Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf Blight on Onion Using Aerial Photographs from an NIR Camera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Onion Plots and Regions of Interest
2.2. Image Analysis and Vegetative Indices
2.3. Statistical Analysis
3. Results
3.1. Image Analysis
3.2. Disease and Vegetative Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, K.D.; Duddu, H.S.; Vail, S.; Parkin, I.; Shirtliffe, S.J. UAV-Based Hyperspectral Imaging Technique to Estimate Canola (Brassica napus L.) Seedpods Maturity. Can. J. Remote Sens. 2021, 47, 33–47. [Google Scholar] [CrossRef]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M. Advanced methods of plant disease detection. Agron. Sustain. Dev. 2014, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Shafri, H.Z.M.; Hamdan, N. Hyperspectral imagery for mapping disease infection in oil palm plantation using vegetation indices and red-edge techniques. Am. J. Appl. Sci. 2009, 6, 1031–1035. [Google Scholar]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Gold, K.M. Characterization of early Phytophthora infestans infection in potato with aerial, field-based hyperspectral imaging. Phytopathology 2019, 109 (Suppl. S2-2), 197. [Google Scholar]
- McKinzie, L.; Li, R.; Bond, J.P.; Fakhoury, A.M. Assessment of plant disease using an unmanned aerial system with high resolution colour and multi-spectral imagery. Phytopathology 2019, 109 (Suppl. S2), 189. [Google Scholar]
- Wei, X.; Langston, D.B., Jr.; Mehl, H.L. Spectral and thermal signatures of early infection of peanut with Sclerotium rolfsii. Phytopathology 2019, 109 (Suppl. S2-1), 189. [Google Scholar]
- Zarco-Tejada, P.J. Radiative transfer retrieval of physiological plant traits for pre-visual detection of biotic stresses via air-borne hyperspectral imaging. Phytopathology 2019, 109 (Suppl. S2-2), 1. [Google Scholar]
- Bohnerkamp, D. Hyperspectral sensors for the detection, quantification and identification of plant diseases—Demands, confounders and strengths for field detection. Phytpathology 2019, 109 (Suppl. S2-2), 197. [Google Scholar]
- Hay, F.; Stricker, S.; Gossen, B.D.; McDonald, M.R.; Heck, D.; Hoepting, C.; Sharma, S.; Pethybridge, S. Stemphylium leaf blight of onion: A re-emerging threat to onion production in eastern North America. Plant Dis. 2021; in press. [Google Scholar]
- Foster, J.M.; Tayviah, C.S.; Stricker, S.; Gossen, B.D.; McDonald, M.R. Pathogenicity of Stemphylium vesicarium on asparagus, onion and non-host crops in Canada. Can. J. Plant Pathol. 2019, 41, 228–241. [Google Scholar] [CrossRef]
- Stricker, S.M.; Gossen, B.D.; McDonald, M.R. Risk assessment of secondary metabolites produced by fungi in the genus Stemphylium. Can. J. Microbiol. 2021, 67, 445–450. [Google Scholar] [CrossRef]
- Shishkoff, N.; Lorbeer, J.W. Etiology of Stemphylium leaf blight of onion. Phytopathology 1989, 79, 301–304. [Google Scholar] [CrossRef]
- Rao, R.N.N.; Pavgi, M. Stemphylium leaf blight in onion. Mycopathologia 1975, 56, 1–6. [Google Scholar]
- Basallote-Ureba, M.J.; Prados-Ligero, A.M.; Melero-Vara, J.M. Aetiology of leaf spot of garlic and onion caused by Stemphylium vesicarium in Spain. Plant Pathol. 1999, 48, 139–145. [Google Scholar] [CrossRef]
- Pathak, S.S.; Black, S.J.; Cherng, T.C.; Ko, S.S. Breeding onions for stemphylium leaf blight resistance. Acta Hortic. 2001, 555, 77–81. [Google Scholar] [CrossRef]
- Mishra, R.K.; Verma, A.; Singh, S.; Gupta, R.P. Screening of garlic lines against purple blotch and stemphylium blight. Pest Manag. Hortic. Ecsyst. 2009, 15, 138–140. [Google Scholar]
