Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objectives
2.2. Study Area
2.2.1. Dry Climate and Fire
2.2.2. Seismic Risk
2.3. Employed Data Capture Techniques
2.4. Datafication
2.4.1. Visualization of Cultural Landscape Features in a GIS Environment
2.4.2. Damage Map in a CAD Environment
2.4.3. Automated Surface Change Detection
2.5. Web-GL Visualization
3. Results
3.1. Sitewide Level Results: WebGL Visualizations of Bodie in Potree
3.2. Building-Level Results: the Example of the Dechambeau Hotel and IOOF Hall
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hulley, G.C.; Dousset, B.; Kahn, B.H. Rising Trends in Heatwave Metrics Across Southern California. Earth’s Future 2020, 8, e2020EF001480. [Google Scholar] [CrossRef]
- Reyes-Velarde, A.; Pinho, F.E. Blistering Heat Wave Sets Record Temperatures across California. Los Angeles Times. 2021. Available online: https://www.latimes.com/california/story/2021-07-11/record-breaking-temperatures-set-as-heat-wave-continues-across-california (accessed on 14 October 2021).
- Dong, C.; MacDonald, G.M.; Willis, K.; Gillespie, T.W.; Okin, G.S.; Williams, A.P. Vegetation Responses to 2012–2016 Drought in Northern and Southern California. Geophys. Res. Lett. 2019, 46, 3810–3821. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Yoon, J.; Gillies, R.R.; Hsu, H.-H. The California Drought. In Climate Extremes; American Geophysical Union (AGU): Washington, DC, USA, 2017; pp. 223–235. ISBN 978-1-119-06802-0. [Google Scholar]
- Ullrich, P.A.; Xu, Z.; Rhoades, A.M.; Dettinger, M.D.; Mount, J.F.; Jones, A.D.; Vahmani, P. California’s Drought of the Future: A Midcentury Recreation of the Exceptional Conditions of 2012–2017. Earth’s Future 2018, 6, 1568–1587. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large Contribution from Anthropogenic Warming to an Emerging North American Megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing Wildfire, Changing Forests: The Effects of Climate Change on Fire Regimes and Vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Cardil, A.; Rodrigues, M.; Ramirez, J.; de-Miguel, S.; Silva, C.A.; Mariani, M.; Ascoli, D. Coupled Effects of Climate Teleconnections on Drought, Santa Ana Winds and Wildfires in Southern California. Sci. Total Environ. 2021, 765, 142788. [Google Scholar] [CrossRef] [PubMed]
- CalFire CZU Lightning Complex. Available online: https://www.fire.ca.gov/incidents/2020/8/16/czu-lightning-complex-including-warnella-fire/ (accessed on 3 August 2021).
- Cultural Resources Division Big Basin Redwoods Historical Resources Survey: CZU Post-Fire Documentation Report; California State Parks: Sacramento, CA, USA, 2021; p. 395.
- Scalingi, P.L. Creating Wildfire-Resilient Communities. In The Palgrave Handbook of Climate Resilient Societies; Springer International Publishing: Cham, Germany, 2020; pp. 1–28. ISBN 978-3-030-32811-5. [Google Scholar]
- Smith, K.; Mossburg, C. CNN California’s Oldest State Park Has Been Extensively Damaged by Wildfires. CNN. 2020. Available online: https://www.cnn.com/2020/08/21/us/ca-oldest-state-park-damaged-wildfires-trnd/index.html (accessed on 14 October 2021).
- KQED News Staff and Wires Some Good News: Many of Big Basin’s Ancient Redwoods Appear to Have Survived. KQED. 2020. Available online: ttps://www.kqed.org/news/11835124/some-good-news-many-of-big-basins-ancient-redwoods-appear-to-have-survived (accessed on 10 October 2021).
- California Department of Parks and Recreation Reimagining Big Basin. Available online: https://www.parks.ca.gov/ (accessed on 19 July 2021).
