Retrieval of Stratospheric Ozone Profiles from Limb Scattering Measurements of the Backward Limb Spectrometer on Chinese Space Laboratory Tiangong-2: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. The BLS on TG-2
2.1.2. The BLS Level-1B Version 1.02 LSR Data
2.1.3. A Priori Data
2.1.4. Data for Accuracy Verification
2.1.5. Forward Model
2.2. Methods
2.2.1. TH Registration
2.2.2. Retrieval Vector
2.2.3. Optimal Estimation Method
3. Results
3.1. Sensitivity Analysis
3.1.1. Pointing Error
3.1.2. Surface Albedo and Clouds
3.1.3. Stratospheric Aerosols
3.2. Retrieval Results and Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Son, S.W.; Polvani, L.M.; Waugh, D.W.; Akiyoshi, H.; Garcia, R.; Kinnison, D.; Pawson, S.; Rozanov, E.; Shepherd, T.G.; Shibata, K. The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 2008, 320, 1486–1489. [Google Scholar] [CrossRef]
- Son, S.W.; Gerber, E.P.; Perlwitz, J.; Polvani, L.M.; Gillett, N.P.; Seo, K.H.; Eyring, V.; Shepherd, T.G.; Waugh, D.; Akiyoshi, H.; et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res.-Atmos. 2010, 115, D00M07. [Google Scholar] [CrossRef]
- Kerr, R.A. Antarctic ozone hole is still deepening. Science 1986, 232, 1602. [Google Scholar] [CrossRef] [PubMed]
- Chipperfield, M.P.; Bekki, S.; Dhomse, S.; Harris, N.R.P.; Hassler, B.; Hossaini, R.; Steinbrecht, W.; Thieblemont, R.; Weber, M. Detecting recovery of the stratospheric ozone layer. Nature 2017, 549, 211–218. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Lefevre, F.; Pommereau, J.P.; Roscoe, H.K.; Goutail, F.; Pazmino, A.; Shanklin, J.D. Antarctic ozone loss in 1979–2010: First sign of ozone recovery. Atmos. Chem. Phys. 2013, 13, 1625–1635. [Google Scholar] [CrossRef]
- Newchurch, M.J.; Yang, E.S.; Cunnold, D.M.; Reinsel, G.C.; Zawodny, J.M.; Russell, J.M. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. J. Geophys. Res.-Atmos. 2003, 108, 4507. [Google Scholar] [CrossRef]
- Ziemke, J.R.; Chandra, S. Development of a climate record of tropospheric and stratospheric column ozone from satellite remote sensing: Evidence of an early recovery of global stratospheric ozone. Atmos. Chem. Phys. 2012, 12, 5737–5753. [Google Scholar] [CrossRef]
- Ardra, D.; Kuttippurath, J.; Roy, R.; Kumar, P.; Raj, S.; Muller, R.; Feng, W.H. The Unprecedented Ozone Loss in the Arctic Winter and Spring of 2010/2011 and 2019/2020. ACS Earth Space Chem. 2022, 6, 683–693. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Feng, W.H.; Muller, R.; Kumar, P.; Raj, S.; Gopikrishnan, G.P.; Roy, R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020. Atmos. Chem. Phys. 2021, 21, 14019–14037. [Google Scholar] [CrossRef]
- Manney, G.L.; Livesey, N.J.; Santee, M.L.; Froidevaux, L.; Lambert, A.; Lawrence, Z.D.; Millán, L.F.; Neu, J.L.; Read, W.G.; Schwartz, M.J.; et al. Record-Low Arctic Stratospheric Ozone in 2020: MLS Observations of Chemical Processes and Comparisons with Previous Extreme Winters. Geophys. Res. Lett. 2020, 47, e2020GL089063. [Google Scholar] [CrossRef]
- Chen, X.; Wu, L.L.; Chen, X.Y.; Zhang, Y.; Guo, J.P.; Safieddine, S.; Huang, F.X.; Wang, X.M. Cross-Tropopause Transport of Surface Pollutants during the Beijing 21 July Deep Convection Event. J. Atmos. Sci. 2022, 79, 1349–1362. [Google Scholar] [CrossRef]
- Ma, P.F.; Mao, H.Q.; Zhang, J.H.; Yang, X.Y.; Zhao, S.H.; Wang, Z.T.; Li, Q.; Wang, Y.; Chen, C.H. Satellite monitoring of stratospheric ozone intrusion exceptional events—A typical case of China in 2019. Atmos. Pollut. Res. 2022, 13, 7. [Google Scholar] [CrossRef]
