Integration of Hyperspectral and Magnetic Data for Geological Characterization of the Niaqornarssuit Ultramafic Complex in West-Greenland
Abstract
:1. Introduction
2. Study Area—The Niaqornarssuit Complex
- (I)
- A chilled margin with a black aphanitic-fine-grained peridotite rock composition is located at the contact zone to basement gneisses (navy blue color in Figure 1) and contact-metamorphic granites (light blue color in Figure 1). This formation is 5–30 m thick, sheared, and contains a variable amount of olivine, pyroxene, and oxides;
- (II)
- A unit with magnetite-chromite-rich homogeneous medium-grained dunite that contains common peridotite-pyroxenite layers and intrusive dikes. The unit is mainly present in two dunite bodies (green beige color in Figure 1);
- (III)
- A unit that comprises medium- to coarse-grained peridotite olivine-rich at the bottom and pyroxene-rich at the upper level (maroon color in Figure 1);
- (IV)
- A homogenous unit of coarse-grained to pegmatitic pyroxenite that forms a massive block in the northeastern part of the complex (orange color in Figure 1);
- (V)
- A discontinuous layer of medium-grained and banded metagabbro (magenta color in Figure 1) interleaved with hornblende-gneiss rocks.
3. Mafic and Ultramafic Rocks
3.1. Spectral Signatures of Ultramafic Rocks
3.2. Magnetism in Ultramafic Rocks
Fe-bearing forsterite serpentine magnetite
4. Data Acquisition
4.1. Airborne Surveys
4.1.1. Magnetic Survey
4.1.2. Hyperspectral Survey
4.2. Laboratory Measurements
Spectral Data
5. Proposed Method
5.1. Preparation of Laboratory Optical Remote Sensing Data
5.2. Magnetic Forward Modeling and Inversion for the Integration of Hyperspectral and Magnetic Data
6. Results
6.1. Fe/Mg Ratio and Modified Iron Feature Depth Index
6.2. Integration of Hyperspectral and Magnetic Airborne Data
7. Discussion
8. Conclusions and Outlook
- We suggest collecting samples of the whole investigation area, including information about the sample’s orientation in the ground, to analyze the laboratory’s susceptibility and remanent magnetization. The rock samples should be geochemically analyzed, focusing on whole-rock analysis and titration to determine the rock’s ferric and ferrous iron content;
- Since the magnetic properties can only be regionally correlated with the lithology, more research in a different climate and diverse iron-bearing deposits considering new parameters should prove our approach’s robustness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mielke, C.; Muedi, T.; Papenfuss, A.; Boesche, N.K.; Rogass, C.; Gauert, C.D.K.; Altenberger, U.; Wit, M.J.D. Multi- and hyperspectral spaceborne remote sensing of the Aggeneys base metal sulphide mineral deposit sites in the Lower Orange River region, South Africa. S. Afr. J. Geol. 2016, 119, 63–76. [Google Scholar] [CrossRef]
- Jackisch, R.; Madriz, Y.; Zimmermann, R.; Pirrtijärvi, M.; Heincke, B.H.; Salmirinne, H.; Kujasalo, J.-P.; Andreani, L.; Andreani, R. Drone-Borne Hyperspectral and Magnetic Data Integration: Otanmäki Fe-Ti-V Deposit in Finland. Remote Sens. 2019, 11, 2084. [Google Scholar] [CrossRef]
- Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Clark, D.A. Magnetic petrophysics and magnetic petrology: Aids to geological interpretation of magnetic surveys. J. Aust. Geol. Geophys. 1997, 17, 83–104. [Google Scholar]
- Hunt, C.P.; Moskowitz, B.M.; Banerjee, S.K. Magnetic properties of rocks and minerals. In American Geophysical Union; Geological Society of America: Boulder, CO, USA, 1995. [Google Scholar]
