Remote Sensing for Biocultural Heritage Preservation in an African Semi-Arid Region: A Case Study of Indigenous Wells in Northern Kenya and Southern Ethiopia
Abstract
:1. Introduction
1.1. Traditional Wells in Southern Ethiopia and Northern Kenya
1.2. Previous Land Use/Land Cover Change Studies of the Study Area
2. Material and Methods
2.1. Study Area
2.2. Mapping the Traditional Wells
2.3. Earth Observation and Precipitation Data
2.4. Reference Data Collection
2.5. Random Forest Classification, Accuracy Assessment and Change Detection
2.6. Deriving Time-Series Fragmentation Indices within Traditional Well Clusters
3. Results
3.1. Time Series Land Use Land Cover Classification
3.2. Land Cover Change Detection from 1990 to 2020
3.3. Time Series Fragmentation Analysis within the Well Clusters
3.3.1. Marsabit Wells
3.3.2. Tula Wells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, S.H. Satellite Remote Sensing of Archaeological Vegetation Signatures in Coastal West Africa. Afr. Archaeol. Rev. 2016, 33, 163–182. [Google Scholar] [CrossRef]
- Biagetti, S.; Merlo, S.; Adam, E.; Lobo, A.; Conesa, F.C.; Knight, J.; Bekrani, H.; Crema, E.R.; Alcaina-Mateos, J.; Madella, M. High and Medium Resolution Satellite Imagery to Evaluate Late Holocene Human–Environment Interactions in Arid Lands: A Case Study from the Central Sahara. Remote. Sens. 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Nsanziyera, A.F.; Rhinane, H.; Oujaa, A.; Mubea, K. GIS and Remote-Sensing Application in Archaeological Site Mapping in the Awsard Area (Morocco). Geoscience 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Thabeng, O.L.; Merlo, S.; Adam, E. High-resolution remote sensing and advanced classification techniques for the prospection of archaeological sites’ markers: The case of dung deposits in the Shashi-Limpopo Confluence area (southern Africa). J. Archaeol. Sci. 2019, 102, 48–60. [Google Scholar] [CrossRef]
- Davis, D.S.; Andriankaja, V.; Carnat, T.L.; Chrisostome, Z.M.; Colombe, C.; Fenomanana, F.; Hubertine, L.; Justome, R.; Lahiniriko, F.; Léonce, H.; et al. Satellite-based remote sensing rapidly reveals extensive record of Holocene coastal settlement on Madagascar. J. Archaeol. Sci. 2020, 115, 105097. [Google Scholar] [CrossRef]
- Ur, J. Google Earth and Archaeology. SAA Archaeol. Rec. 2006, 6, 35–38. [Google Scholar]
- Sadr, K.; Rodier, X. Google Earth, GIS and stone-walled structures in southern Gauteng, South Africa. J. Archaeol. Sci. 2012, 39, 1034–1042. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F.; et al. Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote. Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Banerjee, R.; Srivastava, P.K. Reconstruction of contested landscape: Detecting land cover transformation hosting cultural heritage sites from Central India using remote sensing. Land Use Policy 2013, 34, 193–203. [Google Scholar] [CrossRef]
- Elfadaly, A.; Attia, W.; Qelichi, M.M.; Murgante, B.; Lasaponara, R. Management of Cultural Heritage Sites Using Remote Sensing Indices and Spatial Analysis Techniques. Surv. Geophys. 2018, 39, 1347–1377. [Google Scholar] [CrossRef]
- Bai, X.; Du, P.; Guo, S.; Zhang, P.; Lin, C.; Tang, P.; Zhang, C. Monitoring Land Cover Change and Disturbance of the Mount Wutai World Cultural Landscape Heritage Protected Area, Based on Remote Sensing Time-Series Images from 1987 to 2018. Remote. Sens. 2019, 11, 1332. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, N.; Insoll, T. Monitoring Islamic Archaeological Landscapes in Ethiopia Using Open Source Satellite Imagery. J. Field Archaeol. 2019, 44, 401–419. [Google Scholar] [CrossRef]
- Moise, C.; Negula, I.D.; Mihalache, C.E.; Lazar, A.M.; Dedulescu, A.L.; Rustoiu, G.T.; Inel, I.C.; Badea, A. Remote Sensing for Cultural Heritage Assessment and Monitoring: The Case Study of Alba Iulia. Sustainability 2021, 13, 1406. [Google Scholar] [CrossRef]