- Robichaud, P.R.; Ashmun, L.E.; Robichaud, P.R.; Ashmun, L.E. Tools to Aid Post-Wildfire Assessment and Erosion-Mitigation Treatment Decisions. Int. J. Wildland Fire 2012, 22, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Toppozada, T.; Branum, D. California Earthquake History. Ann. Geophys. 2004, 2–3, 47. [Google Scholar]
- Ryall, A. Earthquake Hazard in the Nevada Region. Bull. Seismol. Soc. Am. 1977, 67, 517–532. [Google Scholar] [CrossRef]
- Wallace, R.E. Patterns and Timing of Late Quaternary Faulting in the Great Basin Province and Relation to Some Regional Tectonic Features. J. Geophys. Res. Solid Earth 1984, 89, 5763–5769. [Google Scholar] [CrossRef]
- Petersen, M.D.; Cao, T.; Campbell, K.W.; Frankel, A.D. Time-Independent and Time-Dependent Seismic Hazard Assessment for the State of California: Uniform California Earthquake Rupture Forecast Model 1.0. Seismol. Res. Lett. 2007, 78, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Macalister, F. Preparing for the Future: Mitigating Disasters and Building Resilience in the Cultural Heritage Sector. J. Inst. Conserv. 2015, 38, 115–129. [Google Scholar] [CrossRef]
- O’Brien, G.; O’Keefe, P.; Jayawickrama, J.; Jigyasu, R. Developing a Model for Building Resilience to Climate Risks for Cultural Heritage. J. Cult. Herit. Manag. Sustain. Dev. 2015, 5, 99–114. [Google Scholar] [CrossRef]
- Lercari, N.; Shulze, J.; Wendrich, W.; Porter, B.; Burton, M.; Levy, T.E. 3-D Digital Preservation of at-Risk Global Cultural Heritage. In Proceedings of the 14th EUROGRAPHICS Workshop on Graphics and Cultural Heritage (GCH) 2016, Genova, Italy, 5–7 October 2016; Eurographics Association: Genova, Italy. [Google Scholar]
- Lercari, N.; Jaffke, D. Implementing Participatory Site Stewardship through Citizen Science and Mobile Apps: The Case of Bodie, California. Adv. Archaeol. Pract. 2020, 8, 337–350. [Google Scholar] [CrossRef]
- Chmutina, K.; Jigyasu, R.; Okubo, T. Editorial for the Special Issue on “Securing Future of Heritage by Reducing Risks and Building Resilience”. Disaster Prev. Manag. Int. J. 2020, 29, 1–9. [Google Scholar] [CrossRef]
- Richards-Rissetto, H.; Landau, K. Digitally-Mediated Practices of Geospatial Archaeological Data: Transformation, Integration, & Interpretation. J. Comput. Appl. Archaeol. 2019, 2, 120–135. [Google Scholar] [CrossRef]
- Opitz, R.S.; Cowley, D.C. Interpreting archaeological topography: Lasers, 3D data, observation, visualisation and applications. In nterpreting Archaeological Topography: 3D Data, Visualisation and Observation; Opitz, R.S., Cowley, D.C., Eds.; Oxbow Books: Barnsley, UK, 2012; ISBN 978-1-84217-516-3. [Google Scholar]
- Fassi, F.; Fregonese, L.; Ackermann, S.; De Troia, V. Comparison Between Laser Scanning and Automated 3d Modelling Techniques to Reconstruct Complex and Extensive Cultural Heritage Areas. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL—5/W1, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, A.; Sánchez-Aparicio, L.J.; Barba, S.; Martín-Jiménez, J.A.; Mora, R.; González Aguilera, D. Use of a Wearable Mobile Laser System in Seamless Indoor 3D Mapping of a Complex Historical Site. Remote Sens. 2018, 10, 1897. [Google Scholar] [CrossRef] [Green Version]
- Cucchiaro, S.; Fallu, D.J.; Zhang, H.; Walsh, K.; Van Oost, K.; Brown, A.G.; Tarolli, P. Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sens. 2020, 12, 1946. [Google Scholar] [CrossRef]
- Forlin, P.; Valente, R.; Kázmér, M. Assessing Earthquake Effects on Archaeological Sites Using Photogrammetry and 3D Model Analysis. Digit. Appl. Archaeol. Cult. Herit. 2018, 9, e00073. [Google Scholar] [CrossRef] [Green Version]
- Antón, D.; Pineda, P.; Medjdoub, B.; Iranzo, A. As-Built 3D Heritage City Modelling to Support Numerical Structural Analysis: Application to the Assessment of an Archaeological Remain. Remote Sens. 2019, 11, 1276. [Google Scholar] [CrossRef] [Green Version]