- Till, J.L.; Nowaczyk, N. Authigenic magnetite formation from goethite and hematite and chemical remanent magnetization acquisition. Geophys. J. Int. 2018, 213, 1818–1831. [Google Scholar] [CrossRef]
- Dekkers, M. Magnetic properties of natural goethite-III. Magnetic behaviour and properties of minerals originating from goethite dehydration during thermal demagnetization. Geophys. J. Int. 1990, 103, 233–250. [Google Scholar] [CrossRef]
- Oëzdemir, O.; Dunlop, D.J. Intermediate magnetite formation during dehydration of goethite. Earth Planet. Sci. Lett. 2000, 177, 59–67. [Google Scholar] [CrossRef]
- Hanesch, M.; Stanjek, H.; Petersen, N. Thermomagnetic measurements of soil iron minerals: The role of organic carbon. Geophys. J. Int. 2006, 165, 53–61. [Google Scholar] [CrossRef]
- Ager, C.M.; Milton, N.J.G. Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysica 1987, 52, 898–906. [Google Scholar] [CrossRef]
- Salehi, S.; Thaarup, S.M. Mineral mapping by hyperspectral remote sensing in West Greenland using airborne, ship-based and terrestrial platforms. Geol. Surv. Den. Greenl. 2017, 41, 47–50. [Google Scholar] [CrossRef]
- Salehi, S.; Mielke, C.; Rogass, C. Mapping ultramafic complexes using airborne imaging spectroscopy and spaceborne data in Arctic regions with abundant lichen cover, a case study from the Niaqornarssuit complex in South West Greenland. Eur. J. Remote Sens. 2020, 53, 156–175. [Google Scholar] [CrossRef]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep (Overview and Toolbox). IEEE Geosci. Remote Sens. Lett. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Kopackova, V.; Koucka, L. Integration of absorption feature information from visible to longwave infrared spectral ranges for mineral mapping. Remote Sens. 2017, 9, 1006. [Google Scholar] [CrossRef]
- Kruse, F. Integrated visible and near-infrared, shortwave infrared, and longwave infrared full-range hyperspectral data analysis for geologic mapping. J. Appl. Remote Sens. 2015, 9, 096005. [Google Scholar] [CrossRef]
- McDowell, M.L.; Kruse, F. Enhanced compositional mapping through integrated full-range spectral analysis. Remote Sens. 2016, 8, 757. [Google Scholar] [CrossRef]
- Notesco, G.; Ogen, Y.; Ben-Dor, E. Integration of hyperspectral shortwave and longwave infrared remote-sensing data for mineral mapping of Makhtesh Ramon in Israel. Remote Sens. 2016, 8, 318. [Google Scholar] [CrossRef]
- Kuras, A.; Brell, M.; Rizzi, J.; Burud, I. Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine Learning and Neural-Network-Based Classification: A Review. Remote Sens. 2021, 13, 3993. [Google Scholar] [CrossRef]
- Buckley, S.J.; Kurz, T.H.; Howell, J.A.; Schneider, D.J.C. Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Comput. Geosci. 2013, 54, 249–258. [Google Scholar] [CrossRef]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Andreani, L.; Tusa, L.; Pospiech, S.; Jackisch, R.; Khodadadzadeh, M.; Ghamisi, P.; Unger, G.; et al. Hyperspectral outcrop models for paleoseismic studies. Photogramm. Rec. 2019, 34, 385–407. [Google Scholar] [CrossRef]
- Bedini, E.; Rasmussen, T.M. Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland. Geosci. J. 2018, 22, 641–651. [Google Scholar] [CrossRef]
- Jackisch, R.; Lorenz, S.; Kirsch, M.; Zimmermann, R.; Tusa, L.; Pirttijärvi, M.; Saartenoja, A.; Ugalde, H.; Madriz, Y.; Savolainen, M.; et al. Integrated Geological and Geophysical Mapping of a Carbonatite-Hosting Outcrop in Siilinjärvi, Finland, Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 2998. [Google Scholar] [CrossRef]
- Bedini, E. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sens. Environ. 2009, 113, 1208–1219. [Google Scholar] [CrossRef]