- Sepulveda, E.; Cordero, R.R.; Damiani, A.; Feron, S.; Pizarro, J.; Zamorano, F.; Kivi, R.; Sanchez, R.; Yela, M.; Jumelet, J.; et al. Evaluation of Antarctic Ozone Profiles derived from OMPS-LP by using Balloon-borne Ozonesondes. Sci. Rep. 2021, 11, 4288. [Google Scholar] [CrossRef]
- van Gijsel, J.A.E.; Swart, D.P.J.; Baray, J.L.; Bencherif, H.; Claude, H.; Fehr, T.; Godin-Beekmann, S.; Hansen, G.H.; Keckhut, P.; Leblanc, T.; et al. GOMOS ozone profile validation using ground-based and balloon sonde measurements. Atmos. Chem. Phys. 2010, 10, 10473–10488. [Google Scholar] [CrossRef]
- Petropavlovskikh, I.; Evans, R.; McConville, G.; Oltmans, S.; Quincy, D.; Lantz, K.; Disterhoft, P.; Stanek, M.; Flynn, L. Sensitivity of Dobson and Brewer Umkehr ozone profile retrievals to ozone cross-sections and stray light effects. Atmos. Meas. Tech. 2011, 4, 1841–1853. [Google Scholar] [CrossRef]
- Stone, K.; Tully, M.B.; Rhodes, S.K.; Schofield, R. A new Dobson Umkehr ozone profile retrieval method optimising information content and resolution. Atmos. Meas. Tech. 2015, 8, 1043–1053. [Google Scholar] [CrossRef]
- Bai, K.; Chang, N.-B.; Yu, H.; Gao, W. Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations. Remote Sens. Environ. 2016, 182, 150–168. [Google Scholar] [CrossRef]
- Bak, J.; Liu, X.; Kim, J.H.; Deland, M.T.; Chance, K. Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds. Atmos. Meas. Tech. 2016, 9, 4521–4531. [Google Scholar] [CrossRef]
- Damiani, A.; De Simone, S.; Rafanelli, C.; Cordero, R.R.; Laurenza, M. Three years of ground-based total ozone measurements in the Arctic: Comparison with OMI, GOME and SCIAMACHY satellite data. Remote Sens. Environ. 2012, 127, 162–180. [Google Scholar] [CrossRef]
- Jackson, D.R.; Orsolini, Y.J. Estimation of Arctic ozone loss in winter 2004/05 based on assimilation of EOS MLS and SBUV/2 observations. Q. J. R. Meteorol. Soc. 2008, 134, 1833–1841. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Chance, K. The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 365–372. [Google Scholar] [CrossRef]
- Segers, A.J.; Eskes, H.J.; Van Der A, R.J.; Van Oss, R.F.; Van Velthoven, P.F.J. Assimilation of GOME ozone profiles and a global chemistry–transport model using a Kalman filter with anisotropic covariance. Q. J. R. Meteorol. Soc. 2005, 131, 477–502. [Google Scholar] [CrossRef]
- Wang, L.; Newchurch, M.J.; Biazar, A.; Liu, X.; Kuang, S.; Khan, M.; Chance, K. Evaluating AURA/OMI ozone profiles using ozonesonde data and EPA surface measurements for August 2006. Atmos. Environ. 2011, 45, 5523–5530. [Google Scholar] [CrossRef]
- Flittner, D.E.; Bhartia, P.K.; Herman, B.M. O3 profiles retrieved from limb scatter measurements: Theory. Geophys. Res. Lett. 2000, 27, 2601–2604. [Google Scholar] [CrossRef]
- McPeters, R.D.; Janz, S.J.; Hilsenrath, E.; Brown, T.L.; Flittner, D.E.; Heath, D.F. The retrieval of O-3 profiles from limb scatter measurements: Results from the Shuttle Ozone Limb Sounding Experiment. Geophys. Res. Lett. 2000, 27, 2597–2600. [Google Scholar] [CrossRef]
- Arosio, C.; Rozanov, A.; Malinina, E.; Eichmann, K.U.; von Clarmann, T.; Burrows, J.P. Retrieval of ozone profiles from OMPS limb scattering observations. Atmos. Meas. Tech. 2018, 11, 2135–2149. [Google Scholar] [CrossRef]
- Arosio, C.; Rozanov, A.; Malinina, E.; Weber, M.; Burrows, J.P. Merging of ozone profiles from SCIAMACHY, OMPS and SAGE II observations to study stratospheric ozone changes. Atmos. Meas. Tech. 2019, 12, 2423–2444. [Google Scholar] [CrossRef]
