Bird-Borne Samplers for Monitoring CO2 and Atmospheric Physical Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development and Design of the Air Sampler
2.2. CO2 Calibration and Configuration of Environmental Sensors
2.3. Study Area and Sample Collection
2.4. Data Processing
3. Results
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time (UTC) | Flight | CO2 Concentration (ppm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flight Number | Pigeon ID | Sample Points | Release | Arrival | Duration (min) | Distance (km) | Mean | Min | Median | Max |
1 | p701 | 512 | 21 January 2021 08:22 | 21 January 2021 08:39 | 17.0 | 16.7 | 614 | 533 | 610 | 812 |
2 | p788 | 882 | 26 January 2021 08:29 | 26 January 2021 09:07 | 37.7 | 27.1 | 568 | 498 | 557 | 725 |
3 | p788 | 480 | 28 January 2021 07:55 | 28 January 2021 08:44 | 49.1 | 14.7 | 670 | 544 | 661 | 978 |
4 | p710 | 1686 | 29 January 2021 08:15 | 29 January 2021 11:37 | 202.2 | 47.9 | 564 | 457 | 565 | 938 |
5 | p788 | 756 | 29 January 2021 08:15 | 29 January 2021 08:40 | 25.2 | 24.0 | 666 | 578 | 652 | 993 |
6 | p701 | 604 | 5 February 2021 09:05 | 5 February 2021 09:39 | 34.0 | 17.6 | 639 | 572 | 635 | 985 |
7 | p788 | 669 | 5 February 2021 09:01 | 5 February 2021 10:24 | 83.1 | 19.9 | 587 | 489 | 571 | 923 |
8 | p788 | 436 | 8 February 2021 08:37 | 8 February 2021 10:37 | 120.4 | 14.3 | 571 | 452 | 547 | 903 |
9 | p561 | 693 | 19 March 2021 09:02 | 19 March 2021 09:25 | 23.1 | 18.7 | 497 | 476 | 489 | 576 |
10 | p778 | 1007 | 1 April 2021 07:04 | 1 April 2021 12:13 | 309.2 | 25.1 | 562 | 504 | 555 | 913 |
11 | p47 | 968 | 7 April 2021 07:06 | 7 April 2021 12:53 | 347.6 | 26.1 | 466 | 410 | 465 | 558 |
12 | p778 | 1249 | 7 April 2021 07:01 | 7 April 2021 09:37 | 156.0 | 38.3 | 531 | 481 | 527 | 696 |
13 | p47 | 256 | 9 April 2021 08:57 | 9 April 2021 09:06 | 8.5 | 9.4 | 455 | 436 | 453 | 481 |
14 | p561 | 428 | 9 April 2021 08:52 | 9 April 2021 09:06 | 14.2 | 15.2 | 577 | 550 | 577 | 963 |
15 | p47 | 463 | 21 April 2021 07:19 | 21 April 2021 07:34 | 15.4 | 14.7 | 606 | 514 | 564 | 963 |
16 | p47 | 391 | 23 April 2021 08:15 | 23 April 2021 08:28 | 13.0 | 12.8 | 614 | 566 | 617 | 702 |
17 | pG | 373 | 4 May 2021 07:26 | 4 May 2021 08:09 | 42.7 | 11.1 | 516 | 472 | 516 | 618 |
18 | pG | 379 | 6 May 2021 07:18 | 6 May 2021 07:30 | 12.6 | 13.8 | 566 | 516 | 558 | 688 |
19 | p787 | 351 | 7 May 2021 07:16 | 7 May 2021 07:38 | 22.1 | 13.5 | 567 | 436 | 560 | 703 |
20 | pG | 360 | 7 May 2021 07:26 | 7 May 2021 07:38 | 12.0 | 13.7 | 507 | 493 | 502 | 547 |
21 | p34 | 561 | 11 May 2021 07:18 | 11 May 2021 08:40 | 81.9 | 15.1 | 586 | 492 | 587 | 730 |
22 | pG | 410 | 11 May 2021 07:18 | 11 May 2021 07:35 | 17.0 | 12.8 | 572 | 478 | 567 | 699 |
23 | p684 | 3486 | 15 June 2021 11:19 | 16 June 2021 16:20 | 1740.3 | 82.6 | 586 | 528 | 582 | 869 |
24 | p701 | 1287 | 15 June 2021 06:18 | 15 June 2021 14:49 | 510.2 | 35.8 | 565 | 439 | 569 | 793 |
25 | p701 | 592 | 18 June 2021 06:35 | 18 June 2021 07:55 | 80.5 | 16.7 | 634 | 538 | 633 | 969 |
References
- World Urbanization Prospects: The 2018 Revision; United Nations Department of Economic and Social Affairs/Population Division: New York, NY, USA, 2019.