- Caponero, M.A.; Mongelli, M.; Imbimbo, M.; Modoni, G.; Polito, E.; Grande, E. Structural Monitoring of the Ninfeo Ponari by Fibre Optic Sensors, Photogrammetry and Laser Scanning. AeC 2020, 31, 223–232. [Google Scholar] [CrossRef]
- Ditaranto, I. Aerotopografia e fotogrammetria finalizzata per la carta archeologica di Aeclanum. In Archeologia Aerea; Ceraudo, G., Ed.; Claudio Grenzi Editore: Foggia, Italy, 2013; Volume 7, pp. 53–64. [Google Scholar]
- Stek, T.D. Drones over Mediterranean Landscapes. The Potential of Small UAV’s (Drones) for Site Detection and Heritage Management in Archaeological Survey Projects: A Case Study from Le Pianelle in the Tappino Valley, Molise (Italy). J. Cult. Herit. 2016, 22, 1066–1071. [Google Scholar] [CrossRef]
- Castillo, L.J.; Serván, F.; Patroni, K. Documenting Archaeological Sites on Mountains and Slopes with Drones. Adv. Archaeol. Pract. 2019, 7, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.C. Economical Drone Mapping for Archaeology: Comparisons of Efficiency and Accuracy. J. Archaeol. Sci.-Rep. 2019, 24, 80–91. [Google Scholar] [CrossRef]
- Gilento, P. Fotogrammetria, Nuvole Di Punti e Rischio Sismico. Applicazioni e Riflessioni Su Una Metodologia Di Rilievo. Archeol. E Calc. 2012, 23, 297–309. [Google Scholar]
- Mill, T.; Alt, A.; Liias, R. Combined 3D Building Surveying Techniques—Terrestrial Laser Scanning (TLS) and Total Station Surveying for BIM Data Management Purposes. J. Civ. Eng. Manag. 2013, 19, S23–S32. [Google Scholar] [CrossRef]
- Solla, M.; Gonçalves, L.M.S.; Gonçalves, G.; Francisco, C.; Puente, I.; Providência, P.; Gaspar, F.; Rodrigues, H. A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage. Remote Sens. 2020, 12, 4028. [Google Scholar] [CrossRef]
- Andriasyan, M.; Moyano, J.; Nieto-Julián, J.E.; Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 2020, 12, 1094. [Google Scholar] [CrossRef] [Green Version]
- Lercari, N.; Jaffke, D. Bodie 3D Project: Best Practices for Heritage Digital Documentation at Bodie SHP. In Proceedings of the Society for California Archaeology Annual Meeting 2017, Fish Camp, CA, USA, 9–12 March 2017; Society for California Archaeology (SCA): Fish Camp, CA, USA. [Google Scholar]
- California State Parks Transformation Action Plan; California Department of Parks and Recreation: Sacramento, CA, USA, 2015.
- Lercari, N.; Jaffke, D.; McAvoy, S.; Campiani, A.; Jiménez Delgado, G. Data from: Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi—Temporal Site Monitoring, Datafication, and Web—GL Visualization. Remote Sens 2021, 13, 4130. [Google Scholar] [CrossRef]
- Felton, D.L.; Lortie, F.; Davis, K.; Lewis, L. The Cultural Resources of Bodie State Historic Park; California Department of Parks and Recreation: Sacramento, CA, USA, 1977. [Google Scholar]
- DPR. Appraisal Survey of Bodie Property Prior to Acquisition; California Department of Parks and Recreation: Sacramento, CA, USA, 1960. [Google Scholar]
- Piatt, M.H. Bodie: “The Mines Are Looking Well...”: The History of the Bodie Mining District, Mono County, California; North Bay Books: El Sobrante, CA, USA, 2003; ISBN 978-0-9725200-5-8. [Google Scholar]
- Jackson-Retondo, E.; Kennedy, K.; Jaffke, D. Bodie Historic District National Historic Landmark Nomination (Update). Draft Form Prepared for National Park Service; U.S. Department of the Interior: Washington, DC, USA, 2016. [Google Scholar]
- Schulz, P.; Morrison, A.S. Architecture as Material Culture: A Survey of Residential and Commercial Structures in a Western Ghost Town. In Proceedings of the Society for California Archaeology Annual Meeting 2000, Sacramento, CA, USA, 23–25 April 1999; Society for California Archaeology: Sacramento, CA, USA, 2000; Volume 13, pp. 103–111. [Google Scholar]