- Wales, N.; Murphy, R.J.; Bruce, E. Understanding patterns of vegetation change at the Angkor World Heritage site by combining remote sensing results with local knowledge. Int. J. Remote. Sens. 2021, 42, 445–468. [Google Scholar] [CrossRef]
- Hammer, E.; Seifried, R.; Franklin, K.; Lauricella, A. Remote assessments of the archaeological heritage situation in Afghanistan. J. Cult. Heritage 2018, 33, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Rayne, L.; Gatto, M.; Abdulaati, L.; Al-Haddad, M.; Sterry, M.; Sheldrick, N.; Mattingly, D. Detecting Change at Archaeological Sites in North Africa Using Open-Source Satellite Imagery. Remote. Sens. 2020, 12, 3694. [Google Scholar] [CrossRef]
- Karaucak, M.; Steiniger, D.; Boroffka, N. A remote sensing-based survey of archaeological/heritage sites near Kandahar, Afghanistan through publicly available satellite imagery. PLoS ONE 2021, 16, e0259228. [Google Scholar] [CrossRef] [PubMed]
- Agapiou, A.; Alexakis, D.D.; Lysandrou, V.; Sarris, A.; Cuca, B.; Themistocleous, K.; Hadjimitsis, D. Impact of urban sprawl to cultural heritage monuments: The case study of Paphos area in Cyprus. J. Cult. Heritage 2015, 16, 671–680. [Google Scholar] [CrossRef]
- Ezcurra, P.; Rivera-Collazo, I.C. An assessment of the impacts of climate change on Puerto Rico’s Cultural Heritage with a case study on sea-level rise. J. Cult. Heritage 2018, 32, 198–209. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Potential of Virtual Earth Observation Constellations in Archaeological Research. Sensors 2019, 19, 4066. [Google Scholar] [CrossRef] [Green Version]
- Howey, M. Harnessing Remote Sensing Derived Sea Level Rise Models to Assess Cultural Heritage Vulnerability: A Case Study from the Northwest Atlantic Ocean. Sustainability 2020, 12, 9429. [Google Scholar] [CrossRef]
- Westley, K.; Andreou, G.; El Safadi, C.; Huigens, H.O.; Nikolaus, J.; Ortiz-Vazquez, R.; Ray, N.; Smith, A.; Tews, S.; Blue, L.; et al. Climate change and coastal archaeology in the Middle East and North Africa: Assessing past impacts and future threats. J. Isl. Coast. Archaeol. 2021, 1–33. [Google Scholar] [CrossRef]
- Gavin, M.C.; McCarter, J.; Mead, A.; Berkes, F.; Stepp, J.R.; Peterson, D.; Tang, R. Defining biocultural approaches to conservation. Trends Ecol. Evol. 2015, 30, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, K.-J.; Ekblom, A. A framework for exploring and managing biocultural heritage. Anthropocene 2019, 25, 100195. [Google Scholar] [CrossRef]
- Eriksson, O. What is biological cultural heritage and why should we care about it? An example from Swedish rural landscapes and forests. Nat. Conserv. 2018, 28, 1–32. [Google Scholar] [CrossRef]
- Vuorio, V.; Muchiru, A.; Reid, R.S.; Ogutu, J.O. How pastoralism changes savanna vegetation: Impact of old pastoral settlements on plant diversity and abundance in south-western Kenya. Biodivers. Conserv. 2014, 23, 3219–3240. [Google Scholar] [CrossRef]
- Fraser, J.; Leach, M.; Fairhead, J. Anthropogenic Dark Earths in the Landscapes of Upper Guinea, West Africa: Intentional or Inevitable? Ann. Assoc. Am. Geogr. 2014, 104, 1222–1238. [Google Scholar] [CrossRef] [Green Version]
- Ekblom, A.; Shoemaker, A.; Gillson, L.; Lane, P.; Lindholm, K.-J. Conservation through Biocultural Heritage—Examples from Sub-Saharan Africa. Land 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Tiki, W.; Oba, G.; Tvedt, T. Human stewardship or ruining cultural landscapes of the ancient Tula wells, southern Ethiopia. Geogr. J. 2011, 177, 62–78. [Google Scholar] [CrossRef]
- Tiki, W.; Oba, G. Righting the Wrongs: Contesting Water Property Rights in Southern Ethiopia. Hum. Ecol. 2017, 45, 723–734. [Google Scholar] [CrossRef]
- Yerian, S.; Hennink, M.; Greene, L.E.; Kiptugen, D.; Buri, J.; Freeman, M.C. The Role of Women in Water Management and Conflict Resolution in Marsabit, Kenya. Environ. Manag. 2014, 54, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.W.; Sinclair, J.A.; Spaling, H. Traditional pastoralist decision-making processes: Lessons for reforms to water resources management in Kenya. J. Environ. Plan. Manag. 2010, 53, 847–862. [Google Scholar] [CrossRef]