- Bedini, E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Int. J. Remote Sens. 2012, 33, 939–961. [Google Scholar] [CrossRef]
- Budkewitsch, P.; Staenz, K.; Neville, R.A.; Sangster, D. Spectral signatures of carbonate rocks surrounding the Nanisivik MVT Zn-Pb mine and implications of hyperspectral imaging for exploration in Arctic environments. In Proceedings of the Ore Deposit Workshop: New Ideas for a New Millennium, Cranbrook, BC, Canada, 5–6 May 2000. [Google Scholar]
- Harris, J.R.; Rogge, D.; Hitchcock, R.; Ijewliw, O.; Wright, D. Mapping lithology in Canada’s Arctic: Application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can. J. Earth Sci. 2005, 42, 2173–2193. [Google Scholar] [CrossRef]
- Salehi, S.; Lorenz, S.; Sørensen, E.V.; Zimmermann, R.; Fensholt, R.; Heincke, B.H.; Gloaguen, R. Integration of vessel-based hyperspectral scanning and 3D-photogrammetry for mobile mapping of steep coastal cliffs in the arctic. Remote Sens. 2018, 10, 175. [Google Scholar] [CrossRef]
- Tukiainen, T.; Thorning, L. Detection of kimberlitic rocks in West Greenland using airborne hyperspectral data: The HyperGreen 2002 project. Greenl. Bull. Geol. Surv. Den. 2005, 7, 69–72. [Google Scholar] [CrossRef]
- Tukiainen, T.; Thomassen, B. Application of airborne hyperspectral data to mineral exploration in North-East Greenland. Greenl. Bull. Geol. Surv. Den. 2010, 20, 71–74. [Google Scholar] [CrossRef]
- Jackisch, R.; Heincke, B.H.; Zimmermann, R.; Sørensen, E.V.; Pirttijärvi, M.; Kirsch, M.; Salmirinne, H.; Lode, S.; Kuronen, U.; Gloaguen, R. Drone-based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland. Solid Earth 2022, 13, 793–825. [Google Scholar] [CrossRef]
- Miller, C.A.; Schaefer, L.N.; Kereszturi, G.; Fournier, D. Three-Dimensional Mapping of Mt. Ruapehu Volcano, New Zealand, From Aeromagnetic Data Inversion and Hyperspectral Imaging. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018247. [Google Scholar] [CrossRef]
- Simard, R.L.; Bliss, I.; Vaillancourt, C. Geological Report on Exploration and Drill Programs 2013—Licenses 2010/17, 2013727 and 2013/28; NorthernShield Ressources Inc.: West Greenland, Denmark, 2014; p. 43. [Google Scholar]
- Geotech. Report on a Helicopter-Borne Versatile Time-Domain Electromagnetic (VTEMplus) and Horizontal Magnetic Gradiometer Geophysical Survey; Niaqomarssuit Block: Greenland, Denmark, 2012. [Google Scholar]
- Gool, J.A.M.V.; Connelly, J.N.; Marker, M.; Mengel, F.C. The Nagssugtoqidian Orogen of West Greenland: Tectonic evolution and regional correlations from a West Greenland perspective. NRC Res. Press Web. 2002, 39, 665–686. [Google Scholar]
- Gothenborg, J.; Keto, L. Report on the aerial reconnaissance between Sukkertoppen Ice Calot and Nordenskiölds Gletscher. In Archives of Geological Survey of Denmark and Greenland; GEUS Report File 20210; Kryolitselskabet Øresund A/S: Copenhagen, Denmark, 1977. [Google Scholar]
- Østergaard, C. 21st North—2010 Field Work Qaqortorsuaq (Ikertoq), 2011; p. 99.
- Downes, H. Ultramafic Rocks. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 69–75. [Google Scholar]
- Streckeisen, A.L. Plutonic rocks, classification and nomenclature recommended by the IUGS subcommission on the systematics of igneous rocks. Geotimes 1973, 18, 26–30. [Google Scholar]
- Philpotts, A.R.; Ague, J.J. Principles of Igneous and Metamorphic Petrology, 3rd ed.; Cambridge University Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Ben-Dor, E.; Irons, J.; Epema, G. Soil reflectance. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A., Ed.; John Wiley & Sons: New York, NY, USA, 1999; pp. 111–188. [Google Scholar]