- Morrison, A.S. Structural Failures of Single Wall Construction in a Western Mining Town: Bodie, California. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, 1998. [Google Scholar]
- Calloway, R.A.; Albright, R.G.; Felton, D.L.; West, J.; Pierce, K. Bodie State Historic Park: Resource Management Plan, General Development Plan and Environmental Impact Report; California Department of Parks and Recreation: Sacramento, CA, USA, 1979. [Google Scholar]
- DeLyser, D. Authenticity on the Ground: Engaging the Past in a California Ghost Town. Ann. Assoc. Am. Geogr. 1999, 89, 602–632. [Google Scholar] [CrossRef]
- Kauffman, E. Climate and Topography. In Atlas of the Biodiversity of California; California Department of Fish and Game: Sacramento, CA, USA, 2003; pp. 12–15. ISBN 978-0-9722291-0-4. [Google Scholar]
- Cain, E.M.C. The Story of Bodie; Fearon Publishers in cooperation with Mother Lode Press: San Francisco and Sonora, CA, USA, 1956. [Google Scholar]
- Jimenez, C.L. Bodie, California: Understanding the Architecture and Built Environment of a Gold Mining Town. Ph.D. Thesis, University of Oregon, Eugene, OR, USA, 2000. [Google Scholar]
- Curtis Riganti California|U.S. Drought Monitor. Available online: https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?CA (accessed on 20 August 2021).
- Dillingham, E.; Kaiser, R.; Lowden, J.; Stever, E. Spring Peak Wildfire. Memo Prepared for U.S. Forest Service District Manager; U.S. Forest Service: Bridgeport, CT, USA, 2013. [Google Scholar]
- Forest Management Task Force California’s Wildfire and Forest Resilience Action Plan. Report Prepared for State of California, Calfornia Natural Resources Agency, California Environmental Protection Agency, and Department of Forestry and Fire Protection; California Department of Water Resources: Sacramento, CA, USA, 2021. [Google Scholar]
- Working Group on California Earthquake Probabilities The Third California Earthquake Rupture Forecast (UCERF3). Available online: http://wgcep.org/UCERF3.html (accessed on 21 July 2021).
- Aguilar, A. The Seismic Rehabilitation of Historic Buildings, Preservation Brief, 41st ed.; National Park Service: Washington, DC, USA, 2016; ISBN 978-0-16-093252-6. [Google Scholar]
- USGS National Earthquake Information Center, PDE; California Integrated Seismic Network; Nevada Seismological Laboratory M 5.6 Earthquake—28 Km WSW of Hawthorne, Nevada. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/nn00570710/executive (accessed on 22 August 2021).
- Boardman, C.; Bryan, P. 3D Laser Scanning for Heritage: Advice and Guidance to Users on Laser Scanning in Archaeology and Architecture, Guidance, 3rd ed.; Historic England Publishing: Swindon, UK, 2018. [Google Scholar]
- Lercari, N. Monitoring Earthen Archaeological Heritage Using Multi-Temporal Terrestrial Laser Scanning and Surface Change Detection. J. Cult. Herit. 2019, 39C, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.M.; Newman, P.M. Using Laser Range Data for 3D SLAM in Outdoor Environments. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1556–1563. [Google Scholar]
- Choi, J. Hybrid Map-Based SLAM Using a Velodyne Laser Scanner. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 3082–3087. [Google Scholar]
- Zlot, R.; Bosse, M. Efficient Large-Scale 3D Mobile Mapping and Surface Reconstruction of an Underground Mine. In Field and Service Robotics: Results of the 8th International Conference; Springer Tracts in Advanced Robotics; Yoshida, K., Tadokoro, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 479–493. ISBN 978-3-642-40686-7. [Google Scholar]
- Remondino, F.; El-Hakim, S. Image-Based 3D Modelling: A Review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 978-1-84882-935-0. [Google Scholar]