- King-Okumu, C.; Jillo, B.; Kinyanjui, J.; Jarso, I. Devolving water governance in the Kenyan Arid Lands: From top-down drought and flood emergency response to locally driven water resource development planning. Int. J. Water Resour. Dev. 2018, 34, 675–697. [Google Scholar] [CrossRef]
- Stiles, D. The Gabbra: Traditional Social Factors in Aspects of Land-Use Management. Nomadic Peoples 1992, 30, 41–52. [Google Scholar]
- Stiles, D.; Munro-Hay, S.C. Stone cairn burials at Kokurmatakore, northern Kenya. Azania:Journ. British Inst. E. Afr. 1981, 16, 151–166. [Google Scholar] [CrossRef]
- Tablino, P. Gabra: Camel Nomads of Northern Kenya; Kolbe Press: Limuru, Kenya, 1999. [Google Scholar]
- Sobania, N.W. The Historical Tradition of the Peoples of the Eastern Lake Turkana Basin c. 1840–1925. Ph.D. Thesis, School of Oriental and African Studies (SOAS), University of London, London, UK, 1980. [Google Scholar]
- Kassam, A.; Bashuna, A.B. Marginalisation of the Waata Oromo Hunter–Gatherers of Kenya: Insider and Outsider Perspectives. Africa 2004, 74, 194–216. [Google Scholar] [CrossRef]
- Turton, E.R. Bantu, Galla and Somali migrations in the Horn of africa: A reassessment of the Juba/Tana area. J. Afr. Hist. 1975, 16, 519–537. [Google Scholar] [CrossRef]
- Tiki, W.; Oba, G.; Tvedt, T. An indigenous time-related framework for reconstructing the impact of disasters on ancient water systems in southern Ethiopia, 1560–1950. J. Hist. Geogr. 2013, 41, 33–43. [Google Scholar] [CrossRef]
- Tiki, W. The Dynamics of the Ancient Tula Wells Cultural Landscape: Environmental and Social History, ca. 1560 to the Present. Ph.D. Thesis, Norwegian University of Life Sciences, Ås, Norway, 2010. Available online: https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2431962 (accessed on 20 August 2021).
- Hazard, B.; Adongo, C. “Green Grabbing,” Pastoralism and Environmental Dynamics in Northern Kenya. An As-sessment of Conservation Models and Practices in Marsabit County. East Afr. Revie 2015, 50, 40–62. [Google Scholar] [CrossRef]
- Hill, R.; Cullen-Unsworth, L.C.; Talbot, L.D.; McIntyre-Tamwoy, S. Empowering Indigenous peoples’ biocultural diversity through World Heritage cultural landscapes: A case study from the Australian humid tropical forests. Int. J. Heritage Stud. 2011, 17, 571–591. [Google Scholar] [CrossRef] [Green Version]
- Cevasco, R.; Moreno, D.; Hearn, R. Biodiversification as an historical process: An appeal for the application of historical ecology to bio-cultural diversity research. Biodivers. Conserv. 2015, 24, 3167–3183. [Google Scholar] [CrossRef]
- Rotherham, I. Bio-cultural heritage and biodiversity: Emerging paradigms in conservation and planning. Biodivers. Conserv. 2015, 24, 3405–3429. [Google Scholar] [CrossRef] [Green Version]
- Cormack, Z. The promotion of pastoralist heritage and alternative ‘visions’ for the future of Northern Kenya. J. East. Afr. Stud. 2016, 10, 548–567. [Google Scholar] [CrossRef]
- Kihonge, E.W. Assessing Contribution of Sacred Natural Sites to Climate Change Effects on Dryland Ecosystem Case Study: The Gabbra Community Marsabit County, Nairobi. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2017. [Google Scholar]
- Haile, G.; Assen, M.; Ebro, A. Land Use/Cover Dynamics and Its Implications since the 1960s in the Borana Rangelands of Southern Ethiopia. Livest. Res. Rural Dev. 2010, 22, 132. [Google Scholar]
- Abate, T.; Angassa, A. Conversion of savanna rangelands to bush dominated landscape in Borana, Southern Ethiopia. Ecol. Process. 2016, 5, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Habtamu, T.; Casper, I.M.; Joel, O.B.; Abubeker, H.; Ayana, A.; Yared, M. Evaluation of land use land cover changes using remote sensing Landsat images and pastoralists perceptions on range cover changes in Borana rangelands, Southern Ethiopia. Int. J. Biodivers. Conserv. 2018, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Maina, P.M.; Inwati, A.T. Use of Geoinformation Technology in Assessing Nexus between Ecosystem Changes and Wildlife Distribution: A Case Study of Mt. Marsabit Forest. Int. J. Sci. Res. 2015, 4, 718–724. [Google Scholar]
