High-Resolution Direct Push Sensing in Wetland Geoarchaeology—First Traces of Off-Site Construction Activities at the Fossa Carolina
Abstract
:1. Introduction
1.1. Challenging Issues in Geoarchaeological Wetland Exploration
1.2. The Fossa Carolina—Previous Geoarchaeological Findings
1.3. Linear Magnetic Anomaly at the Fossa Carolina
1.4. Aims of this Study
2. Geographical Setting of the Fossa Carolina
3. Methods
3.1. SQUID Magnetic Prospection and Depth Calculation of Intensive Magnetic Anomalies
3.2. Direct Push Sensing
3.2.1. Colour Logging Tool (CLT)
3.2.2. Electrical Conductivity Logging (EC)
3.3. Vibra-Coring
3.4. Laboratory Analysis
3.4.1. Grain Size Analysis
3.4.2. Geochemical and Rock Magnetic Sediment Analysis
3.5. Age Control Measurements
3.5.1. Thermoluminescence (TL) Dating
3.5.2. Radiocarbon Dating
3.5.3. Age Control by Archaeological Findings
4. Results and Interpretation
4.1. SQUID Magnetic Survey and Depth Modelling of the Intensive Magnetic Anomaly
4.2. Chronostratigraphical Units of the Fossa Carolina Cross-Section
5. Discussion
5.1. A Multi-Method Approach with High-Resolution Direct Push Sensing
5.2. Origin of the Magnetic Mass Anomaly
5.3. New Hints about the Hydro-Engineering Concept and Navigability
5.4. Construction Site Remains at Early Medieval Buildings
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Smedt, P.; van Meirvenne, M.; Herremans, D.; de Reu, J.; Saey, T.; Meerschman, E.; Crombé, P.; de Clercq, W. The 3-D reconstruction of medieval wetland reclamation through electromagnetic induction survey. Sci. Rep. 2013, 3, 1517. [Google Scholar] [CrossRef] [Green Version]
- Verhegge, J.; Storme, A.; Cruz, F.; Crombé, P. Cone penetration testing for extensive mapping of deeply buried Late Glacial coversand landscape paleotopography. Geoarchaeology 2020, 36, 130–148. [Google Scholar] [CrossRef]
- Werther, L.; Mehler, N.; Schenk, G.J.; Zielhofer, C. On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research. Water 2021, 13, 2188. [Google Scholar] [CrossRef]
- Werther, L.; Zielhofer, C.; Herzig, F.; Leitholdt, E.; Schneider, M.; Linzen, S.; Berg-Hobohm, S.; Ettel, P.; Kirchner, A.; Dunkel, S. Häfen verbinden. Neue Befunde zu Verlauf, wasserbaulichem Konzept und Verlandung des Karlsgrabens. In Häfen im 1. Millennium AD: Bauliche Konzepte, Herrschaftliche und Religiöse Einflüsse, 1st ed.; Schmidts, T., Vucetic, M., Eds.; Schnell & Steiner: Regensburg, Germany, 2015; ISBN 978-3-88467-249-5. [Google Scholar]
- Mayr, C.; Matzke-Karasz, R.; Manthe, P.; Arnold, J.; Hänfling, C.; Hilber, J.; Spitzenberger, D.; Schmid, W.; Schönfeld, G. Environmental change in the vicinity of the Neolithic wetland settlement Pestenacker (S-Germany) during the last 6600 years. J. Archaeol. Sci. 2015, 54, 396–409. [Google Scholar] [CrossRef]
- Menotti, F.; O’Sullivan, A. (Eds.) The Oxford Handbook of Wetland Archaeology, 1st ed.; Oxford University Press: Oxford, UK, 2013; ISBN 9780199573493. [Google Scholar]
- Bates, M.R.; Bates, C.R. Multidisciplinary Approaches to the Geoarchaeological Evaluation of Deeply Stratified Sedimentary Sequences: Examples from Pleistocene and Holocene Deposits in Southern England, United Kingdom. J. Archaeol. Sci. 2000, 27, 845–858. [Google Scholar] [CrossRef]
- Werther, L.; Feiner, D. Der Karlsgraben im Fokus der Archäologie. In Großbaustelle 793: Das Kanalprojekt Karls des Großen zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 33–40. ISBN 978-3-88467-232-7. [Google Scholar]
- Zielhofer, C.; Rabbel, W.; Wunderlich, T.; Vött, A.; Berg, S. Integrated geophysical and (geo)archaeological explorations in wetlands. Quat. Int. 2018, 473, 1–2. [Google Scholar] [CrossRef]
- Caple, C. Reburial of Waterlogged Wood, The problems and Potential of this Conservation Technique. Inter. Biodeter. Biodegr. 1994, 34, 61–72. [Google Scholar] [CrossRef]
- Cronyn, J.M. The Elements of Archaeological Conservation; Reprint; Routledge: London, UK, 2005; ISBN 0-415-01207-4. [Google Scholar]
- Drahor, M.G. Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey. J. Appl. Geophy. 2006, 59, 205–223. [Google Scholar] [CrossRef]
- Kvamme, K.L. Geophysical Surveys as Landscape Archaeology. Am. Antiq. 2003, 68, 435–457. [Google Scholar] [CrossRef]
- Viberg, A.; Trinks, I.; Lidén, K. A Review of the Use of Geophysical Archaeological Prospection in Sweden. Archaeol. Prospect. 2011, 18, 43–56. [Google Scholar] [CrossRef]
- Dalan, R.A.; Banerjee, S.K. Solving Archaeological Problems using Techniques of Soil Magnetism. Geoarchaeology 1998, 13, 3–36. [Google Scholar] [CrossRef]
- Rabiger-Völlmer, J.; Schmidt, J.; Linzen, S.; Schneider, M.; Werban, U.; Dietrich, P.; Wilken, D.; Wunderlich, T.; Fediuk, A.; Berg, S.; et al. Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology—Artificial water supply at a Carolingian canal in South Germany? J. Appl. Geophy. 2020, 173, 103928. [Google Scholar] [CrossRef]
