Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precise Leveling
2.3. InSAR Measurements
2.4. Comparison of Precise Leveling and InSAR Timeseries
3. Results
3.1. Quantifying Multi-Scale Variability in Peat Surface Motion within Blanket Peatland
3.1.1. Munsary (Low Lying Blanket Peatland Large Pools)
3.1.2. Munsary (Low Lying Blanket Peatland Medium Pools)
3.1.3. Munsary (Low Lying Blanket Peatland Margins)
3.1.4. Knockfin Heights (Incised Upland Blanket Peatland)
3.2. Comparison with InSAR
4. Discussion
4.1. Precise Leveling as a Peatland Surface Motion Measurement Technique
4.2. Comparison between Ground-Based and APSIS InSAR Techniques
Peat Surface Motion Timeseries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alshammari, L.; Boyd, D.S.; Sowter, A.; Marshall, C.; Andersen, R.; Gilbert, P.; Marsh, S.; Large, D.J. Use of Surface Motion Characteristics Determined by InSAR to Assess Peatland Condition. J. Geophys. Res. Biogeosci. 2020, 125, e2018JG004953. [Google Scholar] [CrossRef]
- Fiaschi, S.; Holohan, E.P.; Sheehy, M.; Floris, M. PS-InSAR Analysis of Sentinel-1 Data for Detecting Ground Motion in Temperate Oceanic Climate Zones: A Case Study in the Republic of Ireland. Remote Sens. 2019, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Tampuu, T.; Praks, J.; Uiboupin, R.; Kull, A. Long Term Interferometric Temporal Coherence and DInSAR Phase in Northern Peatlands. Remote Sens. 2020, 12, 1566. [Google Scholar] [CrossRef]
- Hoyt, A.M.; Chaussard, E.; Seppalainen, S.S.; Harvey, C.F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 2020, 13, 435–440. [Google Scholar] [CrossRef]
- Marshall, C.; Bradley, A.V.; Andersen, R.; Large, D.J. Using Peatland Surface Motion (Bog Breathing) to Monitor Peatland Action Sites; 2021; Available online: https://www.nature.scot/doc/naturescot-research-report-1269-using-peatland-surface-motion-bog-breathing-monitor-peatland-action (accessed on 11 November 2021).
- Andersen, R.; Felgate, S.; Fernandez-Garcia, P.; Gaffney, P.; Gilbert, P.; Hancock, M.; Large, D.; Leith, F.; Marshall, C.; Mayor, D.; et al. Impact of land management on fire resilience and carbon fate in blanket bogs: The FireBlanket project. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar]
- Bradley, A.V.; Andersen, R.; Marshall, C.; Sowter, A.; Large, D.J. Identification of typical eco-hydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dynam. Discuss. 2021. [Google Scholar] [CrossRef]
- Zanello, F.; Teatini, P.; Putti, M.; Gambolati, G. Long term peatland subsidence: Experimental study and modeling scenarios in the Venice coastland. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef]
- Evans, C.D.; Callaghan, N.; Jaya, A.; Grinham, A.; Sjogersten, S.; Page, S.E.; Harrison, M.E.; Kusin, K.; Kho, L.K.; Ledger, M.; et al. A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Water Table Dynamics. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Ledger, M.; Sjögersten, S.; Sowter, A.; Large, D.; Evans, C.; Morrison, K. Determining regional scale carbon losses from tropical peatlands using ISBAS-InSAR. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar]
- Wösten, J.H.M.; Ismail, A.B.; van Wijk, A.L.M. Peat subsidence and its practical implications: A case study in Malaysia. Geoderma 1997, 78, 25–36. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.D.; Williamson, J.M.; Kacaribu, F.; Irawan, D.; Suardiwerianto, Y.; Hidayat, M.F.; Laurén, A.; Page, S.E. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 2019, 338, 410–421. [Google Scholar] [CrossRef]
- Podgrajsek, E.; Sahlée, E.; Bastviken, D.; Holst, J.; Lindroth, A.; Tranvik, L.; Rutgersson, A. Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes. Biogeosciences 2014, 11, 4225–4233. [Google Scholar] [CrossRef] [Green Version]
