On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Measurements and Methods
2.1. Ground-Based Observations at THAAO
2.2. Satellite Data
2.3. MODTRAN Model
2.3.1. Single Scattering Albedo (SSA) and Asymmetry Factor (g)
2.3.2. Aerosol Radiative Effect (ARE) and Efficiency (AREE)
3. Results and Discussion
3.1. AOD, Shortwave, and Photo-Synthetically Active Radiation
3.2. Atmospheric and Aerosol Chemistry
3.3. Determination of BB Radiative Effects at the Surface and Heating Rate Profiles
3.4. Radiative Impact over Western Arctic
3.5. Radiative Impact over the Greenland Ice Sheet (GIS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serreze, M.C.; Walsh, J.E.; Chapin, F.S.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W.C.; Morison, J.; Zhang, T.; Barry, R.G. Observational evidence of recent change in the northern high-latitude environment. Clim. Chang. 2000, 46, 159–207. [Google Scholar] [CrossRef]
- Box, J.E.; Res, E.; Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.J.W.J.W.; Brown, R.; Bhatt, U.S.; et al. Key indicators of Arctic climate change: 1971–2017 Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Masrur, A.; Petrov, A.N.; DeGroote, J. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015. Environ. Res. Lett. 2018, 13, 014019. [Google Scholar] [CrossRef] [Green Version]
- Bret-Harte, M.S.; Mack, M.C.; Shaver, G.R.; Huebner, D.C.; Johnston, M.; Mojica, C.A.; Pizano, C.; Reiskind, J.A. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120490. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Kong, Y.; Zhang, F.; Yang, K.; Zhang, T. Most of the Northern Hemisphere Permafrost Remains under Climate Change. Sci. Rep. 2019, 9, 3295. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H.; et al. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- McGuire, A.D.; Anderson, L.G.; Christensen, T.R.; Dallimore, S.; Guo, L.; Hayes, D.J.; Heimann, M.; Lorenson, T.D.; Macdonald, R.W.; Roulet, N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009, 79, 523–555. [Google Scholar] [CrossRef] [Green Version]
- Young, A.M.; Higuera, P.E.; Duffy, P.A.; Hu, F.S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 2017, 40, 606–617. [Google Scholar] [CrossRef]
- Higuera, P.E.; Brubaker, L.B.; Anderson, P.M.; Brown, T.A.; Kennedy, A.T.; Hu, F.S. Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change. PLoS ONE 2008, 3, e0001744. [Google Scholar] [CrossRef]
- Yue, X.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Martin, M.V.; Yantosca, R.M. Impact of 2050 climate change on North American wildfire: Consequences for ozone air quality. Atmos. Chem. Phys. 2015, 15, 10033–10055. [Google Scholar] [CrossRef] [Green Version]
- Markowicz, K.; Lisok, J.; Xian, P. Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget. Atmos. Environ. 2017, 171, 248–260. [Google Scholar] [CrossRef]
- Evangeliou, N.; Kylling, A.; Eckhardt, S.; Myroniuk, V.; Stebel, K.; Paugam, R.; Zibtsev, S.; Stohl, A. Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos. Chem. Phys. 2019, 19, 1393–1411. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 2006, 33, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ponomarev, E.I. Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia. Russ. J. Ecol. 2017, 48, 507–512. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef]
- Balshi, M.S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Chang. Biol. 2009, 15, 578–600. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; de Groot, W.J.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Chang. 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Scholten, R.C.; Jandt, R.; Miller, E.A.; Rogers, B.M.; Veraverbeke, S. Overwintering fires in boreal forests. Nature 2021, 593, 399–404. [Google Scholar] [CrossRef]
- McCarty, J.L.; Smith, T.E.L.; Turetsky, M.R. Arctic fires re-emerging. Nat. Geosci. 2020, 13, 658–660. [Google Scholar] [CrossRef]
- Lutsch, E.; Strong, K.; Jones, D.B.; Blumenstock, T.; Conway, S.; Fisher, J.A.; Hannigan, J.W.; Hase, F.; Kasai, Y.; Mahieu, E.; et al. Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-Transform infrared spectrometers and GEOS-Chem. Atmos. Chem. Phys. 2020, 20, 12813–12851. [Google Scholar] [CrossRef]
- Thule High Arctic Atmospheric Observatory (THAAO). Available online: https://www.thuleatmos-it.it/ (accessed on 29 November 2021).