- Wunderlich, T.; Fischer, P.; Wilken, D.; Hadler, H.; Erkul, E.; Mecking, R.; Günther, T.; Heinzelmann, M.; Vött, A.; Rabbel, W. Constraining electric resistivity tomography by direct push electric conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, western Italy). Geophysics 2018, 83, B87–B103. [Google Scholar] [CrossRef]
- Döberl, G.; Müller, D.; Dörrie, T. Guideline: Section 1. In Model-Driven Soil Probing, Site Assessment and Evaluation: Guidance on Technologies; Kästner, M., Braeckevelt, M., Döberl, G., Cassiani, G., Papini, M.P., Leven-Pfister, C., van Ree, D., Eds.; Sapienza Universita Editrice: Roma, Italy, 2012; ISBN 978-88-95814-7-28. [Google Scholar]
- Boucher, A.R. Archaeological Feedback in Geophysics. Archaeol. Prospect. 1996, 3, 129–140. [Google Scholar] [CrossRef]
- Schrott, L.; Sass, O. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Armstrong, K.; Cheetham, P.; Darvill, T. Tales from the outer limits: Archaeological geophysical prospection in lowland peat environments in the British Isles. Archaeol. Prospect. 2019, 26, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Carey, C.; Howard, A.J.; Jackson, R.; Brown, A. Using geoarchaeological deposit modelling as a framework for archaeological evaluation and mitigation in alluvial environments. J. Archaeol. Sci. Rep. 2017, 11, 658–673. [Google Scholar] [CrossRef]
- Leitholdt, E.; Zielhofer, C.; Berg-Hobohm, S.; Schnabl, K.; Kopecky-Hermanns, B.; Bussmann, J.; Härtling, J.W.; Reicherter, K.; Unger, K. Fossa Carolina: The First Attempt to Bridge the Central European Watershed-A Review, New Findings, and Geoarchaeological Challenges. Geoarchaeology 2012, 27, 88–104. [Google Scholar] [CrossRef]
- Fischer, P.; Wunderlich, T.; Rabbel, W.; Vött, A.; Willershäuser, T.; Baika, K.; Rigakou, D.; Metallinou, G. Combined Electrical Resistivity Tomography (ERT), Direct-Push Electrical Conductivity (DP-EC) Logging and Coring—A New Methodological Approach in Geoarchaeological Research. Archaeol. Prospect. 2016, 23, 213–228. [Google Scholar] [CrossRef]
- Verhegge, J.; Crombé, P.; van den Wijngaert, M. Prehistoric landscape mapping along the Scheldt by camera- and conductivity CPT-E. In Cone Penetration Testing 2018, Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT’18), Delft, The Netherlands, 21–23 June 2018; Hicks, M., Pisanò, F., Peuchen, J., Eds.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780429000485. [Google Scholar]
- Hausmann, J.; Zielhofer, C.; Werther, L.; Berg-Hobohm, S.; Dietrich, P.; Heymann, R.; Werban, U. Direct push sensing in wetland (geo)archaeology: High-resolution reconstruction of buried canal structures (Fossa Carolina, Germany). Quat. Int. 2018, 473, 21–36. [Google Scholar] [CrossRef]
- Dietrich, P.; Leven, C. Direct pushtechnologies. In Groundwater Geophysics: A Tool for Hydrogeology, 2nd ed.; Kirsch, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–366. ISBN 978-3-540-88404-0. [Google Scholar]
- Bumberger, J.; Paasche, H.; Dietrich, P. Systematic description of direct push sensor systems: A conceptual framework for system decomposition as a basis for the optimal sensor system design. J. Appl. Geophy. 2015, 122, 210–217. [Google Scholar] [CrossRef]
- Völlmer, J.; Zielhofer, C.; Hausmann, J.; Dietrich, P.; Werban, U.; Schmidt, J.; Werther, L.; Berg, S. Minimalinvasive Direct-push-Erkundung in der Feuchtboden(geo)archäologie am Beispiel des Karlsgrabens (Fossa Carolina). Archaol. Korresp. 2018, 48, 577–593. [Google Scholar]
- Werther, L.; Nelson, J.; Herzig, F.; Schmidt, J.; Berg, S.; Ettel, P.; Linzen, S.; Zielhofer, C. 792 or 793? Charlemagne’s canal project: Craft, nature and memory. Early Mediev. Eur. 2020, 28, 444–465. [Google Scholar] [CrossRef]
- Hack, A. Der Bau des Karlsgrabens nach den Schriftquellen. In Großbaustelle 793: Das Kanalprojekt Karls des Großen Zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 53–62. ISBN 978-3-88467-232-7. [Google Scholar]
- Nelson, J. Evidence in question: Dendrochronology and early medieval historians. In Entre Texte et Histoire: Études d’histoire Médiévale Offertes au Professeur Shoichi Sato; Kanō, O., Lemaître, J.-L., Eds.; De Boccard: Paris, France, 2015; pp. 227–249. ISBN 9782701804514. [Google Scholar]
- Zielhofer, C.; Kirchner, A. Naturräumliche Gunstlage der Fossa Carolina. In Großbaustelle 793: Das Kanalprojekt Karls des Großen zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 5–8. ISBN 978-3-88467-232-7. [Google Scholar]
- Werther, L.; Berg, S.; Ettel, P.; Schmidt, J.; Zielhofer, C. Fossa Carolina/Karlsgraben. Available online: http://www.historisches-lexikon-bayerns.de/Lexikon/Fossa_Carolina_/_Karlsgraben (accessed on 28 June 2019).
