Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measured Features
2.3. Feature Engineering
3. Results
3.1. Variability of Corn N Status Indicators
3.2. Best Vegetation Indices for Predicating Corn N Status Indicators
3.3. Using Machine Learning for Predicting Corn N Indicators
3.4. Accuracy of N Status Diagnosis
4. Discussion
4.1. The Importance of Using Multi-Source Data Fusion for In-Season Corn N Status Prediction
4.2. Important Factors for N Indicator Estimation
4.3. Model Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGB | aboveground biomass |
AWDR | abundant and well-distributed rainfall |
CHU | corn heat units |
CRM | comparative relative maturity |
DVI | difference vegetation index |
GDD | growing degree days |
GDUs | growing degree units |
GDUs_S | GDUs to silk |
GDUs_PM | GDUs to physiological maturity |
MACC | Maccioni index |
MAE | mean absolute error |
N | Nitrogen |
NDVI | normalized difference vegetation index |
NDRE | normalized difference red edge |
NNI | nitrogen nutrition index |
PNC | plant nitrogen concentration |
PNU | plant nitrogen uptake |
PPT | total precipitation |
R2 | coefficient of determination |
RERI | red edge relative index |
RFR | random forest regression |
RMSE | root mean square error |
SCRM | silk comparative relative maturity |
SDI | Shannon diversity index |
SRI | simple ratio index |
SVR | support vector regression |
References
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Liu, B.; Liu, Y.; Li, F.; Khosla, R.; Mulla, D.J.; Zhang, F. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 2017, 214, 365–372. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Mulla, D.J.; Hernandez, J.A.; Wiebers, M.; Robert, P.C. Potential impact of precision nitrogen management on corn yield, protein content, and test weight. Soil Sci. Soc. Am. J. 2007, 71, 1490–1499. [Google Scholar] [CrossRef]
- Tenorio, F.A.M.; Eagle, A.J.; McLellan, E.L.; Cassman, K.G.; Howard, R.; Below, F.E.; Clay, D.E.; Coulter, J.A.; Geyer, A.B.; Joos, D.K.; et al. Assessing variation in maize grain nitrogen concentration and its implications for estimating nitrogen balance in the US North Central region. Field Crops Res. 2019, 240, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Plénet, D.; Lemaire, G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 1999, 216, 65–82. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelier-Huche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Cao, Q.; Yao, Y.; Zhao, G.; Yu, W.; Shen, J.; Yu, K.; Bareth, G. A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere 2018, 28, 814–822. [Google Scholar] [CrossRef]
- Giletto, C.M.; Reussi Calvo, N.I.; Sandaña, P.; Echeverría, H.E.; Bélanger, G. Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato. Eur. J. Agron. 2020, 119, 126114. [Google Scholar] [CrossRef]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yuan, Z.; Yang, T.; Lu, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Chlorophyll meter-based nitrogen fertilizer optimization algorithm and nitrogen nutrition index for in-season fertilization of paddy rice. Agron. J. 2020, 112, 288–300. [Google Scholar] [CrossRef]
- Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; Boschetti, M.; Picchi, V.; Colombo, R. Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sens. 2014, 6, 6549–6565. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Cummings, C.; Miao, Y.; Paiao, G.D.; Kang, S.; Fernández, F.G. Corn nitrogen status diagnosis with an innovative multi-parameter Crop Circle Phenom sensing system. Remote Sens. 2021, 13, 401. [Google Scholar] [CrossRef]
- Lu, J.; Miao, Y.; Shi, W.; Li, J.; Yuan, F. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor. Sci. Rep. 2017, 7, 14073. [Google Scholar] [CrossRef] [PubMed]
