Historical and Future Changes in Extreme Climate Events and Their Effects on Vegetation on the Mongolian Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Sen’s Slope + Mann–Kendall
- (1)
- Construct the time series X1, X2, …, Xn, defining Sk.
- (2)
- Calculate the variance and mean of Sk:
- (3)
- Standardize Sk:
2.3.2. Full Subset Regression Analysis
2.3.3. Correlation Analysis
2.3.4. Multiple Linear Regression Analysis
3. Results
3.1. Spatiotemporal Variations in Extreme Climate Indices
3.1.1. Temporal Variations in Extreme Climate Indices
3.1.2. Spatial Variations in Extreme Climate Indices
3.2. Spatiotemporal Variations in NDVI
3.3. Effects of ECI on NDVI
3.4. Projected Changes to and Impact of ECI on the Mongolian Plateau Based on CMIP6
3.4.1. Evaluation of the CMIP6 Models
3.4.2. Projected Changes in ECI
3.4.3. Projection of NDVI under the Influence of Extreme Climate
4. Discussion
5. Conclusions
- (1)
- There were increasing trends in temperature and precipitation on the Mongolian Plateau from 1982 to 2012. There were increases in temperature in the western and northwestern parts and decreases in the central part of the plateau. There were increases in the extreme precipitation frequency index in the northeast and northwest and decreases in the central region, whereas there were increases in the extreme precipitation intensity index in the northeast and southwest, with the opposite in the northwest.
- (2)
- There were increasing trends in the NDVI in most parts of the Mongolian Plateau, although at slow rates of increase. The analysis of the relationship between climate extremes and the NDVI showed that extreme precipitation had a greater effect on the NDVI than extreme temperature. The analysis of the relationship between extreme climate indices and the NDVI by full subset regression showed that R20, SU25, and TNx had the greatest influences on the NDVI.
- (3)
- There were increasing trends in R20, SU25, and TNx from 2021 to 2080 under all three scenarios. There was a gradual increase in the rate of change with increasing radiation intensity. There were decreases in the areas showing decreasing trends with increasing radiation intensity under the three extreme climate indices compared with that under historical change, whereas there were increases in the areas showing increasing trends.
- (4)
- Although there were increasing trends in the NDVI under all three scenarios, the rates of increase of these trends decreased continuously with increasing radiation intensity. The future NDVI was lower than the historical NDVI under all three scenarios. There was a gradual decrease in the areas showing an increasing trend and a gradual increase in areas showing a decreasing trend as radiation intensity increased.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, J.; Liu, C.Z.; Ren, G.Y. Opportunity and Challenge of the Climate Change Impact on the Water Resource of China. Adv. Earth Sci. 2011, 26, 12. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Midgleyet, P.M.; IPCC. The physical science basis. Contribution of Working Group I to the Fifth Asseent Report of the Intergovernmental Panel on Climate Change. Comput. Geom. 2013, 10, 916–917. [Google Scholar]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L. Research on the Characteristics and Effects of Climate Extremes on Multi-Spatial-Temporal Scales in the Mongolian Plateau. Ph.D. Thesis, East China Normal University, Changchun, China, 2019. [Google Scholar]
- Cohen, J.M.; Fink, D.; Zuckerberg, B. Avian responses to extreme weather across functional traits and temporal scales. Glob. Chang. Biol. 2020, 26, 4240–4250. [Google Scholar] [CrossRef]
- Pamela, S.R.; Juan, C.A.; Wolfgang, J.H.M. Impact of extreme weather wvents on aboveground net primary prodvity and sheep production in the magellan region, Southernmost Chilean Patagonia. Geosciences 2020, 10, 318. [Google Scholar]
- Kornhuber, K.; Osprey, S.; Coumou, D.; Petri, S.; Petoukhov, V. Extreme weather events in early summer 2018 connected by a recurrent hemieric wave-7 pattern. Environ. Res. Lett. 2019, 14, 54002. [Google Scholar] [CrossRef]