- Muhati, G.L.; Olago, D.; Olaka, L. Land use and land cover changes in a sub-humid Montane forest in an arid setting: A case study of the Marsabit forest reserve in northern Kenya. Glob. Ecol. Conserv. 2018, 16, e00512. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Lindquist, E.J.; D’annunzio, R.; Gerrand, A.; Macdicken, K.; Achard, F.; Beuchle, R.; Brink, A.; Eva, H.D.; Mayaux, P.; San-Miguel-Ayanz, J.; et al. Global Forest Land-Use Change 1990–2005; Forestry Paper 169; FAO: Rome, Italy, 2012. [Google Scholar]
- Ayugi, B.; Wen, W.; Chepkemoi, D. Analysis of Spatial and Temporal Patterns of Rainfall Variations over Kenya. Environmen. Earth Sci. 2016, 6, 69–83. [Google Scholar]
- Luseno, W.K.; McPeak, J.G.; Barrett, C.; Little, P.D.; Gebru, G. Assessing the Value of Climate Forecast Information for Pastoralists: Evidence from Southern Ethiopia and Northern Kenya. World Dev. 2003, 31, 1477–1494. [Google Scholar] [CrossRef] [Green Version]
- Little, P.D.; Smith, K.; Cellarius, B.A.; Coppock, D.L.; Barrett, C. Avoiding Disaster: Diversification and Risk Management among East African Herders. Dev. Chang. 2001, 32, 401–433. [Google Scholar] [CrossRef]
- McPeak, J.G.; Barrett, C.B. Differential Risk Exposure and Stochastic Poverty Traps Among East African Pastoralists. Am. J. Agric. Econ. 2001, 83, 674–679. [Google Scholar] [CrossRef]
- Rengarajan, R.; Choate, M.; Storey, J.; Franks, S.; Micijevic, E. Landsat Collection-2 geometric calibration updates. In Earth Observing Systems XXV; International Society for Optics and Photonics: Washington, DC, USA, 2020; Volume 11501, p. 115010N. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Adelabu, S.; Mutanga, O.; Adam, E. Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto Int. 2015, 30, 810–821. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Horning, N. Random Forests: An Algorithm for Image Classification and Generation of Continuous Fields Data Sets. International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences. 2010. Available online: http://wgrass.media.osaka-cu.ac.jp/gisideas10/papers/04aa1f4a8beb619e7fe711c29b7b.pdf (accessed on 12 August 2021).
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Nex, F.; Delucchi, L.; Gianelle, D.; Neteler, M.; Remondino, F.; Dalponte, M. Land Cover Classification and Monitoring: The STEM Open Source Solution. Eur. J. Remote. Sens. 2015, 48, 811–831. [Google Scholar] [CrossRef]
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus 2016, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014.
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.S.; Cushman, S.; Neel, M.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002. Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf (accessed on 15 December 2021).
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D.; et al. 2019: Land Degradation. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; in press; Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf (accessed on 15 December 2021).
- Mgalula, M.E. Assessing Trends in Land Use Change in the Borana Rangeland Ethiopia as One Cause of Greenhouse Gas Emissions and Carbon Sequestration Variations. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2016. [Google Scholar]
- Hazard, B.; Adongo, C.; Adano, W.; Ledant, M. Comprehensive Study of Pastoral Livelihoods, WASH and Natural Resource Managment in Northern Marsabit; IFRA: Nairobi, Kenya, 2012. [Google Scholar] [CrossRef]
- M’Mbogori, F.; Kinyua, M.; Gufu, A.; Lane, P.J. Changes to Water Management and Declining Pastoral Economic Resilience in Northern Kenya: The Example of Gabra Wells. WIREs Water 2022, in press.