- Covenant of Mayors: Reducing Energy Dependence in European Cities; European Commission: Brussels, Belgium, 2018.
- European Environmental Agency. EEA Greenhouse Gases—Data Viewer. 2021. Available online: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer (accessed on 18 January 2022).
- Intergovernmental Panel on Climate Change: Climate Change 2021. The Physical Science Basis Summary for Policymakers. Contribution of Working Group I to the sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; p. 41.
- Brooks, H.E. Severe thunderstorms and climate change. Atmos. Res. 2013, 123, 129–138. [Google Scholar] [CrossRef]
- Estrada, F.; Kim, D.; Perron, P. Spatial variations in the warming trend and the transition to more severe weather in mid latitudes. Sci. Rep. 2021, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 1999, 30, 113–175. [Google Scholar]
- Xiao, J.; Zhuang, Q.; Baldocchi, D.D.; Law, B.E.; Richardson, A.D.; Chen, J.; Oren, R.; Starr, G.; Noormets, A.; Ma, S.; et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric. For. Meteorol. 2008, 148, 1827–1847. [Google Scholar] [CrossRef]
- Moriwaki, R.; Kanda, M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol. 2004, 43, 1700–1710. [Google Scholar] [CrossRef]
- Soegaard, H.; Møller-Jensen, L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sens. Environ. 2003, 87, 283–294. [Google Scholar] [CrossRef]
- Pigliautile, I.; Marseglia, G.; Pisello, A.L. Investigation of CO2 variation and mapping through wearable sensing techniques for measuring pedestrians’ exposure in urban areas. Sustainability 2020, 12, 3936. [Google Scholar] [CrossRef]
- Idso, C.D.; Idso, S.B.; Balling, R.C., Jr. An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos. Environ. 2001, 35, 995–1000. [Google Scholar] [CrossRef]
- Coutts, A.M.; Beringer, J.; Tapper, N.J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmos. Environ. 2007, 41, 51–62. [Google Scholar] [CrossRef]
- Fehlmann, G.; King, A.J. Bio-logging. Curr. Biol. 2016, 26, R830–R831. [Google Scholar] [CrossRef]
- Boyd, I.L.; Kato, A.; Ropert-Coudert, Y. Bio-logging science: Sensing beyond the boundaries. Mem. Natl. Inst. Polar Res. 2004, 58, 1–14. [Google Scholar]
- Rutz, C.; Hays, G.C. New frontiers in biologging science. Biol. Lett. 2009, 5, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmers, C.C.; Nickel, B.; Bryce, C.M.; Smith, J.A.; Wheat, R.E.; Yovovich, V. The golden age of biologging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 2015, 96, 1741–1753. [Google Scholar] [CrossRef] [PubMed]
- Jetz, W.; Tertitski, G.; Kays, R.; Mueller, U.; Wikelski, M.; Åkesson, S.; Anisimov, Y.; Antonov, A.; Arnold, W.; Bairlein, F.; et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 2022, 37, 293–298. [Google Scholar] [CrossRef]
- Duriez, O.; Kato, A.; Tromp, C.; Dell’Omo, G.; Vyssotski, A.L.; Sarrazin, F.; Ropert-Coudert, Y. How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS ONE 2014, 9, e84887. [Google Scholar] [CrossRef]
- Van Tatenhove, A.; Fayet, A.; Watanuki, Y.; Yoda, K.; Shoji, A. Streaked Shearwater Calonectris leucomelas moonlight avoidance in response to low aerial predation pressure, and effects of wind speed and direction on colony attendance. Mar. Ornithol. 2018, 46, 177–185. [Google Scholar]
- Treep, J.; Bohrer, G.; Shamoun-Baranes, J.; Duriez, O.; de Moraes Frasson, R.P.; Bouten, W. Using high-resolution GPS tracking data of bird flight for meteorological observations. Bull. Am. Meteorol. Soc. 2016, 97, 951–961. [Google Scholar] [CrossRef]
- Allatt, H.T.W. The Use of Pigeons as Messengers in War and the Military Pigeon Systems of Europe. R. United Serv. Inst. J. 1886, 30, 107–148. [Google Scholar] [CrossRef]
- Available online: https://www.bbc.com/news/world-middle-east-40042260 (accessed on 20 September 2022).