- Toreti, A.; Belward, A.; Perez-Dominguez, I.; Naumann, G.; Luterbacher, J.; Cronie, O.; Seguini, L.; Manfron, G.; Lopez-Lozano, R.; Baruth, B.; et al. The exceptional 2018 European water seesaw calls for action on adaptation. Earth’s Future 2019, 7, 652–663. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Shi, B.L.; Zhu, K.L. Trends of extreme climate events in Henan Province from 1960 to 2010. Yellow River 2016, 38, 5. [Google Scholar]
- Ji, P.; Yuan, X.; Jiao, Y.; Wang, C.; Han, S.; Shi, C. Anthropogenic Contributions to the 2018 Extreme Flooding over the Upper Yellow River Basin in China. Bull. Am. Meteorol. Soc. 2020, 101, S89–S94. [Google Scholar] [CrossRef]
- Ren, L.; Wang, D.; An, N.; Ding, S.; Yang, K.; Freychet, N.; Tett, S.F.B.; Dong, B.; Lott, F.C. Anthropogenic Influences on the Persistent Night-Time Heat Wave in Summer 2018 over Northeast China. Bull. Am. Meteorol. Soc. 2020, 101, S83–S88. [Google Scholar] [CrossRef]
- IPCC. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 996, pp. 113–119. [Google Scholar]
- Fang, J.Y.; Piao, S.L.; He, J.S.; Ma, W.H. Vegetation activity in China has increased in recent years. Sci. China Ser. C 2003, 33, 12. [Google Scholar]
- Wang, S.; Zhang, L.L.; Lin, W.B.; Huang, Q.S.; Song, Y.X.; Ye, M. Study on vegetation coverage and land-use change of Guangdong Province based on MODIS-NDVI. Acta Ecol. Sin. 2022, 42, 2149–2163. [Google Scholar]
- Yuan, Z.H.; Sa, C.L.; Yin, S. Research on vegetation phenological changes in the Otindag sandy land Based on MODIS NDVI and EVI. China Environ. Sci. 2021, 41, 5254–5263. [Google Scholar]
- Cornelissen, J.C.H.; Bodegom, P.M.V.; Aerts, R.; Callaghan, T.V.; Logtestijn, R.S.P.V.; Alatalo, J.; Chapin, F.S.; Gerdol, R.; Gudmundsson, J.; Gwynn-Jones, D. Global negative vegetation feedback to climate warming resps of leaf litter decomposition rates in cold biomes. Ecol. Lett. 2010, 10, 619–627. [Google Scholar] [CrossRef]
- Zeng, N.; Neelin, J.D.; Lau, K.M.; Tucker, C.J. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 1999, 286, 1537–1540. [Google Scholar] [CrossRef]
- Craine, J.M.; Ocheltree, T.W.; Nippert, J.B.; Towne, E.G.; Skibbe, A.M.; Kembel, S.W.; Fargione, G.E. Global diversity of drought tolerance and grassland climahange resilience. Nat. Clim. Chang. 2013, 3, 63–67. [Google Scholar] [CrossRef]
- Ndayisaba, F.; Guo, H.; Isabwe, A.; Bao, A.; Nahayo, L.; Khan, G.; Kayiranga, A.; Karamage, F.; Muhire, E.N. Inter-Annual Vegetation Changes in Response to Climate Variability in Rwanda. J. Environ. Prot. 2017, 8, 464. [Google Scholar] [CrossRef]
- Steven, J.; Phillips, S.J.; Goetz, S.J.; Knight, P. Shifts in Arctic vegetation and associated feedbacks under climahange. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar]
- Zhu, D.Y.; Xiong, K.N.; Xiao, H. Temporal and spatial variation characteristics of extreme temperature in Guizhou Province. Resour. Sci. 2018, 40, 1672–1683. [Google Scholar]
- Fernandez-Gimenez, M.E.; Batkhishig, B.; Batbuyan, B. Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Glob. Environ. Chang. 2012, 22, 836–851. [Google Scholar] [CrossRef]
- Min, S.K.; Son, S.W.; Seo, K.H.; Kug, J.S.; An, S.I.; Choi, Y.S.; Jeong, J.H.; Kim, B.M.; Kim, J.W.; Kim, Y.H.; et al. Changes in weather and climate extremes over Korea and possible causes: A rev. Asia-Pac. J. Atmos. Sci. 2015, 51, 103–121. [Google Scholar] [CrossRef]
- Bai, H.Z.; Xiao, F.P.; Liu, J.F.; Wang, H.L.; Zhang, H.; Li, Z.Q. Extreme Climatic Events in North China during 1965-2014 Study on temporal and spatial pattern of agrometeorological disasters. Geogr. Geo-Inf. Sci. 2018, 34, 99–105. [Google Scholar]
- Wang, R.; Cherkauer, K.; Bowling, L. Corn response to climate stress detected with satellite-based NDVI time series. Remote Sens. 2016, 8, 269. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, Q.; Zhang, J.; Liu, J.; Zhao, P. Global response of terrestrial gross primary productivity to climate extre. Sci. Total Environ. 2020, 750, 142337. [Google Scholar] [CrossRef]
- Piao, S.L.; Tan, J.G.; Chen, A.P.; Fu, Y.S.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.Z.; Jeong, S.J.; et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Natuommunications 2015, 6, 6911. [Google Scholar] [CrossRef]