- Gupta, R.P.; Srivastava, P.; Sharma, R. Plant health management. In National Horticultural Research and Development Foundation Nashik Report; The Directorate: National Horticultural Research and Development Foundation: Maharashtra, India, 2010; pp. 13–15. [Google Scholar]
- Stricker, S.M.; Tayviah, C.S.; Gossen, B.D.; McDonald, M.R. Fungicide efficacy and timing for management of Stemphylium vesicarium on onion in Canada. Can. J. Plant Pathol. 2021; in press. [Google Scholar] [CrossRef]
- Singh, P.; Bugiani, R.; Cavanni, P.; Nakajima, H.; Kodama, M.; Otani, H.; Kohmoto, K. Purification and biological characterization of host-specific SV-toxins from Stemphylium vesicarium causing brown spot of European pear. Phytopathology 1999, 89, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Park, P.; Bugiani, R.; Cavanni, P.; Nakajima, H.; Kodama, M.; Otani, H.; Kohmoto, K. Effects of host-selective SV-toxin from Stemphylium vesicarium, the cause of brown spot of European pear plants, on ultrastructure of leaf cells. J. Phytopathol. 2000, 148, 87–93. [Google Scholar] [CrossRef]
- Köhl, J.; Groenenboom-de Haas, B.H.; Kastelein, P.; Rossi, V.; Waalwijk, C. Quantitative detection of pear-pathogenic Stemphylium vesicarium in orchards. Phytopathology 2009, 99, 1377–1386. [Google Scholar] [CrossRef] [Green Version]
- Llorente, I.; Moragrega, C.; Ruz, L.; Montesinos, E. An update on control of brown spot of pear. Trees Struct. Funct. 2012, 26, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, B.; Jensen, A. Spectral properties of a barley canopy in relation to the spectral properties of single leaves and the soil. Remote Sens. Environ. 1991, 37, 23–34. [Google Scholar] [CrossRef]
- McGill, M.J. Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE. J. Geophys. Res. 2004, 109, 1–13. [Google Scholar] [CrossRef]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [Google Scholar] [CrossRef]
- Baranoski, G.V.G.; Rokne, J.G. A practical approach for estimating the red edge position of plant leaf reflectance. Int. J. Remote Sens. 2005, 26, 503–521. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.-K.; Oerke, E.-C.; Steiner, U.; Dehne, H.W. Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 2012, 133, 197–209. [Google Scholar] [CrossRef]
- Bravo, C.; Moshou, D.; Oberti, R.; West, J.S.; McCartney, A.; Bodria, L.; Ramon, H. Foliar disease detection in the field using optical sensor fusion. Agric. Eng. Int. CIGR J. 2004, 6, 1–14. [Google Scholar]
- Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors; Texas A & M University Press: College Station, TX, USA, 1978; p. 632. [Google Scholar]
- Govaerts, B.; Verhulst, N. The normalized Difference Vegetation Index (NDVI) GreenSeekerTM Handheld Sensor: Toward the Integrated Evaluation of Crop Management Part A: Concepts and Case Studies; International Maize and Wheat Improvement Center (CIMMYT): Mexico City, Mexico, 2010; pp. 1–16. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Lee, Y.J.; Yang, C.M.; Chang, K.W.; Shen, Y. A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. J. Agron. 2008, 100, 205–212. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Li, X.; Lee, W.S.; Li, M.; Ehsani, R.; Mishra, A.R.; Yang, C.; Mangan, R.L. Spectral difference analysis and airborne imaging classification for citrus greening infected trees. Comput. Electron. Agric. 2012, 83, 32–46. [Google Scholar] [CrossRef]
