Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan Peninsula from ROB-TEC and GPS
Abstract
:1. Introduction
2. Experimental Data
3. Methods
3.1. Bilinear Interpolation
3.2. Method for PEIA
3.3. GNSS TEC Observations and Methods
4. Analysis and Results
4.1. Geomagnetic Activity Background
4.2. Time Series Analysis of Epicenter TEC
4.3. TEC Changes in the Balkan Peninsula Seismic Swarm
4.4. Observed Coseismic Ionospheric Disturbances in the Balkan Peninsula Seismic Swarm
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ikuta, R.; Hisada, T.; Karakama, G.; Kuwano, O. Stochastic Evaluation of Pre-Earthquake TEC Enhancements. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027899. [Google Scholar] [CrossRef]
- Thomas, J.N.; Huard, J.; Masci, F. A statistical study of global ionospheric map total electron content changes prior to occurrences of M ≥ 6.0 earthquakes during 2000–2014. J. Geophys. Res. Space Phys. 2017, 122, 2151–2161. [Google Scholar] [CrossRef]
- Kakinami, Y.; Saito, H.; Yamamoto, T.; Chen, C.-H.; Yamamoto, M.-Y.; Nakajima, K.; Liu, J.-Y.; Watanabe, S. Onset Altitudes of Co-Seismic Ionospheric Disturbances Determined by Multiple Distributions of GNSS TEC after the Foreshock of the 2011 Tohoku Earthquake on March 9, 2011. Earth Space Sci. 2021, 8, e2020EA001217. [Google Scholar] [CrossRef]
- Davies, K.; Baker, D.M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. (1896–1977) 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Pulinets, S. Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Terr. Atmos. Ocean. Sci. 2004, 15, 413–436. [Google Scholar] [CrossRef]
- Sanchez, S.A.; Kherani, E.A.; Astafyeva, E.; de Paula, E.R. Ionospheric Disturbances Observed Following the Ridgecrest Earthquake of 4 July 2019 in California, USA. Remote Sens. 2022, 14, 188. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Chuo, Y.; Tsai, H. Variations of ionospheric total electron content during the Chi-Chi earthquake. Geophys. Res. Lett. 2001, 28, 1383–1386. [Google Scholar] [CrossRef]
- Chen, Y.-I.; Liu, J.-Y.; Tsai, Y.-B.; Chen, C.-S. Statistical tests for pre-earthquake ionospheric anomaly. Terr. Atmos. Ocean. Sci. 2004, 15, 385–396. [Google Scholar] [CrossRef]
- Hobara, Y.; Parrot, M. Ionospheric perturbations linked to a very powerful seismic event. J. Atmos. Sol.-Terr. Phys. 2005, 67, 677–685. [Google Scholar] [CrossRef]
- Ryu, K.; Lee, E.; Chae, J.; Parrot, M.; Pulinets, S. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. J. Geophys. Res. Space Phys. 2014, 119, 8524–8542. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yao, Y.; Yao, W. On the coseismic ionospheric disturbances after the Nepal Mw7. 8 earthquake on April 25, 2015 using GNSS observations. Adv. Space Res. 2017, 59, 103–113. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw> 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Fernández, J. Geodetic and geophysical effects associated with seismic and volcanic hazards. In Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1301–1303. [Google Scholar]
- Liu, J.-Y.; Chen, Y.; Chuo, Y.; Chen, C.-S. A statistical investigation of preearthquake ionospheric anomaly. J. Geophys. Res. Space Phys. 2006, 111, A5. [Google Scholar] [CrossRef]
- Kumar, S.; Chen, W.; Liu, Z.; Ji, S. Effects of solar and geomagnetic activity on the occurrence of equatorial plasma bubbles over Hong Kong. J. Geophys. Res. Space Phys. 2016, 121, 9164–9178. [Google Scholar] [CrossRef]