- Robinson, L.W. Participatory Development and the Capacity of Gabra Pastoralist Communities to Influence Resilience; Manitoba University: Winnipeg, MB, Canada, 2009. [Google Scholar]
- Witsenburg, K.M.; Roba, A.W. Surviving Pastoral Decline: Pastoral Sedentarisation, Natural Resource Management and Livelihood Diversification in Marsabit District, Northern Kenya Deel. Ph.D. Thesis, Amsterdam Institute for Social Science Research (AISSR), Amsterdam, The Netherlands, 2004. [Google Scholar]
- Filho, W.L.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total. Environ. 2021, 806, 150420. [Google Scholar] [CrossRef] [PubMed]
Bare | Built Up | Crop-off | Crop-on | Grass | Shrubs | Closed Trees | Water | Open Trees | Total | UA% | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bare | 2036 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2036 | 100 |
Built Up | 261 | 489 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 750 | 65.20 |
Crop-off | 0 | 0 | 501 | 0 | 21 | 0 | 0 | 0 | 0 | 522 | 95.98 |
Crop-on | 0 | 0 | 0 | 360 | 36 | 0 | 0 | 0 | 21 | 417 | 86.33 |
Grass | 0 | 0 | 108 | 81 | 1449 | 0 | 0 | 9 | 3 | 1650 | 87.82 |
Shrubs | 423 | 0 | 14 | 0 | 150 | 401 | 0 | 0 | 30 | 1018 | 39.39 |
Closed trees | 0 | 0 | 0 | 117 | 0 | 0 | 9556 | 0 | 52 | 9725 | 98.26 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 435 | 0 | 435 | 100 |
Open trees | 0 | 10 | 0 | 5 | 15 | 3 | 17 | 0 | 3525 | 3575 | 98.60 |
Total | 2720 | 499 | 623 | 563 | 1671 | 404 | 9573 | 444 | 3631 | 20,128 | |
PA% | 74.85 | 98 | 80.42 | 63.94 | 86.71 | 99.26 | 99.82 | 97.97 | 97.08 | ||
OA% | 93.04% | ||||||||||
Kappa | 88.06% |
Bare | Built Up | Crop-off | Crop-on | Grass | Shrubs | Closed Trees | Water | Open Trees | Total | UA% | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bare | 13,275 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13,293 | 99.86 |
Built Up | 636 | 1349 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 1994 | 67.65 |
Crop-off | 0 | 45 | 1503 | 27 | 45 | 0 | 0 | 0 | 0 | 1620 | 92.78 |
Crop-on | 0 | 0 | 45 | 306 | 72 | 0 | 63 | 0 | 15 | 501 | 61.08 |
Grass | 0 | 0 | 0 | 27 | 3414 | 0 | 486 | 0 | 5 | 3932 | 86.83 |
Shrubs | 127 | 0 | 0 | 0 | 116 | 715 | 51 | 0 | 32 | 1041 | 68.68 |
Closed trees | 0 | 0 | 0 | 0 | 0 | 0 | 3330 | 0 | 17 | 3347 | 99.49 |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 138 | 0 | 138 | 100 |
Open trees | 0 | 0 | 0 | 25 | 15 | 52 | 42 | 0 | 2215 | 2349 | 94.3 |
Total | 14,038 | 1412 | 1557 | 385 | 3662 | 767 | 3972 | 138 | 2284 | 28,215 | |
PA% | 94.56 | 95.54 | 96.53 | 79.48 | 93.23 | 93.22 | 83.84 | 100 | 96.98 | ||
OA% | 93.15% | ||||||||||
Kappa | 89.59% |
Bare | Built Up | Crop-off | Crop-on | Grass | Shrubs | Closed Trees | Water | Open Trees | Total | UA% | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bare | 72,038 | 45 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 72,101 | 99.91 |
Built Up | 102 | 1247 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1349 | 92.44 |
Crop-off | 0 | 27 | 1544 | 9 | 9 | 0 | 0 | 0 | 11 | 1600 | 96.50 |
Crop-on | 0 | 0 | 0 | 444 | 69 | 0 | 146 | 0 | 32 | 691 | 64.25 |
Grass | 0 | 0 | 0 | 1092 | 10,008 | 0 | 90 | 0 | 35 | 11,225 | 89.16 |
Shrubs | 30 | 3 | 0 | 6 | 115 | 288 | 9 | 0 | 61 | 512 | 56.25 |
