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Abstract: Climate change has increased the frequency of extreme climate events, with different
regions showing different sensitivities to these events. In this study, the full subset regression
analysis, correlation analysis, and multiple linear regression analysis were used to analyze trends
of extreme climate changes and their effects on vegetation on the Mongolian Plateau from both
historical and future perspectives. The results showed significant increasing and decreasing trends
in extreme warming and extreme cooling indices, respectively, over the past three decades. The
extreme temperature indices and precipitation trends under three scenarios (SSP1-2.6, SSP2-4.5, and
SSP5-8.5 scenarios) were consistent with historical trends, and the rates at which temperature and
precipitation increased were positively correlated with increasing radiation intensity. In comparison
with historical changes, there were gradual increases in areas of regions with increasing temperature
and precipitation and decreases in areas with decreasing precipitation. There was an overall increasing
trend in the normalized difference vegetation index (NDVI) of the Mongolian Plateau, and the indices
that had the greatest influence on the NDVI during the analysis of climate extremes were: (1) the
number of days of heavy rainfall (R20); (2) the number of summer days (SU25) and; (3) high extreme
daily minimum temperature (TNx). There was an increasing trend in the NDVI from 2021 to 2080,
and the rate of the NDVI increase decreased with increasing radiation intensity. The rates of change
in the NDVI under all three scenarios were lower than that of the historical period.

Keywords: extreme climate events; NDVI; full subset regression; CMIP6; Mongolian Plateau

1. Introduction

Changes to the climate have become more pronounced since the Industrial Revolution,
posing challenges to both the ecosystem and human development [1]. The global average
temperature between 2011 and 2020 was 0.76 (±0.05) ◦C warmer than that in 1961–1990
and 1.12 (±0.11) ◦C warmer than that in the late 19th century [2]. The effects of climate
change include accelerated ice melt, sea level rise, and desertification [3,4]. Climate change
will also lead to an increased frequency and intensity of extreme climate events, which,
in turn, will harm the biosphere [5–7]. According to the 2020 Global Climate Risk Index
(https://germanwatch.org/en/cri, 7 August 2022) report, approximately 12,000 extreme
weather events occurred at a global level between 1999–2018, causing ~3.54$ trillion in
economic losses and ~495,000 human deaths. For example, daily maximum temperatures
in Scandinavia, the Netherlands, and Belgium exceeded those in the historical record in
the summer of 2018, triggering unprecedented forest fires [8,9]. Meteorological disasters in
China have been responsible for 70% of total economic losses due to natural disasters, with
extreme weather events accounting for 80% of the total [10]. The extreme drought in the
upper Yellow River Basin in 2018 had direct detrimental effects on 1.4 million people [11];
in July–August 2018, the China Meteorological Administration issued a “high-temperature
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warning” for 33 consecutive days, with this extreme heat event leading to economic losses
of RMB 6.87 billion in the aquaculture industry in Liaoning [12]. Disasters caused by
extreme weather pose a considerable challenge to human society and ecosystems.

Vegetation acts as a bridge between natural environmental factors and ecosystems [13,14],
and the study of vegetation growth using the normalized difference vegetation index
(NDVI) allows for the identification of aspects of vegetation, such as vegetation cover and
growth status [15,16]. Climate change directly affects the growth of terrestrial vegetation
by influencing ecosystem cycles [17,18]. The results of studies on changes in vegetation
under the influence of climate change at the global scale [19], the national scale [20], and the
regional scale [21] have all indicated that the effects of climate change on vegetation are sig-
nificant. Past studies have confirmed that climate change will further trigger the occurrence
of climate extremes [22,23], which, in turn, will result in further harm to ecosystems and
human society [24–26]. Studies of the effects of global climate extremes on ecosystems [27],
the correlation between the days of plant leaf initiation and climate extremes in some
regions of the United States and Europe [28], and the effects of climate extremes on wheat
yields during different growing periods have all come to a similar conclusion: an increase in
extreme climate events due to climate change will result in increased pressure on global ter-
restrial ecosystems [29]. A regional-scale study on the correlation between climate extremes
and vegetation in the Xinjiang region identified a shift from a warm-dry to warm-wet
climate in Xinjiang over the last 30 years, with implications for vegetation dynamics [30].
A study of the effect of climate extremes on vegetation on the Mongolian Plateau showed
that extreme precipitation has contributed to the growth of vegetation [31], indicating the
significant impact of climate extremes on vegetation ecosystems on a regional scale. The
Mongolian Plateau falls in the mid-latitude arid/semi-arid climate zone, which is the most
responsive region to climate change globally. The effects of climate change have led to
climate anomalies, which, in turn, have resulted in a series of extreme climate events [32,33].
The fragile ecological environments of arid/semi-arid regions are particularly sensitive to
anthropogenic activities and climate change [34,35]. Therefore, there is a need to study the
impacts of extreme climate events on vegetation on the Mongolian Plateau, within which
the use of structured models for extreme climate prediction can play an important role.