- Schmidt, J.; Werther, L.; Zielhofer, C. Shaping Pre-Modern Digital Terrain Models: The Former Topography at Charlemagne’s Canal Construction Site. PLoS ONE 2018, 13, e0200167. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Werther, L.; Rabiger-Völlmer, J.; Herzig, F.; Schneider, B.; Werban, U.; Dietrich, P.; Berg, S.; Linzen, S.; Ettel, P.; et al. Sediment budgeting of short-term backfilling processes: The erosional collapse of a Carolingian canal construction. Earth Surf. Process. Landf. 2020, 45, 3449–3462. [Google Scholar] [CrossRef]
- Kirchner, A.; Zielhofer, C.; Werther, L.; Schneider, M.; Linzen, S.; Wilken, D.; Wunderlich, T.; Rabbel, W.; Meyer, C.; Schmidt, J.; et al. A multidisciplinary approach in wetland geoarchaeology: Survey of the missing southern canal connection of the Fossa Carolina (SW Germany). Quat. Int. 2018, 473, 3–20. [Google Scholar] [CrossRef]
- Leitholdt, E.; Krüger, A.; Zielhofer, C. The medieval peat layer of the Fossa Carolina—Evidence for bridging the Central European Watershed or climate control? Z. Geomorphol. Suppl. 2014, 58, 189–209. [Google Scholar] [CrossRef]
- Zielhofer, C.; Leitholdt, E.; Werther, L.; Stele, A.; Bussmann, J.; Linzen, S.; Schneider, M.; Meyer, C.; Berg-Hobohm, S.; Ettel, P.; et al. Charlemagne’s Summit Canal: An Early Medieval Hydro-Engineering Project for Passing the Central European Watershed. PLoS ONE 2014, 9, e108194. [Google Scholar] [CrossRef]
- Berg-Hobohm, S.; Werther, L. Das rezente Erschinungsbild des Karlsgrabens. In Großbaustelle 793: Das Kanalprojekt Karls des Großen zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 9–12. ISBN 978-3-88467-232-7. [Google Scholar]
- European Environment Agency. European River Catchments: Zipped Shapefile, Vector Polygon, 2008, Shapefile extracted from the ERC110708F1v1 geodatabase. 2008. Available online: https://www.eea.europa.eu/data-and-maps/data/european-river-catchments-1 (accessed on 29 June 2020).
- Linzen, S.; Schneider, M. Der Karlsgraben im Fokus der Geophysik. In Großbaustelle 793: Das Kanalprojekt Karls des Großen zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 29–32. ISBN 978-3-88467-232-7. [Google Scholar]
- Stele, A.; Fassbinder, J.W.E.; Härtling, J.W.; Bussmann, J.; Schmidt, J.; Zielhofer, C. Genesis of magnetic anomalies and magnetic properties of archaeological sediments in floodplain wetlands of the Fossa Carolina. Archaeol. Prospect. 2019, 4, 113. [Google Scholar] [CrossRef]
- Berger, K.; Schmidt-Kaler, H. Geologische Karte von Bayern 6931 Weißenburg: 1:25,000; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 1982. [Google Scholar]
- Schmidt-Kaler, H. Geologische Karte von Bayern 7031 Treuchtlingen: 1:25,000; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 1976. [Google Scholar]
- Zielhofer, C. Hydrographical and hydrochemical characteristics of karst water components (southern Franconian Jura)–a contribution to fresh water protection and karst morphogenesis. Z. Geomorphol. Suppl. 2004, 136, 113–134. [Google Scholar]
- Lietz, K. Hydrogeochemische Analyse des Einzugsgebietes der Schwäbischen Rezat im Siechten Karst der Südlichen Frankenalb. Master’s Thesis, Institute of Geography, Leipzig University, Leipzig, Germany, 2014, unpublished. [Google Scholar]
- Linzen, S.; Chwala, A.; Schultze, V.; Schulz, M.; Schüler, T.; Stolz, R.; Bondarenko, N.; Meyer, H.-G. A LTS-SQUID System for Archaeological Prospection and Its Practical Test in Peru. IEEE Trans. Appl. Supercond. 2007, 17, 750–755. [Google Scholar] [CrossRef]
- Linzen, S.; Schultze, V.; Chwala, A.; Schüler, T.; Schulz, M.; Stolz, R.; Meyer, H.-G. Quantum Detection Meets Archaeology—Magnetic Prospection with SQUIDs, Highly Sensitive and Fast. In New Technologies for Archaeology: Multidisciplinary Investigations in Palpa and Nasca, Peru; Herrmann, B., Reindel, M., Wagner, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 71–85. ISBN 978-3-540-87437-9. [Google Scholar]
- Berg-Hobohm, S.; Fassbinder, J.W.E.; Linzen, S. Neue Forschungsergebnisse am Karlsgraben durch geophysikalische Messmethoden. Denkmalpf. Inf. 2014, 25–27. [Google Scholar]