- Zielinski, T.; Bolzacchini, E.; Cataldi, M.; Ferrero, L.; Graßl, S.; Hansen, G.; Mateos, D.; Mazzola, M.; Neuber, R.; Pakszys, P.; et al. Study of chemical and optical properties of biomass burning aerosols during long-range transport events toward the arctic in summer 2017. Atmosphere 2020, 11, 84. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.A.; Campbell, J.R.; Hyer, E.J.; Fromm, M.D.; Kablick, G.P.; Cossuth, J.H.; DeLand, M.T. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Clim. Atmos. Sci. 2018, 1, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, K.; Yorks, J.; Das, S. Differences in the evolution of pyrocumulonimbus and volcanic stratospheric plumes as observed by cats and caliop space-based lidars. Atmosphere 2020, 11, 1035. [Google Scholar] [CrossRef]
- Das, S.; Colarco, P.R.; Oman, L.D.; Taha, G.; Torres, O. The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere. Atmos. Chem. Phys. 2021, 21, 12069–12090. [Google Scholar] [CrossRef]
- Ansmann, A.; Baars, H.; Chudnovsky, A.; Mattis, I.; Veselovskii, I.; Haarig, M.; Seifert, P.; Engelmann, R.; Wandinger, U. Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017. Atmos. Chem. Phys. 2018, 18, 11831–11845. [Google Scholar] [CrossRef] [Green Version]
- Lutsch, E.; Strong, K.; Jones, D.B.A.; Ortega, I.; Hannigan, J.W.; Dammers, E.; Shephard, M.W.; Morris, E.; Murphy, K.; Evans, M.J.; et al. Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires. J. Geophys. Res. Atmos. 2019, 124, 8178–8202. [Google Scholar] [CrossRef]
- Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke. Atmos. Chem. Phys. 2018, 18, 11847–11861. [Google Scholar] [CrossRef] [Green Version]
- Di Sarra, A.; Cacciani, M.; Di Girolamo, P.; Fiocco, G.; Fuà, D.; Knudsen, B.; Larsen, N.; Joergensen, T.S. Observations of correlated behavior of stratospheric ozone and aerosol at Thule during winter 1991–1992. Geophys. Res. Lett. 1992, 19, 1823–1826. [Google Scholar] [CrossRef]
- Hannigan, J.W.; Coffey, M.T.; Goldman, A. Semiautonomous FTS Observation System for Remote Sensing of Stratospheric and Tropospheric Gases. J. Atmos. Ocean. Technol. 2009, 26, 1814–1828. [Google Scholar] [CrossRef]
- Network for the Detection of Atmospheric Composition Change (NDACC). Available online: ndacc-uvvis-wg.aeronomie.be/tools/NDACC_UVVIS-WG_NO2settings_v4.pdf (accessed on 1 December 2021).
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Mateos, D.; Pace, G.; Meloni, D.; Bilbao, J.; di Sarra, A.; de Miguel, A.; Casasanta, G.; Min, Q. Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation. J. Geophys. Res. Atmos. 2014, 119, 2429–2440. [Google Scholar] [CrossRef]
- Becagli, S.; Caiazzo, L.; Di Iorio, T.; di Sarra, A.; Meloni, D.; Muscari, G.; Pace, G.; Severi, M.; Traversi, R. New insights on metals in the Arctic aerosol in a climate changing world. Sci. Total Environ. 2020, 741, 140511. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.R.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Lidar Remote Sensing for Industry and Environment Monitoring III; International Society for Optics and Photonics: Bellingham, WA, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; King, M.; Hubanks, P. MODIS Atmosphere L3 Daily Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center: Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global—500 m V006 [Data Set]; USGS: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Smith, W.L.; Rutledge, K. A parameterization of ocean surface albedo. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery; SPIE: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef]
- McClatchey, R.A.; Fenn, R.; Selby, J.; Volz, F.; Garing, J. Optical Properties of the Atmosphere, 3rd ed.; Environmental Research Papers; Air Force Systems Command, United States Air Force: Baltimore, MD, USA, 1972; Volume 411, p. 108. [Google Scholar]
- Dirksen, R.; Dobber, M.; Voors, R.; Levelt, P. Prelaunch characterization of the Ozone Monitoring Instrument transfer function in the spectral domain. Appl. Opt. 2006, 45, 3972. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Zhuravleva, T.B.; Kabanov, D.M.; Nasrtdinov, I.M.; Russkova, T.V.; Sakerin, S.M.; Smirnov, A.; Holben, B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in Summer 2012. Atmos. Meas. Tech. 2017, 10, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Riihelä, A.; King, M.D.; Anttila, K. The surface albedo of the Greenland Ice Sheet between 1982 and 2015 from the CLARA-A2 dataset and its relationship to the ice sheet’s surface mass balance. Cryosphere 2019, 13, 2597–2614. [Google Scholar] [CrossRef] [Green Version]
- Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L.K.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models. Atmos. Chem. Phys. 2015, 15, 2227–2246. [Google Scholar] [CrossRef] [Green Version]
- Moroni, B.; Cappelletti, D.; Crocchianti, S.; Becagli, S.; Caiazzo, L.; Traversi, R.; Udisti, R.; Mazzola, M.; Markowicz, K.; Ritter, C.; et al. Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands). Atmos. Environ. 2017, 156, 135–145. [Google Scholar] [CrossRef]
- Kalogridis, A.C.; Popovicheva, O.; Engling, G.; Diapouli, E.; Kawamura, K.; Tachibana, E.; Ono, K.; Kozlov, V.; Eleftheriadis, K. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber. Atmos. Environ. 2018, 185, 15–28. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK; New York, NY, USA, 1979. [Google Scholar]
- Stone, R.S.; Anderson, G.P.; Shettle, E.P.; Andrews, E.; Loukachine, K.; Dutton, E.G.; Schaaf, C.; Roman, M.O. Radiative impact of boreal smoke in the Arctic: Observed and modeled. J. Geophys. Res. 2008, 113, D14S16. [Google Scholar] [CrossRef]
- Di Biagio, C.; di Sarra, A.; Eriksen, P.; Ascanius, S.E.; Muscari, G.; Holben, B. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic. Clim. Dyn. 2012, 39, 953–969. [Google Scholar] [CrossRef]
- Earth Polychromatic Imaging Camera (EPIC) UVAI. Available online: https://epic.gsfc.nasa.gov/science/products/uv (accessed on 29 November 2021).