- Prado Osco, L.; Marques Ramos, A.P.; Roberto Pereira, D.; Akemi Saito Moriya, É.; Nobuhiro Imai, N.; Takashi Matsubara, E.; Estrabis, N.; De Souza, M.; Marcato Junior, J.; Gonçalves, W.N.; et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens. 2019, 11, 2925. [Google Scholar] [CrossRef] [Green Version]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sens. 2015, 7, 14939–14966. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Solie, J.B.; Stone, M.L.; Martin, K.L.; Freeman, K.W.; Mullen, R.W.; Zhang, H.; Schepers, J.S.; Johnson, G.V. Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant. Anal. 2005, 36, 2759–2781. [Google Scholar] [CrossRef] [Green Version]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Use of a virtual-reference concept to interpret active crop canopy sensor data. Precis. Agric. 2013, 14, 71–85. [Google Scholar] [CrossRef]
- Chen, Z.; Miao, Y.; Lu, J.; Zhou, L.; Li, Y.; Zhang, H.; Lou, W.; Zhang, Z.; Kusnierek, K.; Liu, C. In-season diagnosis of winter wheat nitrogen status in smallholder farmer fields across a village using unmanned aerial vehicle-based remote sensing. Agronomy 2019, 9, 619. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.C.; Brorsen, B.W.; Taylor, R.K.; Solie, J.B.; Raun, W.R. Replicability of nitrogen recommendations from ramped calibration strips in winter wheat. Precis. Agric. 2011, 12, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Stanisław, M.S.; Dariusz, G.; Olga, S.W.; Peter, K.; Michał, S. Sensitivity of sensor-based nitrogen rates to selection of within-field calibration strips in winter wheat. Crop. Pasture Sci. 2017, 68, 101–114. [Google Scholar] [CrossRef]
- Bean, G.M.; Kitchen, N.R.; Camberato, J.J.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.W.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; Scharf, P.C.; et al. Improving an active-optical reflectance sensor algorithm using soil and weather information. Agron. J. 2018, 110, 2541–2551. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Myers, D.B.; Ransom, C.J.; Kitchen, N.R.; Liang, S.-Z.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.W.; et al. Application of machine learning methodologies for predicting corn economic optimal nitrogen rate. Agron. J. 2018, 110, 2596–2607. [Google Scholar] [CrossRef] [Green Version]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.M.; Myers, D.B.; Nafziger, E.D.; et al. Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Comput. Electron. Agric. 2019, 164, 104872. [Google Scholar] [CrossRef] [Green Version]
- Pullanagari, R.; Kereszturi, G.; Yule, I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sens. 2018, 10, 1117. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Miao, Y.; Dong, R.; Zha, H.; Xia, T.; Chen, Z.; Kusnierek, K.; Mi, G.; Sun, H.; Li, M. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. Eur. J. Agron. 2021, 123, 126193. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Shanahan, J.F.; Ransom, C.J.; Bandura, C.J.; Bean, G.M.; Camberato, J.J.; Carter, P.R.; Clark, J.D.; Ferguson, R.B.; Fernández, F.G.; et al. A public–industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes. Agron. J. 2017, 109, 2371–2389. [Google Scholar] [CrossRef] [Green Version]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marley, S.K. Corn Growth and Development (Extension Publication PM 1009); Iowa State University Extension: Ames, IA, USA, 2011. [Google Scholar]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.; Nafziger, E.D.; Sawyer, J.E.; et al. Corn nitrogen rate recommendation tools’ performance across eight US Midwest corn belt states. Agron. J. 2020, 112, 470–492. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B 2001, 61, 52–61. [Google Scholar] [CrossRef]
- Xu, M.; Liu, R.; Chen, J.M.; Liu, Y.; Shang, R.; Ju, W.; Wu, C.; Huang, W. Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sens. Environ. 2019, 224, 60–73. [Google Scholar] [CrossRef]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Crop sensor based non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture 2020, 10, 148. [Google Scholar] [CrossRef]