Most previous, related studies focused on the impact of the current climate on vegeta-
tion, and there has been less focus on future climate change and its impact. The initiation
of the CMIP program can help to fill this knowledge gap. The CMIP program has created
a good basis for the preparation of IPCC reports [36], and the latest CMIP6 dataset is
backed up by sound scientific experiments, rich data content, and the use of many mod-
els [37]. However, different CMIP6 models differ in their ability to simulate temperature
and precipitation and show regional applicability [38]. Therefore, there is a need to adopt
a scientifically valid method to evaluate the temperature and precipitation simulations of
models driven by CMIP data [39]. Lin et al. explored the ability of models driven by CMIP6
and CMIP5 data to simulate extreme precipitation in middle- and high-latitude Asia, and
their results showed a higher performance of the average simulation of the multi-model
ensemble compared to the individual model simulations [40].

Therefore, the objectives of the present study were to: (1) analyze the historical spa-
tiotemporal changes in extreme climates and their impact on vegetation on the Mongolian
Plateau; (2) use the full subset regression and multiple linear regression analysis methods
to choose and rank the importance of multiple extreme climate indices; (3) evaluate the
ability of models driven by the CMIP6 dataset to produce extreme climate indices during
the historical period; and (4) analyze the spatiotemporal variability in extreme climate
events and the impact on vegetation across the Mongolian Plateau during the 21st century
under different scenarios based on 13 CMIP6 model projections.
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2. Materials and Methods
2.1. Study Area

The Mongolian Plateau is in east Asia and falls in an arid and semi-arid climate zone
with an average and maximum elevation of 1580 m and ~3789 m, respectively (Figure 1a–c).
Plateaus and mountains constitute the dominant geomorphological features of the Mon-
golian Plateau. The Mongolian Plateau is in Chinese Inner Mongolia and Mongolia, and
falls within a temperate, continental monsoon climate zone. Inner Mongolia has an average
annual temperature of 6.2 ◦C and average annual precipitation of 300–400 mm, whereas
Mongolia has short summers and long winters with an average annual temperature of
3.8 ◦C and average annual precipitation of 120–250 mm. The Mongolian Plateau is rich in
vegetation types and ecologically fragile. The main vegetation types include typical steppe
and desert steppe vegetation and relatively small areas of coniferous forest, broadleaf forest,
and scrub in the northern and northeastern parts. Crops and sandy land vegetation are
distributed in the northeastern part of the Mongolian Plateau, with desert steppe mainly
distributed in the west (Figure 1d).

Figure 1. Geographic characteristics of the Mongolian Plateau: (a,b) geographical location of study
area, (c) elevation, (d) vegetation types.

2.2. Data Sources

The present study used meteorological data obtained from the Princeton University
Global Daily Temperature and Precipitation Dataset (http://hydrology.princeton.edu/
data/, 7 August 2022). R software was used to calculate the annual-scale extreme climate
index (ECI) based on the daily maximum temperature, daily minimum temperature, and
daily cumulative precipitation from 1982 to 2012. The ECI has a spatial resolution of
0.5◦ × 0.5◦, with Table 1 defining the specific indices.

http://hydrology.princeton.edu/data/
http://hydrology.princeton.edu/data/
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Table 1. Definition of the extreme climate index.