- Linzen, S.; Schneider, M.; Berg-Hobohm, S.; Werther, L.; Ettel, P.; Zielhofer, C.; Schmidt, J.; Fassbinder, J.W.E.; Wilken, D.; Fediuk, A.; et al. From magnetic SQUID prospection to excavation—investigations at Fossa Carolina, Germany. In 12th International Conference of Archaeological Prospection, University of Bradford, Bradford, UK, 12–16 September 2017; Jennings, B., Gaffney, C., Sparrow, T., Gaffney, S., Eds.; Archaeopress: Oxford, UK, 2017; pp. 144–145. ISBN 1784916773. [Google Scholar]
- Schneider, M.; Linzen, S.; Schiffler, M.; Pohl, E.; Ahrens, B.; Dunkel, S.; Stolz, R.; Bemmann, J.; Meyer, H.-G.; Baumgarten, D. Inversion of Geo-Magnetic SQUID Gradiometer Prospection Data Using Polyhedral Model Interpretation of Elongated Anomalies. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Schneider, M.; Stolz, R.; Linzen, S.; Schiffler, M.; Chwala, A.; Schulz, M.; Dunkel, S.; Meyer, H.-G. Inversion of geo-magnetic full-tensor gradiometer data. J. Appl. Geophy. 2013, 92, 57–67. [Google Scholar] [CrossRef]
- Schultze, V.; Linzen, S. Device and Method for Mapping of Sources for the Local Variation of the Earth’s Magnetic Field. German Patent Application DE 10 2007 030 481.3, 2007. [Google Scholar]
- Leven, C.; Weiß, H.; Vienken, T.; Dietrich, P. Direct-Push-Technologien—Effiziente Untersuchungsmethoden für die Untergrunderkundung. Grundwasser 2011, 16, 221–234. [Google Scholar] [CrossRef]
- Hartemink, A.E.; Minasny, B. Towards digital soil morphometrics. Geoderma 2014, 230–231, 305–317. [Google Scholar] [CrossRef]
- CIE. CIE 15: Technical Report: Colorimetry, 3rd ed.; CIE Central Bureau: Vienna, Austria, 2004; ISBN 3901906339. [Google Scholar]
- Hausmann, J.; Dietrich, P.; Vienken, T.; Werban, U. Technique, analysis routines, and application of direct push-driven in situ color logging. Environ. Earth. Sci. 2016, 75, 1–21. [Google Scholar] [CrossRef]
- Beck, F.P.; Clark, P.J.; Puls, R.W. Location and Characterization of Subsurface Anomalies Using a Soil Conductivity Probe. Ground Water Monit. Remediat. 2000, 20, 55–59. [Google Scholar] [CrossRef]
- Christy, C.D.; Christy, T.M.; Wittig, V. A percussion probing tool for the direct sensing of soil conductivity. In Proceedings of the 8th National Outdoor Action Conference, Washington, DC, USA, 23–25 May 1994; pp. 381–394. [Google Scholar]
- Schulmeister, M.K. High-resolution Stratigraphic Characterization of Unconsolidated Deposits Using Direct-push Electrical Conductivity Logging: A floodplain-margin example. In Aquifer characterization; Bridge, J.S., Ed.; SEPM: Tulsa, OK, USA, 2004; pp. 67–78. ISBN 1-56576-107-3. [Google Scholar]
- Butler, J.J.; Healey, J.M.; Zheng, L.; McCall, G.W.; Schulmeister, M.K. Hydrostratigraphic Characterization of Unconsolidated Alluvial Deposits with Direct-push Sensor Technology; Kansas Geological Survey Open-File Report; Kansas Geological Survey: Lawrence, KS, USA, 1999; Volume 99, p. 40. [Google Scholar]
- McCall, G.W. Electrical conductivity logging to determine control of hydrocarbon flow paths in alluvial sediments. In Proceedings of the 10th National Outdoor Action Conference, Sydney, Australia, 13–15 May 1996; pp. 461–477. [Google Scholar]
- Schulmeister, M.K.; Butler, J.J.; Healey, J.M.; Zheng, L.; Wysocki, D.A.; McCall, G.W. Direct-push Electrical Conductivity Logging for High-Resolution Hydrostratigraphic Characterization. Ground Water Monit. Remediat. 2003, 23, 52–62. [Google Scholar] [CrossRef]
- Ad-Hoc-AG Boden. Bodenkundliche Kartieranleitung. KA5; Schweizerbart Science Publishers: Stuttgart, Germany, 2006; ISBN 9783510959204. [Google Scholar]
- Munsell. Munsell Soil Color Charts; Macbeth Division of Kollmorgen Instruments Corporation: New Windsor, NY, USA, 1994. [Google Scholar]
- Bartington Instruments. MS3 Magnetic Susceptibility Meter; Bartington Instruments Limited: Oxford, UK, 2000. [Google Scholar]
- Dearing, J.A. Environmental Magnetic Susceptibility: Using the Bartington MS2 System; Chi Publishing: Kenilworth, UK, 1999; ISBN 0952340909. [Google Scholar]
- Richter, D.; Mercier, N.; Valladas, H.; Jaubert, J.; Texier, P.-J.; Brugal, J.-P.; Kervazo, B.; Reyss, J.-L.; Joron, J.-L.; Wagner, G.A. Thermoluminescence dating of heated flint from the Mousterian site of Bérigoule, Murs, Vaucluse, France. J. Archaeol. Sci. 2007, 34, 532–539. [Google Scholar] [CrossRef]