- Zheng, D.; Zheng, H.; Wang, Y.; Nie, W.; Li, C.; Ao, M.; Hu, W.; Zhou, W. Variable pixel size ionospheric tomography. Adv. Space Res. 2017, 59, 2969–2986. [Google Scholar] [CrossRef]
- Dobrovolsky, I.; Zubkov, S.; Miachkin, V. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Bergeot, N.; Chevalier, J.-M.; Bruyninx, C.; Pottiaux, E.; Aerts, W.; Baire, Q.; Legrand, J.; Defraigne, P.; Huang, W. Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data. J. Space Weather. Space Clim. 2014, 4, A31. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chuo, Y.; Shan, S.; Tsai, Y.; Chen, Y.; Pulinets, S.; Yu, S. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. In Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2004; pp. 1585–1593. [Google Scholar]
- Liu, J.-Y.; Chen, Y.; Chen, C.-H.; Liu, C.; Chen, C.; Nishihashi, M.; Li, J.; Xia, Y.; Oyama, K.; Hattori, K. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7. 9 Wenchuan earthquake. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Cahyadi, M.N.; Heki, K. Ionospheric disturbances of the 2007 Bengkulu and the 2005 Nias earthquakes, Sumatra, observed with a regional GPS network. J. Geophys. Res. Space Phys. 2013, 118, 1777–1787. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, C.; Long, F.; Yan, Y. Suspected Seismo-Ionospheric Anomalies before Three Major Earthquakes Detected by GIMs and GPS TEC of Permanent Stations. Remote Sens. 2022, 14, 20. [Google Scholar] [CrossRef]
- Zheng, D.; Yao, Y.; Nie, W.; Chu, N.; Lin, D.; Ao, M. A new three-dimensional computerized ionospheric tomography model based on a neural network. GPS Solut. 2020, 25, 10. [Google Scholar] [CrossRef]
- Zheng, D.; Yao, Y.; Nie, W.; Liao, M.; Liang, J.; Ao, M. Ordered subsets-constrained ART algorithm for ionospheric tomography by combining VTEC data. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7051–7061. [Google Scholar] [CrossRef]
- Rao, P.; Ram, S.T.; Krishua, S.; Niranjan, K.; Prasad, D. Morphological Characteristics of L-Band Scintillations and Their Impact on GPS Signals—A Quantitative Study on the Precursors for the Occurrence of Scintillations; Andhra University Vishakhapatnam (India) Deptartment of Physics: Visakhapatnam, India, 2006. [Google Scholar]
- Filjar, R.; Kos, S.; Krajnovic, S. Dst Index as a Potential Indicator of Approaching GNSS Performance Deterioration. J. Navig. 2013, 66, 149–160. [Google Scholar] [CrossRef]
- Jin, S.; Occhipinti, G.; Jin, R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Sci. Rev. 2015, 147, 54–64. [Google Scholar] [CrossRef]
- Heki, K.; Enomoto, Y. Preseismic ionospheric electron enhancements revisited. J. Geophys. Res. Space Phys. 2013, 118, 6618–6626. [Google Scholar] [CrossRef]
- Rolland, L.M.; Lognonné, P.; Astafyeva, E.; Kherani, E.A.; Kobayashi, N.; Mann, M.; Munekane, H. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 2011, 63, 853–857. [Google Scholar] [CrossRef]
- Astafyeva, E.; Shalimov, S.; Olshanskaya, E.; Lognonné, P. Ionospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer. Geophys. Res. Lett. 2013, 40, 1675–1681. [Google Scholar] [CrossRef]
- Occhipinti, G.; Kherani, E.A.; Lognonné, P. Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves. Geophys. J. Int. 2008, 173, 753–765. [Google Scholar] [CrossRef]
- Kakinami, Y.; Kamogawa, M.; Tanioka, Y.; Watanabe, S.; Gusman, A.R.; Liu, J.Y.; Watanabe, Y.; Mogi, T. Tsunamigenic ionospheric hole. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Ulukavak, M.; Yalçınkaya, M.; Kayıkçı, E.T.; Öztürk, S.; Kandemir, R.; Karslı, H. Analysis of ionospheric TEC anomalies for global earthquakes during 2000–2019 with respect to earthquake magnitude (Mw ≥ 6.0). J. Geodyn. 2020, 135, 101721. [Google Scholar] [CrossRef]