Extreme Temperature Index

Classification Index Code Index Name Definition Units

Frequency index

TN10P Cold nights Percentage of days when
TN < 10th percentile day

TN90P Warm nights Percentage of days when
TN > 90th percentile day

TX10P Cold days Percentage of days when
TX < 10th percentile day

TX90P Warm days Percentage of days when
TX > 90th percentile day

SU25 Hot summer days
The number of days during the

year with the highest daily
temperature > 25 ◦C

day

TR20 Nights stay hot
The number of days during the

year in which the daily minimum
temperature is greater than 20 ◦C

day

Intensity index

TNn An extremely low daily
minimum temperature

The minimum daily minimum
temperature of the year

◦C

TNx
An extremely high

daily minimum
temperature

Monthly maximum value of daily
minimum temperature

◦C

Extreme Precipitation Index

Classification Index Code Index Name Definition Units

Frequency index

R20 Number of moderate
precipitation days

Annual count of days when
precipitation ≥ 20 mm day

SDII Annual mean rainy day
precipitation intensity

Ratio of total daily
precipitation ≥ 1mm to total

number of days
mm·d−1

NDVI is generated by several NOAA AVHRR sensors for a global 1/12th degree
latitude/grid with temporal resolution of 15 days. The latest version GIMMS NDVI3g was
used in this paper, which obtained from: https://ecocast.arc.nasa.gov/data/pub/gimms/
3g.v1/, 7 August 2022. The annual data were cropped using ArcGIS, following which they
were synthesized using Python for subsequent analysis.

Table 2 shows the CMIP6 simulation data (simulated climate data from thirteen models
in the Phase VI International Coupled Model Intercomparison Program: http://esgf-node.
llnl.gov/search/cmip6/, 7 August 2022), generated using historical data and three scenario
models (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The daily maximum temperature, daily min-
imum temperature, and accumulated precipitation data under the three future scenario
models were used to calculate the future extreme climate indices.

Table 2. CMIP6 model details.

Model Name Country Resolution (km)

ACCESS-CM2 CSIRO/Australia 250
ACCESS-ESM1-5 CSIRO/Australia 250

CanESM5 CCCma/Canada 500
CMCC-ESM2 CMCC/Italy 100

EC-Earth3 EC-Earth-Consortium/Europe 100
EC-Earth3-Veg EC-Earth-Consortium/Europe 100

INM-CM4-8 INM/Russia 100
INM-CM5-0 INM/Russia 100

IPSL-CM6A-LR IPSL/France 250
MIROC6 MIROC/Japan 250

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
http://esgf-node.llnl.gov/search/cmip6/
http://esgf-node.llnl.gov/search/cmip6/
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Table 2. Cont.

Model Name Country Resolution (km)

MPI-ESM1-2-LR MPI-M/Germany 250
MRI-ESM2-0 MRI/Japan 100

NorESM2-MM-R NCC/Norway 100

2.3. Methodology
2.3.1. Sen’s Slope + Mann–Kendall

The present study performed an image-by-image analysis of spatial and temporal
trends in climate extremes and the NDVI using Sen’s trend analysis:

Slope =
n × ∑n

i=1(i × Ti)− ∑n
i=1 i ∑n

i=1 Ti

n ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where Slope is the trend of the variable to be sought, n is the number of years of cumulative
monitoring, i is the year number (1 ≤ i ≤ n), and Ti is the extreme climate index or NDVI
value in year i.

The Mann–Kendall mutation test was first proposed by Mann and Kendall [41], fol-
lowing which the method was improved and refined to form the MK mutation test [42].
The test is characterized by an easy calculation and insensitivity to outliers, and can clearly
illustrate the point in time of a mutation, that is, an abrupt change in a climatic factor. The
steps for calculating the Mann–Kendall mutation test are shown below.

(1) Construct the time series X1, X2, . . . , Xn, defining Sk.

