Estimates of Power Shortages and Affected Populations during the Initial Period of the Ukrainian-Russian Conflict
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Daily Nighttime Light Data
2.2.2. Spatialized Population Data
2.2.3. Auxiliary Data
2.3. Methods
2.3.1. Identifying Power Shortage Areas
2.3.2. Estimation of the Population Exposed to Power Shortages
- Estimation of total population exposed
- Estimation of vulnerable populations
3. Results
3.1. Dynamics of Light Radiance and Identified Areas
3.1.1. Regional-Scale Dynamics of Light Radiation
3.1.2. Identification of Power Shortage Areas
3.2. Estimation of the Affected Populations
3.2.1. Estimation of Total Population
3.2.2. Estimation of Vulnerable Populations
4. Discussion
4.1. Noise in VNP46A2 and Daily Light Radiation Tracking
4.2. Timely Assessment of Conflict Impacts Based on Remote Sensing Data
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burki, T.K. Health of Ukranian citizens under threat from conflict and displacement. Lancet Respir. Med. 2022, 10, e49. [Google Scholar] [CrossRef]
- Russia’s war in Ukraine, Explained. Available online: https://www.vox.com/2022/2/23/22948534/russia-ukraine-war-putin-explosions-invasion-explained (accessed on 6 August 2022).
- Haq, E.-U.; Tyson, G.; Lee, L.-H.; Braud, T.; Hui, P. Twitter dataset for 2022 russo-ukrainian crisis. arXiv 2022, arXiv:2203.02955. [Google Scholar]
- Ukraine: Civilian Casualties as of 3 July 2022. Available online: https://ukraine.un.org/en/188846-ukraine-civilian-casualties-3-july-2022 (accessed on 6 August 2022).
- UN High Commissioner for Refugees Calls for Immediate End to Ukraine War, Which Has Uprooted Over 10 Million People. Available online: https://www.unhcr.org/news/press/2022/3/6245d8574/un-high-commissioner-refugees-calls-immediate-end-ukraine-war-uprooted.html (accessed on 6 August 2022).
- Li, X.; Chen, F.; Chen, X. Satellite-observed nighttime light variation as evidence for global armed conflicts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2302–2315. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Jendryke, M.; Li, D.; Wu, C. Night-time light dynamics during the Iraqi civil war. Remote Sens. 2018, 10, 858. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Liu, H. Ongoing conflict makes Yemen dark: From the perspective of nighttime light. Remote Sens. 2017, 9, 798. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.; Wu, Z.; Ye, X.; Guo, G.; Qian, Q. The desaturation method of DMSP/OLS nighttime light data based on vector data: Taking the rapidly urbanized China as an example. Int. J. Geogr. Inf. Sci. 2019, 33, 431–453. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS J. Photogramm. Remote Sens. 2019, 153, 36–47. [Google Scholar] [CrossRef]
- Xie, Z.; Ye, X.; Zheng, Z.; Li, D.; Sun, L.; Li, R.; Benya, S. Modeling polycentric urbanization using multisource big geospatial data. Remote Sens. 2019, 11, 310. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Li, W.; Peng, J. Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery. Remote Sens. Environ. 2013, 134, 111–119. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Characterizing urban land changes of 30 global megacities using nighttime light time series stacks. ISPRS J. Photogramm. Remote Sens. 2021, 173, 10–23. [Google Scholar] [CrossRef]
- Zhao, N.; Ghosh, T.; Samson, E.L. Mapping spatio-temporal changes of Chinese electric power consumption using night-time imagery. Int. J. Remote Sens. 2012, 33, 6304–6320. [Google Scholar] [CrossRef]
- Zhao, N.; Hsu, F.-C.; Cao, G.; Samson, E.L. Improving accuracy of economic estimations with VIIRS DNB image products. Int. J. Remote Sens. 2017, 38, 5899–5918. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Ghosh, T.; Baugh, K.E.; Elvidge, C.D.; Zhizhin, M.; Poyda, A.; Hsu, F.-C. Extending the DMSP Nighttime Lights Time Series beyond 2013. Remote Sens. 2021, 13, 5004. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef]