- Kumar, R.; Silva, L. Light ray tracing through a leaf cross section. Appl. Opt. 1973, 12, 2950–2954. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- West, J.S.; Bravo, C.; Oberti, R.; Lemaire, D.; Moshou, D.; McCartney, H.A. The potential of optical canopy measurement for targeted control of field crop diseases. Annu. Rev. Phytopathol. 2003, 41, 593–614. [Google Scholar] [CrossRef] [Green Version]
- Moshou, D.; Bravo, C.; West, J.; Wahlen, S.; McCartney, A.; Ramon, H. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004, 44, 173–188. [Google Scholar] [CrossRef]
- Patel, R.; Patel, B.P. An analytical study on comparison of different image compression formats. Int. J. Innov. Res. Sci. Technol. 2014, 1, 24–31. [Google Scholar]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Zhou, K.; Cheng, T.; Zhu, Y.; Cao, W.; Ustin, S.L.; Zheng, H.; Yao, X.; Tian, Y. Resolution on the estimation of leaf nitrogen concentration over the full season of paddy rice using near-surface imaging spectroscopy data. Front. Plant Sci. 2018, 9, 964. [Google Scholar] [CrossRef] [Green Version]
Index | Wavebands | Crop Parameter | Reference |
---|---|---|---|
Normalized vegetative indices (NDVI) | |||
NDVI | Photosynthetically active radiation (PAR) intercepted/biomass | [32,33] | |
Green NDVI (GNDVI) | PAR/biomass | [33,34] | |
Chlorophyll index (CI) | |||
CI | Chlorophyll | [34] | |
Plant senescence reflective index (PSRI) | |||
PSRI | Plant senescence | [35] |
Date and Cultivar | Incidence | Severity | Vegetative Indices 1 | ||||
---|---|---|---|---|---|---|---|
NDVI | GNDVI | CI | PSRI | Maturity | |||
13 July (7–8 leaves) | |||||||
Pontiac | 51 c 2 | nd | 0.22 a | 0.06 bcd | 0.08 cd | 0.37 cd | 115 |
Highlander | 55 bc | nd | 0.13 ab | 0.04 cd | 0.05 cd | 0.37 cd | 90 |
LaSalle | 55 bc | nd | 0.21 a | 0.06 bcd | 0.10 bcd | 0.39 bcd | 103 |
Prince | 55 bc | nd | 0.09 b | 0.20 a | 0.35 a | 0.49 abc | 105 |
Stanley | 55 bc | nd | 0.09 b | 0.20 a | 0.34 a | 0.43 bcd | 105 |
Hendrix | 58 bc | nd | 0.16 ab | 0.03 cd | 0.03 cd | 0.39 bcd | 108 |
Patterson | 59 abc | nd | 0.19 a | 0.14 abc | 0.23 abc | 0.51 ab | 104 |
Madras | 59 abc | nd | 0.17 ab | 0.17 ab | 0.30 ab | 0.59 a | 102 |
Genesis | 61 abc | nd | 0.21 a | 0.02 cd | 0.01 d | 0.34 d | 108 |
Trailblazer | 63 ab | nd | 0.17 ab | 0.10 a–d | 0.16 a–d | 0.47 a–d | 95 |
Hamlet | 66 ab | nd | 0.18 ab | 0.01 d | 0.03 cd | 0.45 bcd | 108 |
Milestone | 70 a | nd | 0.20 a | 0.09 a–d | 0.13 a–d | 0.39 bcd | 110 |
4 August (11–12 leaves, bulbing) | |||||||
Pontiac | 68 b | 35 b | 0.21 ab | 0.02 c | 0.04 c | 0.46 cd | 115 |
Highlander | 79 ab | 62 a | 0.23 a | 0.04 c | 0.09 bc | 0.47 bcd | 90 |
LaSalle | 89 a | 41 b | 0.13 a–d | 0.08 bc | 0.13 bc | 0.45 cd | 103 |
Prince | 78 ab | 43 b | 0.08 cd | 0.16 ab | 0.28 ab | 0.62 a | 105 |
Stanley | 81 ab | 38 b | 0.12 bcd | 0.11 bc | 0.18 bc | 0.62 a | 105 |
Hendrix | 80 ab | 37 b | 0.21 ab | 0.01 c | 0.02 c | 0.44 cd | 108 |
Patterson | 82 ab | 42 b | 0.13 a–d | 0.13 abc | 0.21 abc | 0.56 abc | 104 |
Madras | 85 ab | 46 b | 0.02 d | 0.25 a | 0.42 a | 0.60 ab | 102 |
Genesis | 85 ab | 42 b | 0.23 ab | 0.04 bc | 0.09 bc | 0.44 cd | 108 |
Trailblazer | 87 a | 42 b | 0.16 abc | 0.09 bc | 0.14 bc | 0.53 a–d | 95 |
Hamlet | 83 ab | 46 b | 0.17 abc | 0.07 bc | 0.11 bc | 0.40 d | 108 |
Milestone | 90 a | 43 b | 0.19 abc | 0.03 c | 0.03 c | 0.50 a–d | 110 |
Fungicide Treatment | Incidence | Leaf Dieback | Vegetative Indices 1 | |||
---|---|---|---|---|---|---|
NDVI | GNDVI | CI | PSRI | |||
13 July (7–8 leaves) | ||||||
CP1 | 59 c 2 | nd | 0.08 ns | 0.16 ab | 0.03 c | 0.30 b |
TOMCAST 15 | 65 bc | nd | 0.10 | 0.07 b | 0.15 ab | 0.31 b |
BOTCAST | 73 ab | nd | 0.09 | 0.07 b | 0.15 a | 0.34 b |