- Bonfil, D.J. Wheat phenomics in the field by RapidScan: NDVI vs. NDRE. Israel J. Plant Sci. 2017, 64, 41–54. [Google Scholar] [CrossRef]
- Niel, T.G.V.; McVicar, T.R. Current and potential uses of optical remote sensing in rice-based irrigation systems: A review. Aust. J. Agric. Res. 2004, 55, 155. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-season diagnosis of rice nitrogen status using proximal fluorescence canopy sensor at different growth stages. Remote Sens. 2019, 11, 1847. [Google Scholar] [CrossRef] [Green Version]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Andrén, O.; Kätterer, T.; De Jong, R.; VandenBygaart, A.J.; Angers, D.A.; Parent, L.E.; Gregorich, E.G. Soil carbon dynamics in Canadian Agricultural Ecoregions: Quantifying climatic influence on soil biological activity. Agric. Ecosyst. Environ. 2007, 122, 461–470. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Kitchen, N.R.; Raun, W.R.; Schepers, J.S. Responsive in-season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Anandhi, A. Growing degree days—Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecol. Indic. 2016, 61, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Griffin, T.S.; Honeycutt, C.W. Using growing degree days to predict nitrogen availability from livestock manures. Soil Sci. Soc. Am. J. 2000, 64, 1876–1882. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.Y.; Lu, C.T.; Chan, L.F.; Wei, M.L. Seasonal variation in linear increase of Taro harvest index explained by growing degree days. Agron. J. 2001, 93, 1136–1141. [Google Scholar] [CrossRef]
- Dhillon, J.S.; Figueiredo, B.M.; Eickhoff, E.M.; Raun, W.R. Applied use of growing degree days to refine optimum times for nitrogen stress sensing in winter wheat. Agron. J. 2020, 112, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, T.; Ahmad, A.; Hussain, A.; Ali, M.A. Maize hybrids response to nitrogen rates at multiple locations in semiarid environment. Pak. J. Bot. 2009, 41, 207–224. [Google Scholar]
- Dwyer, L.M.; Anderson, A.M.; Stewart, D.W.; Ma, B.L.; Tollenaar, M. Changes in maize hybrid photosynthetic response to leaf nitrogen, from pre-anthesis to grain fill. Agron. J. 1995, 87, 1221–1225. [Google Scholar] [CrossRef]
- D’Andrea, K.E.; Otegui, M.E.; Cirilo, A.G. Kernel number determination differs among maize hybrids in response to nitrogen. Field Crops Res. 2008, 105, 228–239. [Google Scholar] [CrossRef]
- Haegele, J.W.; Cook, K.A.; Nichols, D.M.; Below, F.E. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Sci. 2013, 53, 1256–1268. [Google Scholar] [CrossRef] [Green Version]
- Assefa, Y.; Prasad, P.V.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, I.A. A new insight into corn yield: Trends from 1987 through 2015. Crop Sci. 2017, 57, 2799–2811. [Google Scholar] [CrossRef] [Green Version]
- Pioneer, C.A. Tips to Compare Corn Maturity. Available online: https://www.pioneer.com/us/agronomy/compare-corn-maturity.html (accessed on 11 December 2021).
- Archer, D.W.; Halvorson, A.D.; Reule, C.A. Economics of irrigated continuous corn under conventional-till and no-till in Northern Colorado. Agron. J. 2008, 100, 1166–1172. [Google Scholar] [CrossRef]
- Randall, G.W.; Bandel, V.A. Overview of nitrogen management for conservation tillage system: An overview. In Effect of Conservation Tillage on Groundwater Quality-Nitrate and Pesticides; Logan, T.J., Ed.; Lewis Publishers: Chelsea, MI, USA, 1987; pp. 39–64. [Google Scholar]
- Edalat, M.; Naderi, R.; Egan, T.P. Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. J. Plant Nutr. 2019, 42, 2310–2322. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr. Cycl. Agroecosyst. 2005, 72, 101–120. [Google Scholar] [CrossRef]
- Van Roekel, R.J.; Coulter, J.A. Agronomic responses of corn to planting date and plant density. Agron. J. 2011, 103, 1414–1422. [Google Scholar] [CrossRef]