- Quan, L. Image-Based Modeling; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 978-1-4419-6679-7. [Google Scholar]
- Andrews, D.; Bedford, J.; Blake, B.; Bryan, P.; Cromwell, T.; Lea, R. Measured and Drawn: Techniques and Practice for the Metric Survey of Historic Buildings, 2nd ed.; English Heritage: Swindon, UK, 2009; ISBN 978-1-84802-047-4. [Google Scholar]
- Campiani, A.; Lingle, A.; Lercari, N. Spatial Analysis and Heritage Conservation: Leveraging 3-D Data and GIS for Monitoring Earthen Architecture. J. Cult. Herit. 2019, 39C, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Campiani, A.; Liendo Stuardo, R.; Lercari, N. The Mausoleum Architectural Project: Reinterpreting Palenque’s Temple of The Inscriptions through 3d Data-Driven Architectural Analysis. Anc. Mesoam. 2021, 1–16. [Google Scholar] [CrossRef]
- Olsen, M.J.; Kuester, F.; Chang, B.J.; Hutchinson, T.C. Terrestrial Laser Scanning-Based Structural Damage Assessment. J. Comput. Civ. Eng. 2009, 24, 264–272. [Google Scholar] [CrossRef]
- Olsen, M.J.; Chen, Z.; Hutchinson, T.; Kuester, F. Optical Techniques for Multiscale Damage Assessment. Geomat. Nat. Hazards Risk 2013, 4, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Olsen, M.J. In Situ Change Analysis and Monitoring through Terrestrial Laser Scanning. J. Comput. Civ. Eng. 2015, 29, 04014040. [Google Scholar] [CrossRef]
- Campiani, A.; Lingle, A.M.; Lercari, N. Diversified Approach to Earthen Architecture Conservation: Implementing Digital Monitoring and Spatial Analysis at Çatalhöyük. In Preserving Cultural Heritage in the Digital Age: Sending Out an S.O.S.; Lercari, N., Willeke, W., Porter, B.W., Burton, M.M., Levy, T.E., Eds.; New Directions in Anthropological Archaeology; Equinox Publishing: Sheffield, UK, 2021; ISBN 978-1-80050-126-3. [Google Scholar]
- Richards-Rissetto, H. What Can GIS + 3D Mean for Landscape Archaeology? J. Archaeol. Sci. 2017, 84, 10–21. [Google Scholar] [CrossRef] [Green Version]
- U.S. Forest Service Data Access | Rapid Assessment of Vegetation Condition after Wildfire (RAVG). Available online: https://fsapps.nwcg.gov/ravg/data-access (accessed on 23 August 2021).
- Hesse, R. Extraction of Archaeological Features from High-Resolution LIDAR Data. In Proceedings of the 14th International Congress “Cultural Heritage and New Technologies”, Vienna, Austria, 16–18 November 2009; Stadtarchäologie Wien: Vienna, Austria, 2010; pp. 636–642. [Google Scholar]
- Štular, B.; Kokalj, Ž.; Oštir, K.; Nuninger, L. Visualization of Lidar-Derived Relief Models for Detection of Archaeological Features. J. Archaeol. Sci. 2012, 39, 3354–3360. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Zakšek, K.; Krištof, O. Visualizations of lidar derived relief models. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation; Opitz, R.S., Cowley, D., Eds.; Occasional publication of the Aerial Archaeology Research Group; Oxbow Books: Oxford, UK; Oakville, CT, USA, 2013; pp. 100–114. ISBN 978-1-84217-516-3. [Google Scholar]
- Hesse, R. Using LIDAR-derived Local Relief Models (LRM) as a new tool for archaeological prospection. In Landscape Archaeology between Art and Science; Kluiving, S.J., Guttmann-Bond, E., Eds.; Amsterdam University Press: Amsterdam, The Netherlands, 2012; pp. 369–378. ISBN 978-90-485-1607-0. [Google Scholar]
- Yokoyama, R.; Shirazawa, M.; Pike, R.J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Chiba, T.; Kaneta, S.; Susuki, Y. Red Relief Image Map: New Visualization Method for Three Dimensional Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1071–1076. [Google Scholar]
- Chiba, T.; Hasi, B. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI—B2, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Secretary of the Interior’s Standards and Guidelines|HABS/HAER/HALS. Available online: https://www.nps.gov/hdp/standards/index.htm (accessed on 13 August 2021).