STEMCAST | 74 ab | nd | 0.09 | 0.13 ab | 0.08 bc | 0.29 b |
LDR | 79 a | nd | 0.08 | 0.21 a | 0.04 c | 0.39 ab |
Unsprayed | 85 a | nd | 0.09 | 0.13 ab | 0.12 ab | 0.47 a |
4 August (11–13 leaves, bulbing) | ||||||
CP1 | 74 c | 29 b | 0.09 ab | 0.06 ns | 0.05 c | 0.57 ab |
TOMCAST | 79 bc | 29 b | 0.09 ab | 0.05 | 0.08 bc | 0.58 ab |
BOTCAST | 85 b | 30 b | 0.06 b | 0.04 | 0.12 ab | 0.46 a |
STEMCAST | 86 b | 36 b | 0.10 a | 0.05 | 0.05 c | 0.63 b |
LDR | 90 ab | 32 b | 0.07 ab | 0.05 | 0.12 ab | 0.50 ab |
Unsprayed | 98 a | 49 a | 0.06 b | 0.04 | 0.16 a | 0.51 ab |
Fungicide Treatment | Incidence (%) | Leaf Dieback | Vegetative Indices 1 | |||
---|---|---|---|---|---|---|
NDVI | GNDVI | CI | PSRI | |||
25 July (7–8 leaves) | ||||||
TOMCAST 15 | 7 b 2 | 4 ns | 0.18 ab | 0.27 ns | 0.33 a | 0.19 ab |
TOMCAST 15/25 | 11 b | 7 | 0.17 b | 0.22 | 0.19 b | 0.21 a |
CP2 | 11 b | 1 | 0.18 ab | 0.24 | 0.09 b | 0.17 ab |
BOTCAST | 12 b | 6 | 0.20 ab | 0.35 | 0.34 a | 0.15 b |
TOMCAST 15R | 15 ab | 5 | 0.16 b | 0.21 | 0.08 b | 0.19 ab |
Control | 25 a | 10 | 0.28 a | 0.41 | 0.20 ab | 0.17 ab |
2 August (10–12 leaves, bulbing) | ||||||
TOMCAST 15 | 8 b | 8 ns | 0.21 ab | 0.10 ns | 0.03 bc | 0.62 ns |
TOMCAST 1525 | 12 b | 8 | 0.23 a | 0.10 | 0.02 c | 0.64 |
CP2 | 12 b | 10 | 0.15 bc | 0.12 | 0.04 ab | 0.76 |
BOTCAST | 13 b | 9 | 0.15 bc | 0.11 | 0.04 ab | 0.66 |
TOMCAST 15R | 17 ab | 12 | 0.22 ab | 0.13 | 0.02 c | 0.77 |
Control | 27 a | 17 | 0.11 c | 0.09 | 0.05 a | 0.74 |
SLB Incidence | SLB Severity (Leaf Dieback) | NDVI | GNDV1 | PSRI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Trial and Year | July | August | July | August | July | August | July | August | July | Aug |
Cultivar, 2015 | ||||||||||
Inc. Aug | 0.611 | −0.14 | ||||||||
NDVI | 0.17 | 0.11 | - 2 | 0.14 | ||||||
GNDVI | −0.17 | 0.21 | - | −0.09 | 0.16 | 0.02 | ||||
PSRI | −0.09 | −0.19 | - | −0.03 | −0.07 | −0.16 | 0.50 | 0.18 | ||
CI | −0.05 | 0.18 | - | −0.08 | 0.19 | −0.02 | 0.89 | 0.98 | 0.20 | 0.16 |
Fungicide, 2015 | ||||||||||
Inc. Aug | 0.93 | 0.46 | ||||||||
NDVI | 0.02 | −0.36 | 0.05 | −0.31 | ||||||
GNDVI | 0.12 | −0.13 | 0.19 | −0.07 | −0.38 | 0.28 | ||||
PSRI | 0.22 | −0.09 | 0.28 | 0.14 | 0.52 | 0.55 | −0.26 | 0.30 | ||
CI | 0.21 | 0.51 | 0.03 | 0.17 | 0.65 | −0.35 | −0.54 | 0.02 | 0.35 | 0.30 |
Fungicide, 2016 | ||||||||||
Inc. Aug | 0.99 | 0.47 | ||||||||
NDVI | 0.10 | 0.06 | - | 0.01 | ||||||
GNDVI | 0.13 | 0.18 | - | 0.24 | 0.43 | 0.49 | ||||
PSRI | −0.33 | −0.01 | - | −0.08 | 0.15 | −0.16 | 0.44 | −0.20 | ||
CI | −0.09 | 0.05 | - | 0.08 | −0.08 | −0.73 | −0.10 | −0.37 | −0.11 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDonald, M.R.; Tayviah, C.S.; Gossen, B.D. Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf Blight on Onion Using Aerial Photographs from an NIR Camera. Remote Sens. 2022, 14, 293. https://doi.org/10.3390/rs14020293
McDonald MR, Tayviah CS, Gossen BD. Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf Blight on Onion Using Aerial Photographs from an NIR Camera. Remote Sensing. 2022; 14(2):293. https://doi.org/10.3390/rs14020293
Chicago/Turabian StyleMcDonald, Mary Ruth, Cyril Selasi Tayviah, and Bruce D. Gossen. 2022. "Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf Blight on Onion Using Aerial Photographs from an NIR Camera" Remote Sensing 14, no. 2: 293. https://doi.org/10.3390/rs14020293
APA StyleMcDonald, M. R., Tayviah, C. S., & Gossen, B. D. (2022). Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf Blight on Onion Using Aerial Photographs from an NIR Camera. Remote Sensing, 14(2), 293. https://doi.org/10.3390/rs14020293