- von Suchodoletz, H.; Blanchard, H.; Hilgers, A.; Radtke, U.; Fuchs, M.; Dietze, M.; Zöller, L. TL and ESR dating of Middle Pleistocene lava flows on Lanzarote island, Canary Islands (Spain). Quat. Geochronol. 2012, 9, 54–64. [Google Scholar] [CrossRef]
- Anderson, S.L.; Feathers, J.K. Applying luminescence dating of ceramics to the problem of dating Arctic archaeological sites. J. Archaeol. Sci. 2019, 112, 105030. [Google Scholar] [CrossRef]
- Aitken, M.J. Thermoluminescence Dating; Academic Press: London, UK, 1985; ISBN 0120463814. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray and gamma ray dosimetry for TL and ESR. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 1988, 14, 223–227. [Google Scholar] [CrossRef]
- Synal, H.-A.; Stocker, M.; Suter, M. MICADAS: A new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 2007, 259, 7–13. [Google Scholar] [CrossRef]
- Podaru, N.C.; Gottdang, A.; Mous, D.J.W.; McDaniel, F.D.; Doyle, B.L. Design and Performance Of A 3 MV Tandetron™ Accelerator System For High-Current Applications. In Application of Accelerators in Research and Industry, Proceedings of the Twenty-First International Conference, AIP Conference Proceedings, Fort Worth, TX, USA, 8–13 August 2010; Del McDaniel, F., Doyle, B.L., Eds.; AIP: New York, NY, USA, 2011; Volume 1336, pp. 56–59. ISBN 0735408912. [Google Scholar]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Werther, L. Der Karlsgraben und Andere Kanalbauten als Schnittstellen Frühgeschichtlicher Verkehrsnetzwerke. Habilitation Thesis, Jena University, Jena, Germany, 2020. [Google Scholar]
- Neubauer, W.; Eder-Hinterleitner, A. 3D-Interpretation of Postprocessed Archaeological Magnetic Prospection Data. Archaeol. Prospect. 1997, 4, 191–205. [Google Scholar] [CrossRef]
- Bescoby, D.J.; Cawley, G.C.; Chroston, P.N. Enhanced Interpretation of Magnetic Survey Data Using Artificial Neural Networks: A Case Study from Butrint, Southern Albania. Archaeol. Prospect. 2004, 11, 189–199. [Google Scholar] [CrossRef]
- Dalan, R.A.; Bevan, B.W.; Goodman, D.; Lynch, D.; de Vore, S.; Adamek, S.; Martin, T.; Holley, G.; Michlovic, M. The Measurement and Analysis of Depth in Archaeological Geophysics: Tests at the Biesterfeldt Site, USA. Archaeol. Prospect. 2011, 18, 245–265. [Google Scholar] [CrossRef]
- Altmeyer, M.; Seeliger, M.; Ginau, A.; Schiestl, R.; Wunderlich, J. Reconstruction of former channel systems in the northwestern Nile Delta (Egypt) based on corings and electrical resistivity tomography (ERT). E&G Quat. Sci. J. 2021, 70, 151–164. [Google Scholar] [CrossRef]
- Corradini, E.; Dreibrodt, S.; Erkul, E.; Groß, D.; Lübke, H.; Panning, D.; Pickartz, N.; Thorwart, M.; Vött, A.; Willershäuser, T.; et al. Understanding Wetlands Stratigraphy: Geophysics and Soil Parameters for Investigating Ancient Basin Development at Lake Duvensee. Geosciences 2020, 10, 314. [Google Scholar] [CrossRef]
- Verhegge, J.; Missiaen, T.; Crombé, P. Exploring Integrated Geophysics and Geotechnics as a Paleolandscape Reconstruction Tool: Archaeological Prospection of (Prehistoric) Sites Buried Deeply below the Scheldt Polders (NW Belgium). Archaeol. Prospect. 2016, 23, 125–145. [Google Scholar] [CrossRef]
- Rabbel, W.; Stuempel, H.; Woelz, S. Archeological prospecting with magnetic and shear-wave surveys at the ancient city of Miletos (western Turkey). Lead. Edge 2004, 23, 690–703. [Google Scholar] [CrossRef]
- Fassbinder, J.W.E. Geophysical prospection of the frontiers of the Roman Empire in southern Germany, UNESCO World Heritage Site. Archaeol. Prospect. 2010, 17, 129–139. [Google Scholar] [CrossRef]
- Schön, J.H. Physical Properties of Rocks: A Workbook; Elsevier Science: Amsterdam, The Netherlands, 2011; ISBN 978-0-444-53796-6. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses; 2nd completely revised and extended ed; Wiley-VCH: Weinheim, Germany, 2003; ISBN 3527302743. [Google Scholar]
- Fassbinder, J.W.E.; Bondar, K. Geophysikalische Prospektion und magnetische Eigenschaften von ausgewählten Böden der Osterinsel. ZAAK 2013, 5, 113–140. [Google Scholar]