- Ozone Mapping and Profiler Suite (OMPS) UVAI. Available online: https://acd-ext.gsfc.nasa.gov/People/Seftor/OMPS_AI_August_2017.html (accessed on 29 November 2021).
- Warner, M.S. Introduction to PySPLIT: A Python Toolkit for NOAA ARL’s HYSPLIT Model. Comput. Sci. Eng. 2018, 20, 47–62. [Google Scholar] [CrossRef]
[nm] | A | B | C | |||
---|---|---|---|---|---|---|
SSA | g | SSA | g | SSA | g | |
440 | 0.94 | 0.69 | 0.92 | 0.68 | 0.82 | 0.75 |
670 | 0.935 | 0.61 | 0.91 | 0.59 | 0.80 | 0.68 |
870 | 0.92 | 0.55 | 0.89 | 0.55 | 0.74 | 0.63 |
1020 | 0.91 | 0.53 | 0.88 | 0.54 | 0.69 | 0.58 |
17 August | 21 August | Diff. | AREE | |
---|---|---|---|---|
SW↓ | 175.1 | 123.9 | −51.2 (−29.2%) | |
SW↑ | 35.7 | 21.2 | −14.5 (−40.6%) | −58.6 |
net SW | 139.4 | 102.7 | −36.7 | |
PAR↓ | 70.2 | 46.2 | −24.0 (−34.2%) | |
PAR↑ | 10.3 | 5.5 | −4.8 (−46.6%) | −30.7 |
net PAR | 59.9 | 40.7 | −19.2 |
A | B | C | ||||
---|---|---|---|---|---|---|
SW↑ | SW↓ | SW↑ | SW↓ | SW↑ | SW↓ | |
Meas. [Wm] | 21.2 | 123.9 | 21.2 | 123.9 | 21.2 | 123.9 |
Model [Wm] | 21.2 | 122.5 | 20.5 | 118.9 | 18.2 | 105.7 |
Difference [%] | 0.0 | −1.1 | −3.3 | −4.0 | −14.2 | −14.7 |
SZA [] | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 |
---|---|---|---|---|---|---|---|---|---|
ARE GIS | −12.9 | −15.1 | −17.4 | −19.5 | −21.3 | −22.2 | −21.7 | −19.0 | −13.4 |
ARE SL | −13.0 | −14.7 | −16.2 | −17.6 | −18.5 | −18.6 | −17.3 | −14.3 | −9.2 |
ARE Diff. | 0.1 | −0.5 | −1.2 | −1.9 | −2.8 | −3.7 | −4.4 | −4.8 | −4.3 |
(GIS-SL) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calì Quaglia, F.; Meloni, D.; Muscari, G.; Di Iorio, T.; Ciardini, V.; Pace, G.; Becagli, S.; Di Bernardino, A.; Cacciani, M.; Hannigan, J.W.; et al. On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. Remote Sens. 2022, 14, 313. https://doi.org/10.3390/rs14020313
Calì Quaglia F, Meloni D, Muscari G, Di Iorio T, Ciardini V, Pace G, Becagli S, Di Bernardino A, Cacciani M, Hannigan JW, et al. On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. Remote Sensing. 2022; 14(2):313. https://doi.org/10.3390/rs14020313
Chicago/Turabian StyleCalì Quaglia, Filippo, Daniela Meloni, Giovanni Muscari, Tatiana Di Iorio, Virginia Ciardini, Giandomenico Pace, Silvia Becagli, Annalisa Di Bernardino, Marco Cacciani, James W. Hannigan, and et al. 2022. "On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study" Remote Sensing 14, no. 2: 313. https://doi.org/10.3390/rs14020313
APA StyleCalì Quaglia, F., Meloni, D., Muscari, G., Di Iorio, T., Ciardini, V., Pace, G., Becagli, S., Di Bernardino, A., Cacciani, M., Hannigan, J. W., Ortega, I., & di Sarra, A. G. (2022). On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. Remote Sensing, 14(2), 313. https://doi.org/10.3390/rs14020313