- Bai, H.Z.; Xiao, D.P.; Wang, B.; Liu, D.L.; Feng, P.Y.; Tang, J.Z. Multi-model ensemble of CMIP6 projections for future extreme climate stres wheat in the North China plain. Int. J. Climatol. 2020, 41, E171–E186. [Google Scholar]
- Yao, J.; Chen, Y.; Zhao, Y.; Mao, W.; Xu, X.; Liu, Y.; Yang, Q. Response of vegetation NDVI to climatic extremes in the arid region of Centsia: A case study in Xinjiang, China. Theor. Appl. Climatol. 2018, 131, 1503–1515. [Google Scholar] [CrossRef]
- Li, C.L.; Filho, W.L.; Wang, J.; Yin, J.; Fedoruk, M.; Bao, G.; Bao, Y.H.; Yin, S.; Yu, S.; Hu, R.C. An assessment of the impacts of climate extremes on the vegetation in Mongolian Plateau: Using a scenarios-based analysis to support regional adaptation and mitigation options. Ecol. Indic. 2018, 95, 805–814. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, D.B.; Wang, X.X. Evaluation and Projection of CMIP6 Models for Climate over the QinghaiXizang (Tibetan) Plateau. Plateau Meteorol. 2021, 40, 1455–1469. [Google Scholar]
- Fan, Z.M. Simulation of land cover change in Beijing-Tianjin-Hebei region based on different scenarios of SSP-RCP. Acta Geogr. Sin. 2022, 77, 228–244. [Google Scholar]
- Cao, G.; Hou, P. Assessment of the ecological security based on the ecological carrying capacity. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7285–7288. [Google Scholar]
- Wang, R.; Bowling, L.C.; Cherkauer, K.A.; Cibin, R.; Her, Y.; Chaubey, I. Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt. Agric. Water Manag. 2016, 180, 280–296. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Xiao, D.P.; Bai, H.Z. CMIP5 Climate Model Prediction and Application to Future Climate Change in China. Meteorogical Sci. Technol. 2019, 47, 608–621. [Google Scholar]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Change Res. 2019, 15, 519–525. [Google Scholar]
- Hu, Q.; Jiang, D.B.; Fan, G.Z. Evaluation of CMIP5 models over the Qinghai–Tibetan Plateau. Chin. J. Atmos. Sci. 2014, 38, 924–938. (In Chinese) [Google Scholar]
- Hong, Y. Effects of Extreme Climate Changes on Vegetation Phenology of Inner Mongolia. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2020. [Google Scholar]
- Lin, W.; Chen, H. Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: From CMIP5 to CMIP6. Atmos. Ocean. Sci. Lett. 2020, 13, 598–603. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Chen, Y.G. Mathematical Methods for Geography; Science Press: Beijing, China, 2011. [Google Scholar]
- Li, C.H.; Zhou, M.; Wang, Y.T.; Zhu, T.F.; Sun, H.; Yin, H.H.; Cao, H.J.; Han, H.Y. Inter-annual variation of vegetation net primary productivity and the contribution of spatial-temporal and climate factors in arid Northwest China: A case study of Hexi Corridor. Chin. J. Ecol. 2020, 39, 3265–3275. [Google Scholar]
- Bao, G.; Qin, Z.H.; Bao, Y.H.; Zhou, Y.; Li, W.J.; Sanjjav, A.J. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef]
- Parmesan, C.; Root, T.L.; Willig, M.R. Impacts of Extreme Weather and Climate on Terrestrial Biota*. Bull. Am. Meteorol. Soc. 2000, 81, 443–450. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, M.L.; Yanites, B.J.; Poulsen, C.J.; Ehlers, T.A. Vegetation-precipitation controls on Central Andean topography. J. Geophys. Res. Earth Surf. 2014, 119, 1354–1375. [Google Scholar] [CrossRef]
- Xu, J. Precipitation–vegetation coupling and its influence on erosion on the Loess Plateau, China. Catena 2005, 64, 103–116. [Google Scholar]
- Kahmen, A.; Perner, J.; Buchmann, N. Diversity-dependent productivity in semi-natural grasslands following climate perturbations. Funct. Ecol. 2005, 19, 594–601. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Avery, M.; Alley, R.; Berntsen, T.; Bindoff, N.; Chidthaisong, A. Climate Change 2001: The Physical Science Basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Intergov. Panel Clim. Change Clim. Chang. 2001, 996, 95–123. [Google Scholar]
- Rhein, M.; Rintoul, S.R.; Aoki, S.; Campos, E.; Chambers, D. Observations: Ocean in climate change 2013: The physical science basis. Fifth Assess. Rep. Intergov. Panel Clim. Change 2013, 255–316. [Google Scholar]
