene footprint and small off-nadir angle, the baseline to height ratio (B/H) of the overlapping PlanetScope images is often less than 1:10, which is not ideal for 3D reconstruction. Therefore, this paper explores the potential of Digital Elevation Model generation from this multi-date, multi-satellite PlanetScope imagery. The DEM generation from multiple PlanetScope images is achieved using a volumetric stereo reconstruction technique, which applies semi global matching in georeferenced object space. The results are evaluated using a LiDAR based DEM (5 m) over Mount Teide (3718 m) in Canary Islands and the ALOS (30 m) DEM on rugged terrain of the Nanga Parbat massif (8126 m) in the western Himalaya range. The proposed methodology is then applied on images from two PlanetScope satellites overpasses within a couple of minutes difference to compute the DEM of the Khurdopin glacier in the Karakoram range, known for its recent surge. The quantitative assessment of the generated elevation models is done by comparing statistics of the elevation differences between the reference LiDAR and ALOS DEM and the PlanetScope DEM. The Normalized Median of Absolute Deviation (NMAD) of the elevation differences between the computed PlanetScope DEM and LiDAR DEM is 4.1 m and the elevation differences for the ALOS DEM over stable terrain is 3.9 m. The results show that PlanetScope imagery can lead to sufficient quality DEM even with a small baseline to height ratio. Therefore, the daily PlanetScope imagery is a valuable data source and the DEM generated from this imagery can potentially be employed in numerous applications requiring multi temporal DEMs. Full article
Show Figures

Graphical abstract

Back to TopTop