- Lavoie, C.; Lockett, D. Producing HABS/HAER/HALS Measured Drawings from Laser Scans: The Pros and Cons of Using Laser Scanning for Heritage Documentation. Available online: https://www.nps.gov/hdp/standards/laser.htm (accessed on 12 August 2021).
- Girardeau-Montaut, D. CloudCompare. 2019. Available online: http://www.cloudcompare.org (accessed on 14 October 2021).
- Lague, D. M3C2 (Plugin)—CloudCompareWiki. Available online: https://www.cloudcompare.org/doc/wiki/index.php?title=M3C2_ (accessed on 11 September 2018).
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Barnhart, T.B.; Crosby, B.T. Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska. Remote Sens. 2013, 5, 2813–2837. [Google Scholar] [CrossRef] [Green Version]
- Kleber, E.; Nissen, E.; Arrowsmith, J.R. Topographic Change Detection Using CloudCompare Version 1.0. 2013. Available online: https://cloud.sdsc.edu/v1/AUTH_opentopography/www/education/13SCEC_Cloud_compare_final.pdf (accessed on 14 October 2021).
- Schuetz, M. Potree: Rendering Large Point Clouds in Web Browsers. Master’s Thesis, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria, 2016. [Google Scholar]
- OpenTopography. Available online: https://opentopography.org (accessed on 22 August 2021).
- Isenburg, M. First Look with LAStools at LiDAR from Hovermap Drone by CSIRO. rapidlasso GmbH. 2018. Available online: https://rapidlasso.com/2018/04/16/first-look-with-lastools-at-lidar-from-hovermap-drone-by-csiro/ (accessed on 14 October 2021).
- Lercari, N. UC Merced HIVE Lab Heritage Digital Documentation: Guides to Good Practices; California Department of Parks and Recreation: Sacramento, CA, USA, 2017; p. 44. [Google Scholar]
- McAvoy, S.; Lercari, N.; Campiani, A.; Jiménez Delgado, G.; Jaffke, D. Bodie, California WebGL Viewer. 2021. Available online: https://pointcloud.ucsd.edu/HIVE/Bodie/Bodie_Cesium.html (accessed on 14 October 2021). [CrossRef]
- Boucheny, C.; Ribes, A. Eye-Dome Lighting: A Non-Photorealistic Shading Technique. Kitware Source Q. Mag. 2011, 17. [Google Scholar]
- Crosby, C.; Nandigam, V.; Baru, C.; Arrowsmith, J.R. Proccedings of the OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools, Vienna, Austira, 7–12 April 2013; 2013.
- Search Results: “Bodie”—Prints & Photographs Online Catalog (Library of Congress). Available online: https://www.loc.gov/pictures/search/?q=Bodie&co=hh (accessed on 13 August 2021).
- Search Results: “Bodie” (California State Library). Available online: https://csl.primo.exlibrisgroup.com/discovery/search?query=any,contains,Bodie&tab=Everything&search_scope=MyInst_and_CI&vid=01CSL_INST:CSL&facet=tlevel,include,online_resources&facet=rtype,include,images&mode=Basic&offset=0 (accessed on 13 August 2021).
- Austin, A. Mobilizing Archaeologists: Increasing the Quantity and Quality of Data Collected in the Field with Mobile Technology. Adv. Archaeol. Pract. 2014, 2, 13–23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lercari, N.; Jaffke, D.; Campiani, A.; Guillem, A.; McAvoy, S.; Delgado, G.J.; Bevk Neeb, A. Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization. Remote Sens. 2021, 13, 4130. https://doi.org/10.3390/rs13204130
Lercari N, Jaffke D, Campiani A, Guillem A, McAvoy S, Delgado GJ, Bevk Neeb A. Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization. Remote Sensing. 2021; 13(20):4130. https://doi.org/10.3390/rs13204130
Chicago/Turabian StyleLercari, Nicola, Denise Jaffke, Arianna Campiani, Anaïs Guillem, Scott McAvoy, Gerardo Jiménez Delgado, and Alexandra Bevk Neeb. 2021. "Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization" Remote Sensing 13, no. 20: 4130. https://doi.org/10.3390/rs13204130
APA StyleLercari, N., Jaffke, D., Campiani, A., Guillem, A., McAvoy, S., Delgado, G. J., & Bevk Neeb, A. (2021). Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization. Remote Sensing, 13(20), 4130. https://doi.org/10.3390/rs13204130