- Neubronner, J. Die Photographie mit Brieftauben. In Denkschrift der Ersten Internationalen Luftschiffahrts-Ausstellung (ILA) zu Frankfurt a/M; Lepsius, B., Wachsmuth, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1909; pp. 77–96. [Google Scholar]
- Steiner, I.; Bürgi, C.; Werffeli, S.; Dell’Omo, G.; Valenti, P.; Tröster, G.; Wolfer, D.P.; Lipp, H.-P. A GPS logger and software for analysis of homing in pigeons and small mammals. Physiol. Behav. 2000, 71, 589–596. [Google Scholar] [CrossRef]
- Lipp, H.-P.; Vyssotski, A.L.; Wolfer, D.P.; Renaudineau, S.; Savini, M.; Tröster, G.; Dell’Omo, G. Pigeon Homing along Highways and Exits. Curr. Biol. 2004, 14, 1239–1249. [Google Scholar] [CrossRef]
- Vyssotski, A.L.; Serkov, A.N.; Itskov, P.M.; Dell’Omo, G.; Latanov, A.V.; Wolfer, D.P.; Lipp, H.-P. Miniature Neurologgers for Flying Pigeons: Multichannel EEG and Action and Field Potentials in Combination With GPS Recording. J. Neurophysiol. 2006, 95, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://nideffer.net/shaniweb/pigeonblog.php (accessed on 20 September 2022).
- Available online: https://twitter.com/PigeonAir (accessed on 20 September 2022).
- Available online: https://edition.cnn.com/2016/03/16/europe/pigeon-air-patrol-pollution-london/index.html (accessed on 20 September 2022).
- Kenward, R.E. A Manual for Wildlife Radio Tagging; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Senseair. The Senseair ABC-algorithm. Available online: https://senseair.com/knowledge/sensor-technology/sensor-technology/senseair-abc-algorithm/ (accessed on 1 July 2022).
- Senseair. Customer Integration Guidelines. Senseair Sunrise and Sunlight CO2. Document TDE7318, Rev 11. 2019. Available online: https://rmtplusstoragesenseair.blob.core.windows.net/docs/Market/publicerat/TDE7318.pdf (accessed on 1 July 2022).
- Bosch. BME280—Data Sheet. Document BST-BME280-DS001-23. Rev 1.23. 2022. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf (accessed on 1 July 2022).
- Biro, D.; Guilford, T.; Dell’Omo, G.; Lipp, H.P. How the viewing of familiar landscapes prior to release allows pigeons to home faster: Evidence from GPS tracking. J. Exp. Biol. 2002, 205, 3833–3844. [Google Scholar] [CrossRef] [PubMed]
- Gupte, P.R.; Beardsworth, C.E.; Spiegel, O.; Lourie, F.; Toledo, S.; Nathan, R.; Bijleveld, A.I. A guide to pre-processing high-throughput animal tracking data. J. Anim. Ecol. 2021, 91, 287–307. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency: Corine Land Cover (CLC) 2018, Version 2020_20u1. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 18 January 2022).
- OpenStreetMap Contributors. Extracts Created by BBBike. Available online: https://extract.bbbike.org?sw_lng=12.322&sw_lat=41.811&ne_lng=12.832&ne_lat=42.034&format=shp.zip&city=roma&lang=en (accessed on 24 June 2021).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Voeten, C. Buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression. R Package Version 2.3. 2022. Available online: https://CRAN.R-project.org/package=buildmer (accessed on 1 July 2022).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 1 July 2022).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-149. 2020. Available online: https://CRAN.R-project.org/package=nlme (accessed on 1 July 2022).
- Nielson, S.E.; Boyce, M.S.; Stenhouse, G.B.; Munro, R.H.M. Modeling grizzly bear habitats in the Yellowhead Ecosystem of Alberta: Taking autocorrelation seriously. Ursus 2002, 13, 45–56. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 July 2022).
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Idso, C.D.; Idso, S.B.; Balling, R.C., Jr. The urban CO2 dome of Phoenix, Arizona. Phys. Geogr. 1998, 19, 95–108. [Google Scholar] [CrossRef]
- Velasco, E.; Pressley, S.; Allwine, E.; Westberg, H.; Lamb, B. Measurements of CO2 fluxes from the Mexico City urban landscape. Atmos. Environ. 2005, 39, 7433–7446. [Google Scholar] [CrossRef]
- Nordbo, A.; Järvi, L.; Haapanala, S.; Wood, C.R.; Vesala, T. Fraction of natural area as main predictor of net CO2 emissions from cities. Geophys. Res. Lett. 2012, 39, L20802. [Google Scholar] [CrossRef]
- NOAA. Trends in Atmospheric Carbon Dioxide. Available online: https://gml.noaa.gov/ccgg/trends/global.html (accessed on 26 January 2022).