- Rault, D.F. Ozone profile retrieval from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements. J. Geophys. Res.-Atmos. 2005, 110, D09309. [Google Scholar] [CrossRef]
- Rohen, G.J.; von Savigny, C.; Llewellyn, E.J.; Kaiser, J.W.; Eichmann, K.U.; Bracher, A.; Bovensmann, H.; Burrows, J.P. First results of ozone profiles between 35 and 65 km retrieved from SCIAMACHY limb spectra and observations of ozone depletion during the solar proton events in October/November 2003. Adv. Space Res. 2006, 37, 2263–2268. [Google Scholar] [CrossRef]
- von Savigny, C.; Haley, C.S.; Sioris, C.E.; McDade, I.C.; Llewellyn, E.J.; Degenstein, D.; Evans, W.F.J.; Gattinger, R.L.; Griffioen, E.; Kyrölä, E.; et al. Stratospheric ozone profiles retrieved from limb scattered sunlight radiance spectra measured by the OSIRIS instrument on the Odin satellite. Geophys. Res. Lett. 2003, 30, 1755. [Google Scholar] [CrossRef]
- Xue, Q.S.; Yang, B.; Tian, Z.T.; Wang, F.P.; Luan, X.N.; Mu, B.; Wang, S.R. Spaceborne limb hyperspectral imager for ozone profile detection. Opt. Express 2019, 27, 31348–31361. [Google Scholar] [CrossRef] [PubMed]
- Jaross, G.; Bhartia, P.K.; Chen, G.; Kowitt, M.; Haken, M.; Chen, Z.; Xu, P.; Warner, J.; Kelly, T. OMPS Limb Profiler instrument performance assessment. J. Geophys. Res. Atmos. 2014, 119, 4399–4412. [Google Scholar] [CrossRef]
- Rault, D.F.; Loughman, R.P. The OMPS Limb Profiler Environmental Data Record Algorithm Theoretical Basis Document and Expected Performance. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2505–2527. [Google Scholar] [CrossRef]
- Kramarova, N.A.; Bhartia, P.K.; Jaross, G.; Moy, L.; Xu, P.; Chen, Z.; DeLand, M.; Froidevaux, L.; Livesey, N.; Degenstein, D.; et al. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements. Atmos. Meas. Tech. 2018, 11, 2837–2861. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Huang, Y.; Ma, Q.; Xue, Q.; Li, Z. Pre-Launch Calibration of the Tiangong-2 Front-Azimuth Broadband Hyperspectrometer; Springer: Singapore, 2019; pp. 49–60. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Sinnhuber, B.M.; Sheode, N.; Sinnhuber, M.; Chipperfield, M.P.; Feng, W. The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: A modelling study. Atmos. Chem. Phys. 2009, 9, 2863–2871. [Google Scholar] [CrossRef]
- Shettle, E.P.; Fenn, R.W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties; Air Force Geophysics Laboratory: Hanscom, MA, USA, 1979. [Google Scholar]
- Matthews, E. Global vegetation and land-use—New high-resolution data-bases for climate studies. J. Clim. Appl. Meteorol. 1983, 22, 474–487. [Google Scholar] [CrossRef]
- Vömel, H.; Smit, H.G.J.; Tarasick, D.; Johnson, B.; Oltmans, S.J.; Selkirk, H.; Thompson, A.M.; Stauffer, R.M.; Witte, J.C.; Davies, J.; et al. A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency. Atmos. Meas. Tech. 2020, 13, 5667–5680. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 13–71. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Dinter, T.; Rozanov, A.V.; Wolanin, A.; Bracher, A.; Burrows, J.P. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN. J. Quant. Spectrosc. Radiat. Transf. 2017, 194, 65–85. [Google Scholar] [CrossRef]
- Janz, S.J.; Hilsenrath, E.; Flittner, D.; Heath, D. Rayleigh scattering attitude sensor. In Proceedings of the Conference on Ultraviolet Atmospheric and Space Remote Sensing—Methods and Instrumentation, Denver, CO, USA, 7–8 August 1996; pp. 146–153. [Google Scholar]
- Kaiser, J.W.; von Savigny, C.; Eichmann, K.U.; Noel, S.; Bovensmann, H.; Burrows, J.P. Satellite-pointing retrieval from atmospheric limb-scattering of solar UV-B radiation. Can. J. Phys. 2004, 82, 1041–1052. [Google Scholar] [CrossRef]