- Nico, G.; Biagi, P.F.; Ermini, A.; Boudjada, M.Y.; Eichelberger, H.U.; Katzis, K.; Contadakis, M.; Skeberis, C.; Moldovan, I.A.; Bezzeghoud, M. Wavelet analysis applied on temporal data sets in order to reveal possible pre-seismic radio anomalies and comparison with the trend of the raw data. In EGU General Assembly 2021; Copernicus GmbH: Göttingen, Germany, 2021. [Google Scholar]
- Nina, A.; Pulinets, S.; Biagi, P.F.; Nico, G.; Mitrović, S.T.; Radovanović, M.; Popović, L.C. Variation in natural short-period ionospheric noise, and acoustic and gravity waves revealed by the amplitude analysis of a VLF radio signal on the occasion of the Kraljevo earthquake (Mw = 5.4). Sci. Total Environ. 2020, 710, 136406. [Google Scholar] [CrossRef]
- Ulukavak, M.; Yalcinkaya, M. Precursor analysis of ionospheric GPS-TEC variations before the 2010 M 7.2 Baja California earthquake. Geomat. Nat. Hazards Risk 2017, 8, 295–308. [Google Scholar] [CrossRef]
- Freund, F. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys. 2010, 58, 719–766. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, K.; Imtiaz, N.; Song, Q.; Zhang, Y. Relating Far-Field Coseismic Ionospheric Disturbances to Geological Structures. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029209. [Google Scholar] [CrossRef]
- Savastano, G.; Komjathy, A.; Shume, E.; Vergados, P.; Ravanelli, M.; Verkhoglyadova, O.; Meng, X.; Crespi, M. Advantages of geostationary satellites for ionospheric anomaly studies: Ionospheric plasma depletion following a rocket launch. Remote Sens. 2019, 11, 1734. [Google Scholar] [CrossRef] [Green Version]
NO. | Date (UT) | Time (UT) | Geog.Lat | Geog.lon | Mag (Mw) | Depth (km) | Regions | Radius of Influence (km) |
---|---|---|---|---|---|---|---|---|
1 | 26 November 2019 | 02:54 | 41.5138 | 19.5256 | 6.4 | 22 | Albania | 487.5 |
2 | 26 November 2019 | 06:08 | 41.5708 | 19.4242 | 5.5 | 10 | Albania | 204.2 |
3 | 26 November 2019 | 09:19 | 43.2235 | 17.9118 | 5.3 | 10 | Bosnia and Herzegovina | 168.3 |
4 | 27 November 2019 | 07:23 | 35.7174 | 23.2284 | 6.0 | 69 | Greece | 331.2 |
5 | 27 November 2019 | 14:45 | 41.5498 | 19.4787 | 5.3 | 10 | Albania | 168.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Li, J.; Liu, L.; Huang, L.; Zheng, D.; Tian, X.; Huang, L.; Zhou, L.; Ren, C.; He, H. Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan Peninsula from ROB-TEC and GPS. Remote Sens. 2022, 14, 4759. https://doi.org/10.3390/rs14194759
Wei L, Li J, Liu L, Huang L, Zheng D, Tian X, Huang L, Zhou L, Ren C, He H. Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan Peninsula from ROB-TEC and GPS. Remote Sensing. 2022; 14(19):4759. https://doi.org/10.3390/rs14194759
Chicago/Turabian StyleWei, Lvquan, Junyu Li, Lilong Liu, Liangke Huang, Dunyong Zheng, Xiangyu Tian, Ling Huang, Lv Zhou, Chao Ren, and Hongchang He. 2022. "Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan Peninsula from ROB-TEC and GPS" Remote Sensing 14, no. 19: 4759. https://doi.org/10.3390/rs14194759
APA StyleWei, L., Li, J., Liu, L., Huang, L., Zheng, D., Tian, X., Huang, L., Zhou, L., Ren, C., & He, H. (2022). Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan Peninsula from ROB-TEC and GPS. Remote Sensing, 14(19), 4759. https://doi.org/10.3390/rs14194759