- Liu, M.; Zhu, X.; Pan, C.; Chen, L.; Zhang, H.; Jia, W.; Xiang, W. Spatial variation of near-surface CO2 concentration during spring in Shanghai. Atmos. Pollut. Res. 2016, 7, 31–39. [Google Scholar] [CrossRef]
- Idso, C.D.; Idso, S.B.; Balling, R.C., Jr. The relationship between near-surface air temperature over land and the annual amplitude of the atmosphere’s seasonal CO2 cycle. Environ. Exp. Bot. 1999, 41, 31–37. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Dinan, N.M.; Ansarifard, S.; Sonnentag, O. Analyzing spatio-temporal patterns in atmospheric carbon dioxide concentration across Iran from 2003 to 2020. Atmos. Environ. X 2022, 14, 100163. [Google Scholar] [CrossRef]
- Dell’Ariccia, G.; Dell’Omo, G.; Wolfer, D.; Lipp, H.-P. Flock flying improves pigeons’ homing: GPS track analysis of individual flyers versus small groups. Anim. Behav. 2008, 76, 1165–1172. [Google Scholar] [CrossRef]
- Kays, R.; Crofoot, M.C.; Jetz, W.; Wikelski, M. Terrestrial animal tracking as an eye on life and the planet. Science 2015, 348, aaa2478. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.H. Biomonitoring with birds. In Trace Metals and other Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 677–736. [Google Scholar]
- Cizdziel, V.J.; Dempsey, S.; Halbrook, R.S. Preliminary Evaluation of the Use of Homing Pigeons as Biomonitors of Mercury in Urban Areas of the USA and China. Bull. Environ. Contam. Toxicol. 2013, 90, 302–307. [Google Scholar] [CrossRef]
- Tong, Y.; Zhao, X.; Li, H.; Pei, Y.; Ma, P.; You, J. Using homing pigeons to monitor atmospheric organic pollutants in a city heavily involving in coal mining industry. Chemosphere 2022, 307, 135679. [Google Scholar] [CrossRef]
- Cui, J.; Halbrook, R.S.; Zang, S.; Han, S.; Li, X. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution. Ecotoxicology 2018, 27, 169–174. [Google Scholar] [CrossRef]
- Liu, W.X.; Ling, X.; Halbrook, R.S.; Martineau, D.; Dou, H.; Liu, X.; Zhang, G.; Tao, S. Preliminary evaluation on the use of homing pigeons as a biomonitor in urban areas. Ecotoxicology 2010, 19, 295–305. [Google Scholar] [CrossRef]
- Toma, C.; Alexandru, A.; Popa, M.; Zamfiroiu, A. IoT solution for smart cities’ pollution monitoring and the security challenges. Sensors 2019, 19, 3410. [Google Scholar] [CrossRef] [Green Version]
Predictor | Estimate | Standard Error | p-Value |
---|---|---|---|
Intercept | 645.37 | 26.25 | <0.001 |
Temperature | 12.30 | 5.61 | 0.029 |
Pressure | −8.98 | 2.81 | 0.002 |
Relative humidity | 40.71 | 4.07 | <0.001 |
Flight speed | 1.88 | 0.82 | 0.021 |
Height | −0.32 | 1.43 | 0.822 |
Distance from release point | −17.33 | 3.09 | <0.001 |
Hour of day | −4.33 | 1.27 | <0.001 |
Month of year | −14.34 | 4.24 | <0.001 |
Over streets = true | −0.86 | 0.89 | 0.337 |
Land use = agricultural | 0.07 | 1.49 | 0.961 |
Land use = green urban | −6.76 | 3.55 | 0.057 |
Height × distance | 4.70 | 1.18 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bernardino, A.; Jennings, V.; Dell’Omo, G. Bird-Borne Samplers for Monitoring CO2 and Atmospheric Physical Parameters. Remote Sens. 2022, 14, 4876. https://doi.org/10.3390/rs14194876
Di Bernardino A, Jennings V, Dell’Omo G. Bird-Borne Samplers for Monitoring CO2 and Atmospheric Physical Parameters. Remote Sensing. 2022; 14(19):4876. https://doi.org/10.3390/rs14194876
Chicago/Turabian StyleDi Bernardino, Annalisa, Valeria Jennings, and Giacomo Dell’Omo. 2022. "Bird-Borne Samplers for Monitoring CO2 and Atmospheric Physical Parameters" Remote Sensing 14, no. 19: 4876. https://doi.org/10.3390/rs14194876
APA StyleDi Bernardino, A., Jennings, V., & Dell’Omo, G. (2022). Bird-Borne Samplers for Monitoring CO2 and Atmospheric Physical Parameters. Remote Sensing, 14(19), 4876. https://doi.org/10.3390/rs14194876