- Canti, M.G.; Linford, N. The Effects of Fire on Archaeological Soils and Sediments: Temperature and Colour Relationships. Proc. Prehist. Soc. 2000, 66, 385–395. [Google Scholar] [CrossRef]
- de Kort, J.-W.; Raczynski-Henk, Y. The Fossa Corbulonis between the Rhine and Meuse estuaries in the Western Netherlands. In Roman Canals Studies; Salomon, F., Purdue, L., Goiran, J.-P., Berger, J.-F., Eds.; Water History; Springer: Cham, Switzerland, 2014; Volume 6, pp. 51–71. [Google Scholar] [CrossRef]
- Werther, L. Siedlungsentwicklung und Kulturlandschaft im Umfeld des Karlsgrabens. In Großbaustelle 793: Das Kanalprojekt Karls des Großen zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 45–52. ISBN 978-3-88467-232-7. [Google Scholar]
- Blume, H.-P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Thiele-Bruhn, S.; Welp, G.; Wilke, B.-M. Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 16th ed.; Spektrum: Berlin, Germany, 2010; ISBN 9783827414441. [Google Scholar]
- Hoffman, P.; Ellmers, D. Ein Frachter aus der Zeit Karls des Großen. Bremer Archäologische Blätter 1990, 33–37. [Google Scholar]
- Bockius, R. Binnenfahrzeuge im Karolingerreich. In Großbaustelle 793: Das Kanalprojekt Karls des Großen zwischen Rhein und Donau; Ettel, P., Daim, F., Berg-Hobohm, S., Werther, L., Zielhofer, C., Eds.; Verlag des Römisch-Germanischen Zentralmuseums: Mainz, Germany, 2014; pp. 81–86. ISBN 978-3-88467-232-7. [Google Scholar]
- Stark, J. Der frühslawische Bohlenweg im Klempauer Moor, Hansestadt Lübeck, und der Burgwall von Klempau, Kreis Herzogtum Lauenburg. In Warentransport im Mittelalter und in der frühen Neuzeit: Transportwege—Transportmittel—Infrastruktur; Wemhoff, M., Ed.; Mitteilungen der Deutschen Gesellschaft für Archäologie des Mittelalters und der Neuzeit; Deutsche Gesellschaft für Archäologie des Mittelalters und der Neuzeit: Paderborn, Germany, 2003; pp. 85–91. [Google Scholar]
- Brunning, R.; McDermott, C. Trackways and Roads across the Wetlands. In The Oxford Handbook of Wetland Archaeology, 1st ed.; Menotti, F., O’Sullivan, A., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 359–384. ISBN 9780199573493. [Google Scholar]
- Nørgård Jørgensen, A. Naval Bases in Southern Scandinavia from the 7th to the 12th Century. In Maritime Warfare in Northern Europe: Technology, Organisation, Logistics and Administration 500 BC-1500 AD.; Nørgård Jørgensen, A., Pind, J., Jørgensen, L., Clausen, B., Eds.; PNM Publications from The National Museum: Copenhagen, Denmark, 2002; pp. 125–152. ISBN 8789384881. [Google Scholar]
- Bonnet, F. Le canal romain d’Avenches. Rapport sur les fouilles exécutées en 1980 et 1981. Bull. L’association Pro Aventico 1982, 27, 3–56. [Google Scholar]
- Pichon, M. Le transport par voie navigable. L’exemple du site de Tendu (Indre). Carrières antiques de la Gaule: Dossier; CNRS éditions: Paris, France, 2002; pp. 83–88. ISBN 227106063X. [Google Scholar]
- Hofmann, H.H. Fossa Carolina: Versuch einer Zusammenschau. In Lebenswerk und Nachleben. Karl der Große; Braunfels, W., Ed.; publisher: Düsseldorf, Germany, 1965; pp. 437–453. [Google Scholar]
- Eigler, F. Weißenburg und sein Umland im Jahre 793.: Villa nostra. In Weißenburger Blätter für Geschichte, Heimatkunde und Kultur von Stadt und Weißenburger Land; Villa Nostra: Beringen, Belgium, 1993; Volume 2, pp. 5–23. [Google Scholar]
- Beck, M.; Merthen, C. Zwischen Hain und Himmelreich: Die Reihengräber von Weißenburg; Veröffentlichungen Des Frankenbundes, Gr. Weißenburg Bayern; Frankenbundes Gruppe Weißenburg e.V.: Weißenburg, Germany, 2013; p. 57. [Google Scholar]
- Globig, P. Luftbildarchäologische Untersuchungen im Umfeld des Karlsgrabens. Bachlor’s Thesis, Jena University, Jena, Germany, 2014, unpublished. [Google Scholar]
- Koch, R. Das archäologische Umfeld der Fossa Carolina. Kölner Jahrb. Für Vor- U. Frühgeschichte 1990, 23, 669–678. [Google Scholar]
- Ruchte, T.; Schulz, L.; Werther, L. Landnutzung und Siedlungsentwicklung im Umfeld des Karlsgrabens. Scherbenschleier als Archäologische Quelle. Available online: http://archaeologik.blogspot.de/2015/11/landnutzung-und-siedlungsentwicklung-im.html (accessed on 11 February 2019).