- Cao, C.; Shao, X.; Uprety, S. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Liu, Y.; Yao, S.; Lian, T.; Chen, L.; Yang, C.; Chen, Z.; Wu, J. NPP-VIIRS DNB daily data in natural disaster assessment: Evidence from selected case studies. Remote Sens. 2018, 10, 1526. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.; Tang, L.; Xu, Z.; Zhu, W.; Liu, L. Quantifying spatiotemporal changes in human activities induced by COVID-19 pandemic using daily nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2740–2753. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, G.; Yang, Z.; Marinello, F. A simple method for near-real-time monthly nighttime light image production. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8008405. [Google Scholar] [CrossRef]
- Xu, J.; Qiang, Y. Spatial assessment of community resilience from 2012 Hurricane Sandy using nighttime light. Remote Sens. 2021, 13, 4128. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.; Sun, Q.; Molthan, A.; Schultz, L.; Kalb, V. Monitoring disaster-related power outages using NASA black marble nighttime light product. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 7–10 May 2018; pp. 1853–1856. [Google Scholar]
- Xu, G.; Xiu, T.; Li, X.; Liang, X.; Jiao, L. Lockdown induced night-time light dynamics during the COVID-19 epidemic in global megacities. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102421. [Google Scholar] [CrossRef]
- Wang, Z.; Shrestha, R.M.; Román, M.O.; Kalb, V.L. NASA’s Black Marble multi-angle nighttime lights temporal composites. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2505105. [Google Scholar] [CrossRef]
- Ukraine Country Profile. Available online: https://www.bbc.com/news/world-europe-18018002 (accessed on 26 July 2022).
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- LandScan High Definition Data for Ukraine, January 2022. Available online: https://developers.google.com/earth-engine/datasets/catalog/DOE_ORNL_LandScan_HD_Ukraine_202201 (accessed on 6 August 2022).
- WorldPop Global Project Population Data: Estimated Age and Sex Structures of Residential Population per 100 × 100 m Grid Square. Available online: https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop_age_sex#description (accessed on 6 August 2022).
- Reid, S.; Weber, E.; Moehl, J.; Cooper, J.A.; Levy, C. Fusing Land Use Data and Population Density Estimates for High Resolution Population Modeling: LandScan HD. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; p. IN33B-0846. [Google Scholar]
- Rose, A.; McKee, J.; Weber, E.; Bhaduri, B.L. Geoscience meets social science: A flexible data driven approach for developing high resolution population datasets at global scale. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LO, USA, 11–15 December 2017; p. IN51H-04. [Google Scholar]
- WorldPop Methods. Available online: https://www.worldpop.org/methods/ (accessed on 26 July 2022).
- Xu, P.; Wang, Q.; Jin, J.; Jin, P. An increase in nighttime light detected for protected areas in mainland China based on VIIRS DNB data. Ecol. Indic. 2019, 107, 105615. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, G.; Cao, Z.; Yang, Z.; Marinello, F. Africa’s protected areas are brightening at night: A long-term light pollution monitor based on nighttime light imagery. Glob. Environ. Chang. 2021, 69, 102318. [Google Scholar] [CrossRef]
- Tucker, C.; Newcomb, W.; Los, S.; Prince, S. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981–1989. Int. J. Remote Sens. 1991, 12, 1133–1135. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Yao, Z.; Kang, H. Trend and periodicity of precipitation, air temperature and runoff in the Taihu Lake Basin. J. Nat. Resour. 2011, 26, 1575–1584. [Google Scholar] [CrossRef]
- The Impact of War on Older People (In Ukraine and Everywhere Else). Available online: https://www.helpage.org/newsroom/latest-news/the-impact-of-war-on-older-people-in-ukraine-and-everywhere-else/ (accessed on 6 August 2022).