- Shapiro, C.A.; Wortmann, C.S. Corn response to nitrogen rate, row spacing, and plant density in Eastern Nebraska. Agron. J. 2006, 98, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Lo, T.H.; Rudnick, D.R.; Krienke, B.T.; Heeren, D.M.; Ge, Y.; Shaver, T.M. Water effects on optical canopy sensing for late-season site-specific nitrogen management of maize. Comput. Electron. Agric. 2019, 162, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Rogers, J.; Gunn, S. Identifying Feature Relevance Using a Random Forest. In Subspace, Latent Structure and Feature Selection; Springer: Bohinj, Slovenia, 2006; pp. 173–184. [Google Scholar]
- Nguyen, T.T.; Huang, J.Z.; Nguyen, T.T. Unbiased feature selection in learning random forests for high-dimensional data. Sci. World J. 2015, 471371. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
Index | Description | Formulas | Reference |
---|---|---|---|
NDVI | Normalized difference vegetation index | [34] | |
SRI | Simple ratio index | [35] | |
DVI | Difference vegetation index | [36] | |
MACC | Maccioni index | [37] | |
NDRE | Normalized difference red edge index | [36] | |
RERI | Red edge relative index | [38] |
Index | Description | Formulas | Reference |
---|---|---|---|
CHU | Corn heat units | [39] | |
PPT | Total precipitation | [39] | |
GDD | Growing degree days | [39] | |
AWDR | Abundant and well-distributed rainfall | PPT × SDI | [39] |
SDI | Shannon diversity index | [39] |
Year | State | Site | Environment Information (E) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Soil Texture | Weather Information | |||||||||
Clay (%) | Silt (%) | Sand (%) | CHU (°C) | GDD (°C) | PPT (mm) | SDI | AWDR (mm) | |||
2015 | Iowa | Boone | 25 | 33 | 43 | 1142 | 459 | 272 | 0.67 | 183 |
2016 | Iowa | Story | 24 | 36 | 40 | 1107 | 518 | 95 | 0.56 | 53 |
2015 | Nebraska | Brandes | 3 | 7 | 91 | 1151 | 572 | 236 | 0.67 | 159 |
2015 | Illinois | Brownstown | 22 | 65 | 13 | 1138 | 478 | 162 | 0.68 | 111 |
2016 | Nebraska | Kyes | 19 | 40 | 42 | 1229 | 575 | 303 | 0.68 | 205 |
2015 | Missouri | LoneTree | 32 | 63 | 5 | 1455 | 576 | 333 | 0.75 | 251 |
2015 | Nebraska | SCAL | 31 | 61 | 9 | 943 | 473 | 426 | 0.64 | 202 |
2016 | Nebraska | SCAL | 29 | 63 | 8 | 1543 | 662 | 292 | 0.63 | 185 |
2016 | Illinois | Shumway | 14 | 71 | 15 | 1146 | 485 | 196 | 0.71 | 139 |
2015 | Missouri | Troth | 29 | 44 | 27 | 1223 | 475 | 164 | 0.63 | 103 |
2016 | Missouri | Troth | 40 | 51 | 9 | 1012 | 407 | 188 | 0.65 | 123 |
2015 | Illinois | Urbana | 26 | 65 | 9 | 1141 | 474 | 214 | 0.52 | 111 |
2016 | Illinois | Urbana | 26 | 66 | 8 | 1181 | 482 | 166 | 0.67 | 110 |
Year | State | Site | Genetic Information (G) | Management Information (M) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hybrid | CRM (Day) | SCRM (Day) | GDUs to Silk (°C) | GDUs to Physiological Maturity (°C) | Previous Crop | Irrigation | Tillage | Seeding Rate (Seeds ha−1) | |||
2015 | Iowa | Boone | P0987AMX | 105 | 108 | 726 | 1443 | Soybean | No | Yes | 87,500 |
2016 | Iowa | Story | P1197AMXT | 111 | 113 | 760 | 1499 | Soybean | No | Yes | 87,500 |
2015 | Nebraska | Brandes | P1151HR | 111 | 106 | 716 | 1416 | Soybean | Yes | No | 87,500 |
2015 | Illinois | Brownstown | P1498AM | 114 | 110 | 743 | 1482 | Soybean | No | Yes | 87,500 |
2016 | Nebraska | Kyes | P1197AMT | 111 | 113 | 760 | 1499 | Soybean | Yes | No | 80,000 |
2015 | Missouri | LoneTree | P1498AM | 114 | 110 | 743 | 1482 | Soybean | No | Yes | 87,500 |
2015 | Nebraska | SCAL | P1151HR | 111 | 106 | 715 | 1416 | Soybean | Yes | No | 85,000 |
2016 | Nebraska | SCAL | P1197AMT | 111 | 113 | 760 | 1499 | Corn | Yes | No | 85,000 |
2016 | Illinois | Shumway | P1197AM | 111 | 113 | 760 | 1499 | Soybean | No | Yes | 80,000 |
2015 | Missouri | Troth | P1498AM | 114 | 110 | 743 | 1482 | Soybean | No | Yes | 87,500 |
2016 | Missouri | Troth | P1197AM | 111 | 113 | 760 | 1499 | Soybean | Yes | Yes | 87,500 |