- Sommer, U. Zur Entstehung archäologischer Fundvergesellschaftungen: Versuch einer archäologischen Taphonomie. In Die geographische Ausrichtung bandkeramischer Häuser; Mattheusser, E., Ed.; Habelt: Bonn, Germany, 1991; ISBN 3-7749-2526-7. [Google Scholar]
- Schiffer, M.B. Formation Processes of the Archaeological record; The University of Utah press: Salt Lake City, UT, USA, 1996. [Google Scholar]
- Mandel, R.D.; Goldberg, P.; Holliday, V.T. Site Formation Processes. In Encyclopedia of geoarchaeology; Gilbert, A.S., Goldberg, P., Holliday, V.T., Mandel, R.D., Sternberg, R.S., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 797–817. ISBN 978-94-007-4827-9. [Google Scholar]
- Biddle, M. Artefacts from Medieval Winchester—2. Object and Economy in Medieval Winchester; Clarendon Press: Oxford, UK, 1990; ISBN 0198131755. [Google Scholar]
- Mitchell, J. Monastic Guest Quarters and Workshops. In Wohn-und Wirtschaftsbauten frühmittelalterlicher Klöster; Sennhauser, H.R., Ed.; ETH Zurich Research Collection: Zurich, Switzerland, 1996; pp. 127–155. [Google Scholar]
- DeLaine, J. The Baths of Caracalla: A Study in the Design, Construction and Economics of Large-Scale Building Projects in Imperial Rome; (Adlaide, Univ., Diss., 1992); JRA: Portsmouth, RI, USA, 1997; ISBN 1887829253. [Google Scholar]
- Hodges, R.; Leppard, S.; Mitchell, J. San Vincenzo Maggiore and Its Workshops; British School at Rome: London, UK, 2011; ISBN 0904152588. [Google Scholar]
- Hüglin, S. Medieval Mortar Mixers Revisited: Basle and Beyond. Archäologie Mittelalt. 2011, 39, 189–212. [Google Scholar]
- Heckner, U.; Beckmann, E.-M. (Eds.) Die karolingische Pfalzkapelle in Aachen: Material, Bautechnik, Restaurierung; Wernersche Verl.-Ges: Worms, Germany, 2012; ISBN 9783884623251. [Google Scholar]
- Nørgård Jørgensen, A. Kanhave-Kanal. In Reallexikon der Germanischen Altertumskunde; Hoops, J., Beck, H., Geuenich, D., Steuer, H., Timpe, D., Eds.; De Gruyter: Berlin, Germany, 2000; pp. 221–222. [Google Scholar]
- Ray, K.W.; Bapty, I.; Fox, C. Offa’s Dyke: Landscape and Hegemony in Eighth Century Britain; Oxbow Books: Oxford, UK, 2016; ISBN 9781905119356. [Google Scholar]
- Tummuscheit, A.; Witte, F. Små beviser for en stor præsentation: Zu den Spaten und Schaufeln vom Danewerk. In Interaktion Ohne Grenzen: Beispiele Archäologischer Forschungen am Beginn des 21. Jahrhunderts: [Festschrift für Claus von Carnap-Bornheim Zum 60. Geburtstag]; Eriksen, B.V., Abegg-Wigg, A., Bleile, R., Ickerodt, U.F., Eds.; Archäologisches Landesamt Schleswig-Holstein: Schleswig, Germany, 2017; pp. 619–630. [Google Scholar]
Unit | Sample | Sedimentology | Dating | |||||||
---|---|---|---|---|---|---|---|---|---|---|
m a.s.l. (mid) | Sample | Sediment | Feature | Lab No. | Type | Material | 14C [yr BP] | 13C | cal 2σ | |
II | 416.41 | KG-N-QP-2 994 (150–163 cm) | Sandy fluvial deposit (faAh) | Fossil topsoil/magnetic mass anomaly | KIA-50451 | 14C | Bulk sample | 4976 ± 19 BP | −26.2 ± 0.4 ‰ | 3907–3663 cal BC |
Unit | Sample | Sedimentology | Dating | |||||
---|---|---|---|---|---|---|---|---|
m a.s.l. (mid) | Sample | Sediment | Feature | Lab No. | Type | Dating | AD/BC | |
II | 416.51 | KG2 (BK5 150–155 cm) | Flood loam of the Rezat River | Fossil topsoil/magnetic mass anomaly | MAL 10461 | TL | 1.21 ± 0.25 ka * | 811 ± 250 AD |
Unit | Sample | Sedimentology | Chronology | Dating | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
m a.s.l. (mid) | Location | Sample/Name | Lab No. (MAMS) | Material | Dating Via | 14C [yr BP] | 13C | Cal 2σ | Reference | |||
IV (low) | 415.81 | Excavation | 37 | Flood loam of the Rezat River | 15th–16th century | 29839 | Seed | Bulk | 323 ± 19 | −24 | AD 1492–1643 | [77] |