- Rochette, P.; Ellert, B.; Gregorich, E.G.; Desjardins, R.L.; Pattey, E.; Lessard, R.; Johnson, B.G. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci. 1997, 77, 195–203. [Google Scholar] [CrossRef]
- Glaser, P.H.; Rhoades, J.; Reeve, A.S. The hydraulic conductivity of peat with respect to scaling, botanical composition, and greenhouse gas transport: Mini-aquifer tests from the Red Lake Peatland, Minnesota. J. Hydrol. 2021, 596, 125686. [Google Scholar] [CrossRef]
- Sterk, H.P. Assessing the Condition of the Flow Country Peatlands to Support Their Future Protection; University of the Highlands and Islands: Inverness, UK, 2021. [Google Scholar]
- Howie, S.A.; Hebda, R.J. Bog surface oscillation (mire breathing): A useful measure in raised bog restoration. Hydrol. Processes 2018, 32, 1518–1530. [Google Scholar] [CrossRef]
- Glaser, P.H.; Chanton, J.P.; Morin, P.; Rosenberry, D.O.; Siegel, D.I.; Ruud, O.; Chasar, L.I.; Reeve, A.S. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, G.W.; Price, J.S. A conceptual model of volume-change controls on the hydrology of cutover peats. J. Hydrol. 2005, 302, 13–27. [Google Scholar] [CrossRef]
- Fritz, C.; Campbell, D.I.; Schipper, L.A. Oscillating peat surface levels in a restiad peatland, New Zealand—Magnitude and spatiotemporal variability. Hydrol. Processes 2008, 22, 3264–3274. [Google Scholar] [CrossRef]
- Price, J.S. Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour. Res. 2003, 39, 1241. [Google Scholar] [CrossRef]
- Waddington, J.M.; Kellner, E.; Strack, M.; Price, J.S. Differential peat deformation, compressibility, and water storage between peatland microforms: Implications for ecosystem function and development. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Waddington, J.M.; Morris, P.J.; Kettridge, N.; Granath, G.; Thompson, D.K.; Moore, P.A. Hydrological feedbacks in northern peatlands. Ecohydrology 2015, 8, 113–127. [Google Scholar] [CrossRef]
- NatureScot. Guidance-Peatland Condition Assessment. 2017. Available online: https://www.nature.scot/sites/default/files/2017-10/Guidance-Peatland-Action-Peatland-Condition-Assessment-Guide-A1916874.pdf (accessed on 6 June 2021).
- Ikkala, L.; Ronkanen, A.-K.; Utriainen, O.; Kløve, B.; Marttila, H. Peatland subsidence enhances cultivated lowland flood risk. Soil Tillage Res. 2021, 212, 105078. [Google Scholar] [CrossRef]
- Morton, P.A.; Heinemeyer, A. Bog breathing: The extent of peat shrinkage and expansion on blanket bogs in relation to water table, heather management and dominant vegetation and its implications for carbon stock assessments. Wetl. Ecol. Manag. 2019, 27, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, R.; Clough, J.; Clutterbuck, B.; Bain, C.G.; Goodyer, E. Eyes on the Bog-Long Term Monitoring Network for UK Peatlands; 2019; Available online: https://www.iucn-uk-peatlandprogramme.org/sites/default/files/2019-08/Eyes%20on%20the%20Bog%20leaflet.pdf (accessed on 13 October 2021).
- Reeve, A.S.; Glaser, P.H.; Rosenberry, D.O. Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA. J. Geophys. Res. Biogeosci. 2013, 118, 1616–1626. [Google Scholar] [CrossRef]
- Sloan, T.J.; Payne, R.J.; Anderson, A.R.; Gilbert, P.; Mauquoy, D.; Newton, A.J.; Andersen, R. Ground surface subsidence in an afforested peatland fifty years after drainage and planting. Mires Peat 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, D.; Boyd, D.; Sowter, A.; Anderson, R.; Andersen, R.; Marsh, S. Long-Term Peatland Condition Assessment via Surface Motion Monitoring Using the ISBAS DInSAR Technique over the Flow Country, Scotland. Remote Sens. 2018, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, R.; Charman, D.J.; Everingham, F.; O’Reilly, R.M.; Palmer, M.A.; Rowell, T.A.; Stroud, D.A. The Flow Country: The Peatlands of Caithness and Sutherland; Joint Nature Conservation Committee: Peterborough, UK, 1988.