Closed trees | 0 | 0 | 0 | 189 | 0 | 0 | 3468 | 0 | 102 | 3759 | 92.26 |
Water | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 2568 | 0 | 2586 | 99.30 |
Open trees | 0 | 0 | 0 | 0 | 25 | 30 | 72 | 0 | 3263 | 3390 | 96.25 |
Total | 72,170 | 1322 | 1544 | 1740 | 10,244 | 336 | 3785 | 2568 | 3504 | 97,213 | |
PA% | 99.82 | 94.33 | 100 | 25.52 | 97.7 | 85.71 | 91.62 | 100 | 93.12 | ||
OA% | 97.59% | ||||||||||
Kappa | 92.89% |
Bare | Built Up | Crop-off | Crop-on | Grass | Shrubs | Closed Trees | Water | Open Trees | Total | UA% | |
---|---|---|---|---|---|---|---|---|---|---|---|
Bare | 1591 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1591 | 100 |
Built Up | 0 | 1521 | 0 | 0 | 46 | 0 | 0 | 0 | 0 | 1567 | 97.06 |
Crop-off | 0 | 0 | 70 | 3 | 0 | 0 | 0 | 0 | 0 | 73 | 95.89 |
Crop-on | 0 | 0 | 0 | 51 | 26 | 55 | 12 | 0 | 35 | 128 | 39.84 |
Grass | 0 | 0 | 15 | 0 | 13,458 | 0 | 9 | 12 | 114 | 13,608 | 98.9 |
Shrubs | 0 | 21 | 0 | 10 | 227 | 150 | 18 | 0 | 79 | 505 | 29.7 |
Closed trees | 0 | 0 | 0 | 0 | 0 | 0 | 8370 | 0 | 95 | 8465 | 98.88 |
Water | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 3423 | 0 | 3441 | 99.48 |
Open trees | 0 | 13 | 0 | 65 | 115 | 35 | 156 | 0 | 2578 | 2962 | 87.04 |
Total | 1591 | 1555 | 85 | 129 | 13,890 | 240 | 8565 | 3435 | 2901 | 32,340 | |
PA% | 100 | 97.81 | 82.35 | 39.53 | 96.89 | 62.5 | 97.72 | 99.65 | 88.87 | ||
OA% | 96.37% | ||||||||||
Kappa | 91.89% |
LULC | Area (km2)-1990 | Area (km2)-2001 | Area (km2)-2011 | Area (km2)-2020 |
---|---|---|---|---|
Croplands | 47.47 | 426.67 | 419.56 | 524.43 |
Trees-closed | 10,043.02 | 6063 | 2262.53 | 2350.89 |
Grasslands | 36,913.71 | 36,704.13 | 36,555.65 | 36,312.4 |
Shrubs | 9420.62 | 9769.4 | 12,324.15 | 12,664.61 |
Water | 14.89 | 14.7 | 14.03 | 42.69 |
Trees-open | 20,981.35 | 24,434.12 | 24,505.47 | 24,488.01 |
Urban | 9.35 | 15.61 | 20.3 | 28.41 |
Bare | 1372.82 | 1375.95 | 2701.9 | 2393.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochungo, P.; Khalaf, N.; Merlo, S.; Beldados, A.; M’Mbogori, F.N.; Tiki, W.; Lane, P.J. Remote Sensing for Biocultural Heritage Preservation in an African Semi-Arid Region: A Case Study of Indigenous Wells in Northern Kenya and Southern Ethiopia. Remote Sens. 2022, 14, 314. https://doi.org/10.3390/rs14020314
Ochungo P, Khalaf N, Merlo S, Beldados A, M’Mbogori FN, Tiki W, Lane PJ. Remote Sensing for Biocultural Heritage Preservation in an African Semi-Arid Region: A Case Study of Indigenous Wells in Northern Kenya and Southern Ethiopia. Remote Sensing. 2022; 14(2):314. https://doi.org/10.3390/rs14020314
Chicago/Turabian StyleOchungo, Pamela, Nadia Khalaf, Stefania Merlo, Alemseged Beldados, Freda Nkirote M’Mbogori, Waktole Tiki, and Paul J. Lane. 2022. "Remote Sensing for Biocultural Heritage Preservation in an African Semi-Arid Region: A Case Study of Indigenous Wells in Northern Kenya and Southern Ethiopia" Remote Sensing 14, no. 2: 314. https://doi.org/10.3390/rs14020314
APA StyleOchungo, P., Khalaf, N., Merlo, S., Beldados, A., M’Mbogori, F. N., Tiki, W., & Lane, P. J. (2022). Remote Sensing for Biocultural Heritage Preservation in an African Semi-Arid Region: A Case Study of Indigenous Wells in Northern Kenya and Southern Ethiopia. Remote Sensing, 14(2), 314. https://doi.org/10.3390/rs14020314