IV (low) | 415.6 | 407 | 407-1 | 18374 | Charcoal | Core | 410 ± 16 | −29 | AD 1441–1488 | [39] | ||
III-e | 415.81 | Excavation | 19 | Channel filling: silty-clayey, limnic facies | 11th/12th–15th/16th century | 29838 | Seed | Bulk | 959 ± 22 | −27 | AD 1021–1155 | [4] |
III-e | 415.35 | 50/51 | 29846 | Seed | Bulk | 900 ± 20 | −27 | AD 1042–1206 | [4] | |||
III-d | 415.93 | Excavation | 86 | Peat growing/sapropel layer | 9th–10th century | 29843 | Wood | Bulk | 1230 ± 20 | −25 | AD 693–878 | [77] |
III-d | 415.85 | Excavation | 6 | peat growing/sapropel layer | 9th–10th century | 29837 | Wood | Bulk | 1228 ± 20 | −27 | AD 694–879 | [77] |
III-d | 415.34 | Excavation | 43 | First channel fills from excavation | 8th–9th century | 29840 | Wood | Bulk | 1099 ± 21 | −30 | AD 892–990 | [77] |
III-d | 414.89 | Excavation | 56/58 | First channel fills from excavation | 8th–9th century | 29847 | Wood | bulk | 1246 ± 20 | −26 | AD 682–865 | [77] |
III-d | 414.5 | Excavation | 68 | First channel fills from excavation | 8th–9th century | 29842 | Wood | Bulk | 1238 ± 21 | −25 | AD 688–872 | [77] |
III-d | 414.5 | Excavation | 58 | First channel fills from excavation | 8th–9th century | 29841 | Seed | Bulk | 1180 ± 21 | −29 | AD 772–937 | [77] |
III-d | 414.35 | Excavation | 102 | First channel fills from excavation | 8th–9th century | 29844 | Seed | Bulk | 1217 ± 20 | −28 | AD 719–884 | [77] |
III-d | 414.3 | Excavation | 104 | First channel fills from excavation | 8th–9th century | 29845 | Seed | Bulk | 1228 ± 23 | −27 | AD 692–881 | [77] |
III-b | 414.17 | QP | QP_1 | First channel fills from excavation | 8th–9th century | 18372 | Charcoal | Core | 1338 ± 17 | −31 | AD 650–758 | [39] |
Unit | Sample | Sedimentology | Chronology | Dating Via | Dating | Reference | ||
---|---|---|---|---|---|---|---|---|
m a.s.l. (mid) | Location | Sample/Finding Name | Time Span | |||||
IV (up) | - | Excavation | - | Flood loam of the Rezat River | 19th–20th century | Findings | Archaeological findings | [4] |
IV (mid) | 415.75 | Excavation | 33, 34/35 | 16th–17th century | Dendrochronology, findings | Dendrochronology 1631 ± 8, horseshoes | [4] | |
IV (low) | 415.81 | Excavation | 37 | 15th–16th century | Findings | Ceramic | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiger-Völlmer, J.; Schmidt, J.; Werban, U.; Dietrich, P.; Werther, L.; Berg, S.; Stele, A.; Schneider, B.; von Suchodoletz, H.; Lindauer, S.; et al. High-Resolution Direct Push Sensing in Wetland Geoarchaeology—First Traces of Off-Site Construction Activities at the Fossa Carolina. Remote Sens. 2021, 13, 4647. https://doi.org/10.3390/rs13224647
Rabiger-Völlmer J, Schmidt J, Werban U, Dietrich P, Werther L, Berg S, Stele A, Schneider B, von Suchodoletz H, Lindauer S, et al. High-Resolution Direct Push Sensing in Wetland Geoarchaeology—First Traces of Off-Site Construction Activities at the Fossa Carolina. Remote Sensing. 2021; 13(22):4647. https://doi.org/10.3390/rs13224647
Chicago/Turabian StyleRabiger-Völlmer, Johannes, Johannes Schmidt, Ulrike Werban, Peter Dietrich, Lukas Werther, Stefanie Berg, Andreas Stele, Birgit Schneider, Hans von Suchodoletz, Susanne Lindauer, and et al. 2021. "High-Resolution Direct Push Sensing in Wetland Geoarchaeology—First Traces of Off-Site Construction Activities at the Fossa Carolina" Remote Sensing 13, no. 22: 4647. https://doi.org/10.3390/rs13224647
APA StyleRabiger-Völlmer, J., Schmidt, J., Werban, U., Dietrich, P., Werther, L., Berg, S., Stele, A., Schneider, B., von Suchodoletz, H., Lindauer, S., Linzen, S., Stolz, R., Wilken, D., Ettel, P., & Zielhofer, C. (2021). High-Resolution Direct Push Sensing in Wetland Geoarchaeology—First Traces of Off-Site Construction Activities at the Fossa Carolina. Remote Sensing, 13(22), 4647. https://doi.org/10.3390/rs13224647