- Lin, J.F.; Speziale, S.; Mao, Z.; Marquardt, H. Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Rev. Geophys. 2013, 51, 244–275. [Google Scholar] [CrossRef]
- Bigham, J.M.; Fitzpatrick, R.W.; Schulze, D.G. Iron Oxides. In Soil Mineralogy with Environmental Applications; Soil Science Society of America Book Series; Dixon, J.B., Schulze, D.G., Eds.; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Syverson, D.D.; Tutolo, B.M.; Borrok, D.M.; Jr, W.E.S. Serpentinization of olivine at 300 °C and 500 bars: An experimental study examining the role of silica on the reaction path and oxidation state of iron. Chem. Geol. 2017, 475, 122–134. [Google Scholar] [CrossRef]
- Gupta, R.P. Remote Sensing Geology; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; USGS: Riston, VA, USA, 2017. [Google Scholar]
- Saad, A.H. Magnetic properties of ultramafic rocks from Red Mountain, California. Geophysics 1969, 34, 974–987. [Google Scholar] [CrossRef]
- Oufi, O.; Cannat, M.; Horen, H. Magnetic properties of variably serpentinized abyssal peridotites. J. Geophys. Res. 2002, 107, EPM 3-1–EPM 3-19. [Google Scholar] [CrossRef]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15 °N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33, L13306. [Google Scholar] [CrossRef]
- Hong, G.; Till, J.L.; Greve, A.; Lee, S.M. New Rock Magnetic Analysis of Ultramafic Cores From the Oman Drilling Project and Its Implications for Alteration of Lower Crust and Upper Mantle. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024379. [Google Scholar] [CrossRef]
- McCollom, T.M.; Klein, F.; Moskowitz, B.; Berquo, T.S.; Bach, W.; Templeton, A.S. Hydrogen generation and iron partitioning during experimental serpentinization of an olivine–pyroxene mixture. Geochim. Cosmochim. Acta 2020, 282, 55–75. [Google Scholar] [CrossRef]
- Maar, G.W.t.; McEnroe, S.A.; Church, N.S.; Larsen, R.B. Magnetic Mineralogy and Petrophysical Properties of Ultramafic Rocks: Consequences for Crustal Magnetism. Geochem. Geophys. Geosyst. 2019, 20, 1794–1817. [Google Scholar]
- Cocks, T.; Jenssen, R.; Stewart, A.; Wilson, I.; Shields, T. The HyMap airborne hyperspectral sensor: The system, calibration and performance. In Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 6–8 October 1998. [Google Scholar]
- Kruse, F.A.; Boardman, J.W.; Lefkoff, A.B.; Young, J.M.; Kierein-Young, K.S.; Cocks, T.D.; Jenssen, R.; Cocks, P.A. HyMap: An Australian hyperspectral sensor solving global problems-results from USA HyMap data acquisitions. In Proceedings of the 10th Australasian Remote Sensing and Photogrammetry Conference, Adelaide, Australia, 25 August 2000; pp. 18–23. [Google Scholar]
- Richter, R. Atmospheric/Topographic Correction for Airborne Imagery; DLR—German Aerospace Center: Wessling, Germany, 2010. [Google Scholar]
- Miziolek, A. Laser-induced breakdown spectroscopy—An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl. Geochem. 2006, 21, 730–747. [Google Scholar]
- Rogass, C.; Koerting, F.M.; Mielke, C.; Brell, M.; Boesche, N.K.; Bade, M.; Hohmann, C. Translational Imaging Spectroscopy for Proximal Sensing. Sensors 2017, 17, 1857. [Google Scholar] [CrossRef]
- Rogass, C.; Segl, K.; Mielke, C.; Fuchs, Y.; Kaufmann, H. Engeomap—A geological mapping tool applied to the enmap mission. EARSeL eProc. 2013, 12, 94–100. [Google Scholar]
- Stark, P.B.; Parker, R.L. Bounded-Variable Least-Squares: An Algorithm and Applications. Comput. Stat. 1995, 10, 129–141. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Wise, R.A.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library splib06a; Data Series 231; US Geological Survey: Reston, VA, USA, 2007.
- Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. Lett. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Mielke, C.; Boesche, N.K.; Rogass, C.; Kaufmann, H.; Gauert, C.; Wit, M.D. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Rapid construction of equivalent sources using wavelets. Geophysics 2010, 75, L51–L59. [Google Scholar] [CrossRef]
- Dilixiati, Y.; Baykiev, E.; Ebbing, J. Spectral consistency of satellite and airborne data: Application of an equivalent dipole layer for combining satellite and aeromagnetic data sets. Geophysics 2022, 87, G71–G81. [Google Scholar] [CrossRef]
- Aster, R.C.; Borchers, B.; Thurber, C.H. Parameter Estimation and Inverse Problems; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; p. 301. [Google Scholar]
- Menke, W. Geophysical Data Analysis Discrete Inverse Theory; Academic Press Limited: Amsterdam, The Netherlands, 1989; Volume 45. [Google Scholar]
- Lessovaia, S.N.; Goryachkin, S.; Polekhovskii, Y.S. Soil formation and weathering on ultramafic rocks in the mountainous tundra of the Rai-Iz Massif, Polar Urals. Eurasian Soil Sci. 2012, 45, 33–44. [Google Scholar] [CrossRef]
- Funatomi, T.; Ogawa, T.; Tanaka, K.; Kubo, H.; Caron, G.; Mouaddib, E.; Matsushita, Y.; Mukaigawa, Y. Eliminating temporal illumination variations in whisk-broom hyperspectral imaging. Int. J. Comput. Vis. 2022, 130, 1310–1324. [Google Scholar] [CrossRef]
- Uezato, T.; Yokoya, N.; He, W. Illumination Invariant Hyperspectral Image Unmixing Based on a Digital Surface Model. IEEE Trans. Image Process. 2020, 29, 3652–3664. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Fernandes, J.; Silva, J.; Dias, F.; Lima, A.; Teodoro, A.C.; Barres, O.; Cauzid, J.; Perrotta, M.; Roda-Robles, E.; Ribeiro, M.A. Tools for Remote Exploration: A Lithium (Li) Dedicated Spectral Library of the Fregeneda–Almendra Aplite–Pegmatite Field. Remote Sens. 2021, 6, 33. [Google Scholar] [CrossRef]
- Koerting, F.M.; Koellner, N.; Kuras, A.; Boesche, N.; Rogass, C.; Mielke, C.; Elger, K.; Altenberger, U. A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples. Earth Syst. Sci. Data 2021, 13, 923–942. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Chen, Y.; Lindermann, M.; Mouazen, A.M.; Liu, Y.; Guo, L.; Yu, L.; Liu, Y.; Cheng, H.; et al. Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil Tillage Res. 2020, 199, 104589. [Google Scholar] [CrossRef]
Magnetic Gradiometer | Horizontally Separated |
---|---|
Mean Altitude [m] | 87 |
Average speed [km/h] | 80 |
Sampling interval [s] | 0.1 |
Sensitivity [nT] | 0.001 |
Traverse line spacing [m] | 100 and 200 |
Tie line spacing [m] | 2000 |
Sensor | HyMap | HySpex | ||
---|---|---|---|---|
VNIR-1600 | SWIR-320-e | |||
Sensor type | hyperspectral | hyperspectral | ||
Altitude [m] | 2500 | |||
Setting | airborne | laboratory | ||
Wavelength [nm] | 450–890 | 1950–2480 | 400–1000 | 1000–2500 |
890–1350 | ||||
1400–1800 | ||||
Bandwidth [nm] | 15–16 | 18–20 | 3.7 | 6.25 |
Spatial resolution | 3–10 m | 24 µm | 53 µm | |
Detector | HyMap MK 1 512 pixels | Si CCD 1600 × 1200 | HdCdTe 320 × 256 | |
FOV across track [°] | 61.3 | 17 | 14 | |
Pixel FOV across track [mrad] | 2.0 | 0.18 | 0.75 | |
Pixel FOV along track [mrad] | 2.5 | 0.36 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuras, A.; Heincke, B.H.; Salehi, S.; Mielke, C.; Köllner, N.; Rogass, C.; Altenberger, U.; Burud, I. Integration of Hyperspectral and Magnetic Data for Geological Characterization of the Niaqornarssuit Ultramafic Complex in West-Greenland. Remote Sens. 2022, 14, 4877. https://doi.org/10.3390/rs14194877
Kuras A, Heincke BH, Salehi S, Mielke C, Köllner N, Rogass C, Altenberger U, Burud I. Integration of Hyperspectral and Magnetic Data for Geological Characterization of the Niaqornarssuit Ultramafic Complex in West-Greenland. Remote Sensing. 2022; 14(19):4877. https://doi.org/10.3390/rs14194877
Chicago/Turabian StyleKuras, Agnieszka, Björn H. Heincke, Sara Salehi, Christian Mielke, Nicole Köllner, Christian Rogass, Uwe Altenberger, and Ingunn Burud. 2022. "Integration of Hyperspectral and Magnetic Data for Geological Characterization of the Niaqornarssuit Ultramafic Complex in West-Greenland" Remote Sensing 14, no. 19: 4877. https://doi.org/10.3390/rs14194877
APA StyleKuras, A., Heincke, B. H., Salehi, S., Mielke, C., Köllner, N., Rogass, C., Altenberger, U., & Burud, I. (2022). Integration of Hyperspectral and Magnetic Data for Geological Characterization of the Niaqornarssuit Ultramafic Complex in West-Greenland. Remote Sensing, 14(19), 4877. https://doi.org/10.3390/rs14194877