- Avercamp, J.; Marshall, C.; Sterk, H.P.; Gilbert, P.; Andersen, R.; Marsh, S.; Large, D.J. Peat Characteristic Data from Blanket Peatland in the Flow Country, Caithness and Sutherland, 2018; (Dataset); NERC EDS Environmental Information Data Centre: Lancaster, UK, 2021. [Google Scholar] [CrossRef]
- Hancock, M.H.; England, B.; Cowie, N.R. Knockfin Heights: A High-Altitude Flow Country Peatland. Showing extensive erosion of uncertain origin. Mires Peat 2018, 23, 1–20. [Google Scholar] [CrossRef]
- Marshall, C.; Large, D.J.; Andersen, R.; Gilbert, P.; Sterk, H.P. Monthly Precise Levelling Data of Peat Surface Motion from Upland and Lowland Blanket Peatland in the Flow Country, Scotland, UK, 2017–2019; (Dataset); NERC Environmental Information Data Centre: Lancaster, UK, 2021. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Marshall, C.; Large, D.J.; Andersen, R.; Bradley, A.W.; Sowter, A.; Gilbert, P.; Sterk, H.P.; Marsh, S. Interferometric Synthetic Aperture Radar Ground Motion and Timeseries Data over the Flow Country, Caithness and Sutherland, UK, March 2015–July 2019; (Dataset); NERC EDS Environmental Information Data Centre: Lancaster, UK, 2021. [Google Scholar] [CrossRef]
- Bateson, L.; Cigna, F.; Boon, D.; Sowter, A. The application of the Intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield, UK. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Sowter, A. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK. Remote Sens. Environ. 2017, 202, 177–198. [Google Scholar] [CrossRef]
- Gong, W.; Thiele, A.; Hinz, S.; Meyer, F.J.; Hooper, A.; Agram, P.S. Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation. Remote Sens. 2016, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Sowter, A.; Bin Che Amat, M.; Cigna, F.; Marsh, S.; Athab, A.; Alshammari, L. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230–242. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, R.J.; Ratcliffe, J.; Andersen, R.; Flitcroft, C.E. A meta-database of peatland palaeoecology in Great Britain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 457, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Sloan, T.J. Quantifying Carbon Accumulation and Loss in Afforested Peatlands; University of York: York, UK, 2019. [Google Scholar]
- Morrison, K. Mapping Subsurface Archaeology with SAR. Archaeol. Prospect. 2013, 20, 149–160. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Waldron, S.; Tanaka, A. Monitoring peat subsidence and carbon emission in Indonesia peatlands using InSAR time series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6797–6798. [Google Scholar]
- Marshall, C.; Large, D.J.; Athab, A.; Evers, S.L.; Sowter, A.; Marsh, S.; Sjögersten, S. Monitoring tropical peat related settlement using ISBAS InSAR, Kuala Lumpur International Airport (KLIA). Eng. Geol. 2018, 244, 57–65. [Google Scholar] [CrossRef]
Site | Datum Date |
---|---|
M-A Pre | 14 May 2018 |
M-A Post | 26 February 2018 |
M-B | 14 May 2018 |
M-C | 14 May 2018 |
M-D | 14 May 2018 |
M-E Pre | 15 March 2018 |
M-E Post | 26 February 2018 |
M-F Pre | 10 April 2018 |
M-F Post | 26 February 2018 |
M-G | 14 May 2018 |
KH-A | 15 May 2018 |
KH-B | 3 September 2017 |
KH-C | 3 September 2017 |
KH-D | 3 September 2017 |
KH-E | 3 September 2017 |
KH-F | 3 September 2017 |
KH-G | 3 September 2017 |
Low-Lying Munsary Site | M-A | M-B | M-C | M-D | M-E | M-F | M-G | Mean |
InSAR (m/yr) | −0.001 | −0.0026 | −0.0062 | −0.0058 | −0.0044 | −0.0058 | −0.0026 | −0.004 |
Ground (m/yr) | −0.030 | −0.0066 | −0.0219 | −0.0077 | −0.0329 | −0.0475 | −0.0066 | −0.022 |
Diff. (m/yr) | 0.0289 | 0.0040 | 0.0157 | 0.0018 | 0.0285 | 0.0416 | 0.0040 | 0.018 |
Pre drought InSAR (m/yr) | 0.002 | −0.0004 | −0.0007 | −0.0026 | −0.0011 | −0.0022 | −0.007 | −0.002 |
Pre-drought Ground (m/yr) | 0.002 | −0.0058 | 0.007 | −0.0015 | −0.0066 | −0.0110 | −0.005 | −0.003 |
Pre-drought Diff (m/yr) | −0.000 | 0.0055 | −0.0073 | −0.0011 | 0.0055 | 0.0088 | −0.0018 | 0.0013 |
Upland Knockfin Heights Site | KH-A | KH-B | KH-C | KH-D | KH-E | KH-F | KH-G | Mean |
InSAR (m/yr) | −0.003 | −0.0012 | −0.0001 | −0.0017 | −0.0012 | −0.0024 | −0.0031 | −0.002 |
Ground (m/yr) | −0.006 | −0.0024 | −0.0034 | −0.0018 | −0.0037 | −0.0054 | −0.0033 | −0.004 |
Diff. (m/yr) | 0.0025 | 0.0012 | 0.0032 | 0.0000 | 0.0025 | 0.0030 | 0.0002 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, C.; Sterk, H.P.; Gilbert, P.J.; Andersen, R.; Bradley, A.V.; Sowter, A.; Marsh, S.; Large, D.J. Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sens. 2022, 14, 336. https://doi.org/10.3390/rs14020336
Marshall C, Sterk HP, Gilbert PJ, Andersen R, Bradley AV, Sowter A, Marsh S, Large DJ. Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sensing. 2022; 14(2):336. https://doi.org/10.3390/rs14020336
Chicago/Turabian StyleMarshall, Chris, Henk Pieter Sterk, Peter J. Gilbert, Roxane Andersen, Andrew V. Bradley, Andrew Sowter, Stuart Marsh, and David J. Large. 2022. "Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring" Remote Sensing 14, no. 2: 336. https://doi.org/10.3390/rs14020336
APA StyleMarshall, C., Sterk, H. P., Gilbert, P. J., Andersen, R., Bradley, A. V., Sowter, A., Marsh, S., & Large, D. J. (2022). Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sensing, 14(2), 336. https://doi.org/10.3390/rs14020336