2015 | Illinois | Urbana | P0987AMX | 105 | 108 | 727 | 1443 | Soybean | No | Yes | 87,500 |
2016 | Illinois | Urbana | P1197AMXT | 111 | 113 | 760 | 1499 | Soybean | No | Yes | 90,000 |
Parameters | Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|
Calibration dataset (n = 310) | |||||
AGB (t ha−1) | 0.5 | 6.7 | 2.4 | 1.3 | 54 |
PNC (g kg−1) | 8.8 | 47.8 | 27.9 | 8.4 | 30 |
PNU (kg ha−1) | 7.7 | 141.0 | 62.5 | 28.0 | 45 |
NNI | 0.3 | 1.7 | 1.1 | 0.3 | 26 |
Prediction dataset (n = 104) | |||||
AGB (t ha−1) | 0.6 | 6.6 | 2.6 | 1.3 | 51 |
PNC (g kg−1) | 9.3 | 44.5 | 26.9 | 8.5 | 32 |
PNU (kg ha−1) | 15.2 | 141.2 | 62.6 | 26.2 | 42 |
NNI | 0.4 | 1.5 | 1.1 | 0.3 | 26 |
Model Inputs | Model Type | Calibration | Prediction | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
AGB | / | / | / | / | / | / | / |
PNC | / | / | / | / | / | / | / |
PNU | y = 3.5088 × 10−7.4995NDRE | 0.29 | 18.15 | 13.74 | 0.30 | 17.60 | 13.12 |
NNI | y = 0.0672 × 104.4631MACC | 0.22 | 0.20 | 0.16 | 0.21 | 0.20 | 0.16 |
Model Inputs | Model Type | Calibration | Prediction | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
Aboveground biomass (t ha−1) | |||||||
NDVI + NDRE | SVR | / | / | / | / | / | / |
RFR | 0.05 | 1.17 | 0.93 | 0.03 | 1.58 | 0.94 | |
NDVI + NDRE + G, E, M | SVR | 0.91 | 0.40 | 0.28 | 0.83 | 0.54 | 0.40 |
RFR | 0.97 | 0.23 | 0.15 | 0.88 | 0.45 | 0.31 | |
Plant N concentration (g kg−1) | |||||||
NDVI + NDRE | SVR | / | / | / | / | / | / |
RFR | 0.89 | 2.71 | 2.02 | 0.15 | 7.83 | 5.30 | |
NDVI + NDRE + G, E, M | SVR | 0.91 | 2.55 | 1.43 | 0.90 | 2.70 | 2.20 |
RFR | 0.95 | 1.80 | 1.23 | 0.93 | 2.28 | 1.81 | |
Plant N uptake (kg ha−1) | |||||||
NDVI + NDRE | SVR | / | / | / | / | / | / |
RFR | 0.34 | 22.31 | 18.01 | 0.21 | 23.18 | 18.02 | |
NDVI + NDRE + G, E, M | SVR | 0.85 | 10.80 | 6.88 | 0.74 | 13.18 | 9.64 |
RFR | 0.93 | 7.41 | 5.64 | 0.84 | 10.53 | 8.09 | |
N nutrition index | |||||||
NDVI + NDRE | SVR | 0.13 | 0.26 | 0.22 | 0.11 | 0.26 | 0.22 |
RFR | 0.18 | 0.25 | 0.20 | 0.09 | 0.26 | 0.21 | |
NDVI + NDRE + G, E, M | SVR | 0.87 | 0.10 | 0.09 | 0.80 | 0.12 | 0.09 |
RFR | 0.93 | 0.08 | 0.06 | 0.85 | 0.11 | 0.08 |
N Conditions | SVR | RFR | ||||
---|---|---|---|---|---|---|
Precision (%) | Recall (%) | F1_Scale (%) | Precision (%) | Recall (%) | F1_Scale (%) | |
N deficient (n = 40) | 86 | 30 | 44 | 100 | 68 | 81 |
N optimal (n = 6) | 4 | 17 | 7 | 50 | 100 | 67 |
N surplus (n = 58) | 85 | 98 | 91 | 88 | 98 | 93 |
Overall accuracy (%) | 67 | 87 | ||||
Kappa coefficient | 0.43 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Miao, Y.; Ransom, C.J.; Bean, G.M.; Kitchen, N.R.; Fernández, F.G.; Sawyer, J.E.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; et al. Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning. Remote Sens. 2022, 14, 394. https://doi.org/10.3390/rs14020394
Li D, Miao Y, Ransom CJ, Bean GM, Kitchen NR, Fernández FG, Sawyer JE, Camberato JJ, Carter PR, Ferguson RB, et al. Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning. Remote Sensing. 2022; 14(2):394. https://doi.org/10.3390/rs14020394
Chicago/Turabian StyleLi, Dan, Yuxin Miao, Curtis J. Ransom, Gregory Mac Bean, Newell R. Kitchen, Fabián G. Fernández, John E. Sawyer, James J. Camberato, Paul R. Carter, Richard B. Ferguson, and et al. 2022. "Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning" Remote Sensing 14, no. 2: 394. https://doi.org/10.3390/rs14020394
APA StyleLi, D., Miao, Y., Ransom, C. J., Bean, G. M., Kitchen, N. R., Fernández, F. G., Sawyer, J. E., Camberato, J. J., Carter, P. R., Ferguson, R. B., Franzen, D. W., Laboski, C. A. M., Nafziger, E. D., & Shanahan, J. F. (2022). Corn Nitrogen Nutrition Index Prediction Improved by Integrating Genetic, Environmental, and Management Factors with Active Canopy Sensing Using Machine Learning. Remote Sensing, 14(2), 394. https://doi.org/10.3390/rs14020394