- Peng, D.D.; Zhou, T.J.; Zhang, L.X.; Zhang, W.X.; Chen, X.L. Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim. Dyn. 2019, 54, 543–560. [Google Scholar] [CrossRef]
- Zhang, M.R.; Yang, X.L.; Ren, L.L.; Pan, M.; Jiang, S.H.; Liu, L.; Yuan, F.; Fang, X.Q. Simulation of extreme precipitation in four climate regions in China by general circulation models (GCMs): Performance and projections. Water 2021, 13, 1509. [Google Scholar] [CrossRef]
- Wu, S.H.; Luo, Y.; Wang, H.; Gao, H.B.; Li, C.Z. Climate Change Impacts and Adaptation in China: Trends and Prospects. Chin. Sci. Bull. 2016, 61, 1042–1054. [Google Scholar]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Du, H.B.; Wu, Z.F.; Zhang, N.; Zong, S.W.; Meng, X.J. Characteristics of extreme temperature and precipitation events in Dandong in recent 60 years. Sci. Geogr. Sin. 2013, 33, 473–480. [Google Scholar]
- Gleick, P.H.; Adams, R.M.; Amasino, R.M. Climate change and the integrity of science. Science 2010, 328, 689–690. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gettelman, A.; Xu, Y.Y.; Wu, C.L.; Wang, Z.L.; Rosenbloom, N.; Bates, S.C.; Dong, W.J. CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geosci. Model Dev. 2019, 12, 3773–3793. [Google Scholar] [CrossRef] [Green Version]
Extreme Temperature Index | ||||
Classification | Index Code | Index Name | Definition | Units |
Frequency index | TN10P | Cold nights | Percentage of days when TN < 10th percentile | day |
TN90P | Warm nights | Percentage of days when TN > 90th percentile | day | |
TX10P | Cold days | Percentage of days when TX < 10th percentile | day | |
TX90P | Warm days | Percentage of days when TX > 90th percentile | day | |
SU25 | Hot summer days | The number of days during the year with the highest daily temperature > 25 °C | day | |
TR20 | Nights stay hot | The number of days during the year in which the daily minimum temperature is greater than 20 °C | day | |
Intensity index | TNn | An extremely low daily minimum temperature | The minimum daily minimum temperature of the year | °C |
TNx | An extremely high daily minimum temperature | Monthly maximum value of daily minimum temperature | °C | |
Extreme Precipitation Index | ||||
Classification | Index Code | Index Name | Definition | Units |
Frequency index | R20 | Number of moderate precipitation days | Annual count of days when precipitation ≥ 20 mm | day |
SDII | Annual mean rainy day precipitation intensity | Ratio of total daily precipitation ≥ 1mm to total number of days | mm·d−1 |
Model Name | Country | Resolution (km) |
---|---|---|
ACCESS-CM2 | CSIRO/Australia | 250 |
ACCESS-ESM1-5 | CSIRO/Australia | 250 |
CanESM5 | CCCma/Canada | 500 |
CMCC-ESM2 | CMCC/Italy | 100 |
EC-Earth3 | EC-Earth-Consortium/Europe | 100 |
EC-Earth3-Veg | EC-Earth-Consortium/Europe | 100 |
INM-CM4-8 | INM/Russia | 100 |
INM-CM5-0 | INM/Russia | 100 |
IPSL-CM6A-LR | IPSL/France | 250 |
MIROC6 | MIROC/Japan | 250 |
MPI-ESM1-2-LR | MPI-M/Germany | 250 |
MRI-ESM2-0 | MRI/Japan | 100 |
NorESM2-MM-R | NCC/Norway | 100 |
Unnormalized Coefficient | Normalization Coefficient | Significance | |
---|---|---|---|
(constant) | 0.273 × 10−1 | 0.001 | |
R20 | 0.191 × 10−2 | 0.504 | 0.003 |
SU25 | 0.343 × 10−3 | 0.377 | 0.077 |
TNx | −0.645 × 10−2 | −0.333 | −1.633 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Tong, S.; Ying, H.; Mei, L.; Bao, Y. Historical and Future Changes in Extreme Climate Events and Their Effects on Vegetation on the Mongolian Plateau. Remote Sens. 2022, 14, 4642. https://doi.org/10.3390/rs14184642
Ren J, Tong S, Ying H, Mei L, Bao Y. Historical and Future Changes in Extreme Climate Events and Their Effects on Vegetation on the Mongolian Plateau. Remote Sensing. 2022; 14(18):4642. https://doi.org/10.3390/rs14184642
Chicago/Turabian StyleRen, Jinyuan, Siqin Tong, Hong Ying, Li Mei, and Yuhai Bao. 2022. "Historical and Future Changes in Extreme Climate Events and Their Effects on Vegetation on the Mongolian Plateau" Remote Sensing 14, no. 18: 4642. https://doi.org/10.3390/rs14184642
APA StyleRen, J., Tong, S., Ying, H., Mei, L., & Bao, Y. (2022). Historical and Future Changes in Extreme Climate Events and Their Effects on Vegetation on the Mongolian Plateau. Remote Sensing, 14(18), 4642. https://doi.org/10.3390/rs14184642