- De Alencar Rodrigues, J.A.R.; Lima, N.N.R.; Neto, M.L.R.; Uchida, R.R. Ukraine: War, bullets, and bombs-millions of children Pland adolescents are in danger. Child. Abus. Neglect. 2022, 128, 105622. [Google Scholar] [CrossRef] [PubMed]
- Ukraine Refugee Situation. Available online: https://data.unhcr.org/en/situations/ukraine (accessed on 6 August 2022).
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Wu, K.; Wang, X. Aligning pixel values of DMSP and VIIRS nighttime light images to evaluate urban dynamics. Remote Sens. 2019, 11, 1463. [Google Scholar] [CrossRef] [Green Version]
- The UN Reiterates the Call for an Easter Truce in Ukraine Amid a Growing Humanitarian Crisis and Mounting Displacement. Available online: https://ukraine.un.org/en/178431-un-reiterates-call-easter-truce-ukraine-amid-growing-humanitarian-crisis-and-mounting (accessed on 6 August 2022).
Name | Population | Population (Under 10) | Population (Above 60) |
---|---|---|---|
Kharkiv | 1688 | 201 | 343 |
Kiev city | 1530 | 205 | 289 |
Odessa | 1336 | 192 | 255 |
L’viv | 1261 | 186 | 236 |
Kiev | 1107 | 150 | 215 |
Dnipropetrovs’k | 1106 | 144 | 220 |
Donets’k | 1011 | 122 | 234 |
Zaporizhzhya | 964 | 121 | 223 |
Mykolayiv | 694 | 93 | 130 |
Poltava | 678 | 85 | 158 |
Ivano-Frankivs’k | 629 | 97 | 114 |
Cherkasy | 531 | 66 | 128 |
Luhans’k | 473 | 55 | 107 |
Ternopil’ | 458 | 67 | 88 |
Rivne | 444 | 82 | 73 |
Kirovohrad | 441 | 58 | 106 |
Zhytomyr | 410 | 62 | 81 |
Sumy | 389 | 48 | 91 |
Kherson | 381 | 55 | 72 |
Khmel’nyts’kyy | 342 | 47 | 79 |
Chernihiv | 335 | 42 | 85 |
Volyn | 334 | 59 | 56 |
Vinnytsya | 331 | 44 | 79 |
Transcarpathia | 268 | 48 | 42 |
Chernivtsi | 152 | 23 | 27 |
Total | 17,293 (38.51%) | 2352 (5.24%) | 3531 (7.86%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wu, Z.; Cao, Z.; Zhang, Q.; Chen, Y.; Guo, G.; Yang, Z.; Guo, C.; Wang, X.; Marinello, F. Estimates of Power Shortages and Affected Populations during the Initial Period of the Ukrainian-Russian Conflict. Remote Sens. 2022, 14, 4793. https://doi.org/10.3390/rs14194793
Zheng Z, Wu Z, Cao Z, Zhang Q, Chen Y, Guo G, Yang Z, Guo C, Wang X, Marinello F. Estimates of Power Shortages and Affected Populations during the Initial Period of the Ukrainian-Russian Conflict. Remote Sensing. 2022; 14(19):4793. https://doi.org/10.3390/rs14194793
Chicago/Turabian StyleZheng, Zihao, Zhifeng Wu, Zheng Cao, Qifei Zhang, Yingbiao Chen, Guanhua Guo, Zhiwei Yang, Cheng Guo, Xin Wang, and Francesco Marinello. 2022. "Estimates of Power Shortages and Affected Populations during the Initial Period of the Ukrainian-Russian Conflict" Remote Sensing 14, no. 19: 4793. https://doi.org/10.3390/rs14194793
APA StyleZheng, Z., Wu, Z., Cao, Z., Zhang, Q., Chen, Y., Guo, G., Yang, Z., Guo, C., Wang, X., & Marinello, F. (2022). Estimates of Power Shortages and Affected Populations during the Initial Period of the Ukrainian-Russian Conflict. Remote Sensing, 14(19), 4793. https://doi.org/10.3390/rs14194793