- Moy, L.; Bhartia, P.K.; Jaross, G.; Loughman, R.; Kramarova, N.; Chen, Z.; Taha, G.; Chen, G.; Xu, P. Altitude registration of limb-scattered radiation. Atmos. Meas. Tech. 2017, 10, 167–178. [Google Scholar] [CrossRef]
- Loughman, R.P.; Flittner, D.E.; Herman, B.M.; Bhartia, P.K.; Hilsenrath, E.; McPeters, R.D. Description and sensitivity analysis of a limb scattering ozone retrieval algorithm. J. Geophys. Res. Atmos. 2005, 110, D19301. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000. [Google Scholar]
Item | BLS | OMPS/LP |
---|---|---|
Spectral coverage | 290–1000 nm | 290–1000 nm |
Spectral resolution | 1.2–22.4 nm | 1.5–30 nm |
Vertical coverage | 10–60 km | Tropopause–60 km |
Vertical resolution | ~3 km | ~1 km |
Data Category | Sources |
---|---|
Temperature profiles | MERRA-2 reanalysis data |
Pressure profiles | MERRA-2 reanalysis data |
Ozone profiles | A database embedded in the SCIATRAN |
Other absorbing gases profiles | A database embedded in the SCIATRAN |
Aerosol parameters | LOWTRAN aerosol parameterization |
Surface albedo | Matthews global database |
Ozone Sounding | BLS | OMPS/LP | ||||
---|---|---|---|---|---|---|
Station | Location | Acquisition Time | Location | Acquisition Time | Location | Acquisition Time |
Beijing | 39.81°N, 116.47°E | 27 September 2016 05:59 | 39.06°N, 117.02°E | 27 September 2016 01:21 | 36.78°N, 105.09°E | 27 September 2016 05:59 |
16 January 2018 05:52 | 38.42°N, 115.37°E | 15 January 2018 07:17 | 37.82°N, 111.01°E | 16 January 2018 05:33 | ||
Boulder | 39.95°N, 105.20°W | 4 January 2017 19:36 | 38.36°N, 103.77°W | 4 January 2017 17:52 | 38.23°N, 109.62°W | 4 January 2017 20:15 |
Hilo | 19.72°N, 155.05°W | 4 January 2017 18:59 | 17.28°N, 151.40°W | 4 January 2017 19:18 | 19.76°N, 155.29°W | 4 January 2017 23:33 |
Hong Kong | 22.31°N, 114.17°E | 16 August 2017 05:21 | 23.19°N, 114.15°E | 15 August 2017 05:16 | 24.89°N, 122.71°E | 16 August 2017 04:58 |
4 October 2017 05:27 | 19.88°N, 110.77°E | 3 October 2017 08:50 | 19.85°N, 103.28°E | 4 October 2017 06:19 | ||
7 March 2018 05:23 | 25.34°N, 119.36°E | 6 March 2018 08:41 | 24.73°N, 124.34°E | 7 March 2018 04:51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zong, X.; Qiao, C.; Lyu, D.; Zhang, W.; Zhang, J.; Liu, H.; Duan, M. Retrieval of Stratospheric Ozone Profiles from Limb Scattering Measurements of the Backward Limb Spectrometer on Chinese Space Laboratory Tiangong-2: Preliminary Results. Remote Sens. 2022, 14, 4771. https://doi.org/10.3390/rs14194771
Liu S, Zong X, Qiao C, Lyu D, Zhang W, Zhang J, Liu H, Duan M. Retrieval of Stratospheric Ozone Profiles from Limb Scattering Measurements of the Backward Limb Spectrometer on Chinese Space Laboratory Tiangong-2: Preliminary Results. Remote Sensing. 2022; 14(19):4771. https://doi.org/10.3390/rs14194771
Chicago/Turabian StyleLiu, Song, Xuemei Zong, Congcong Qiao, Daren Lyu, Wenxing Zhang, Jinqiang Zhang, Hailei Liu, and Minzheng Duan. 2022. "Retrieval of Stratospheric Ozone Profiles from Limb Scattering Measurements of the Backward Limb Spectrometer on Chinese Space Laboratory Tiangong-2: Preliminary Results" Remote Sensing 14, no. 19: 4771. https://doi.org/10.3390/rs14194771
APA StyleLiu, S., Zong, X., Qiao, C., Lyu, D., Zhang, W., Zhang, J., Liu, H., & Duan, M. (2022). Retrieval of Stratospheric Ozone Profiles from Limb Scattering Measurements of the Backward Limb Spectrometer on Chinese Space Laboratory Tiangong-2: Preliminary Results. Remote Sensing, 14(19), 4771. https://doi.org/10.3390/rs14194771