Sk = ∑k
i=1 ri (k = 1, 2 . . . n) (2)

ri =
{1, Xi>Xj

0, Xi<Xj
(j = 1, 2, . . . i; i = 1, 2 . . . n) (3)

(2) Calculate the variance and mean of Sk:

Var[Sk] = k(k − 1)(2k + 5)/72 a ≤ k ≤ n (4)

E[Sk] = k(k − 1)/4 (5)

(3) Standardize Sk:

UFk = Sk − E
[

Sk/
√

Var[Sk]

]
(6)

In Equation (6), UF obeys a standard normal distribution. Given a significance level
α, the presence of a significant trend in this series will result in UFk > Uα. Therefore,
UBk = −UFk, and the UF and UB curves can be plotted. The assessment of the mutation
point is mainly based on the position of the intersection point. For an intersection point
between UF and UB, its position will be between the two critical value lines, and the
moment of the sub-intersection point represents the mutation moment.

2.3.2. Full Subset Regression Analysis

The full subset regression method was used to fit all possible combinations of predictor
variables in this model in order, following which the optimal model under the existing
variables was screened according to some goodness-of-fit criteria, also called the best subset
selection. It should be noted that when there are more than two variables, the R2 criterion
will increase with an increasing number of variables added, leading to possible overfitting.
(The value range of R2 is [0, 1]: If the value is 0, the model fitting effect is poor. If the result
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is 1, the model is error-free. Generally speaking, the larger R2 is, the better the model fitting
effect is.) Adjusting R2 can provide more realistic fitting results.

2.3.3. Correlation Analysis

Correlation analysis uses appropriate quantitative indicators to describe relationships
between entities. The present study measured the correlation between climate extremes
and the NDVI using correlation analysis [43,44]:

R =
∑n

i=1
(
Mi − X

)(
NDVIi − NDVI

)√
∑n

i=1
(
Mi − X

)2
∑n

i=1
(
NDVIi − NDVI

)2
(7)

where R represents the correlation coefficient and M represents the extreme climate in-
dex (NDVI).

2.3.4. Multiple Linear Regression Analysis

Multiple linear regression analysis, also known as complex linear regression analysis,
involves determining the statistical relationship between a single dependent variable
and multiple independent variables. The present study established a linear regression
equation between multiple extreme climate indices (independent variables) and the NDVI
(dependent variable):

y = b0 + b1 x1 + b2 x2 + . . . + bn xn + µ (8)

where b0 denotes the constant term, bj (j = 1, 2, . . . , n) is the regression coefficient for
establishing the equation, and n denotes the number of variables in the equation. Because
the units of extreme climate indices were different, the size of the regression coefficients
could not be used in the assessment of the importance of each independent variable to the
NDVI. Therefore, the standardized multiple linear regression equation was applied:

y = b1 x1 + b2 x2 + . . . + bn xn (9)

The standardized regression equation lacks a constant term, and the magnitude of the
absolute value of the regression coefficient indicates the importance of each independent
variable to the dependent variable. The standardized regression coefficients only indicate
the ranking of the importance of the variables and cannot be used to construct a model.

3. Results
3.1. Spatiotemporal Variations in Extreme Climate Indices
3.1.1. Temporal Variations in Extreme Climate Indices

Figure 2 shows the results of an analysis of the temporal trends in extreme temperature
indices from 1982 to 2012. UF represents the time series trend of extreme temperature
indices and UB is the time inverse series of extreme temperature indices. The frequency
indices TN10P (Figure 2a) and TX10P (Figure 2c) indicate decreases in extreme cold tem-
perature at rates of 4 days/decade and 4.3 days/decade, respectively, with the daytime
trend exceeding the nighttime trend. TN10P and TX10P underwent mutations in 1987 and
1986, respectively, where the mutation reinforced the decrease trend. The warming trends
of temperature indices TN90P (Figure 2b), TX90P (Figure 2d), SU25 (Figure 2e), and TR20
(Figure 2f) increased at rates of 5.9 days/decade, 3.6 days/decade, 4 days/decade, and
2.5 days/decade, respectively, and the rate of increase at night exceeded that during the day.
The rate of increase of the highest temperature exceeded that of the lowest temperature.
The trends in TN90P and TX90P reinforced the increase trend after the mutation in 2000
and 2004, respectively. SU25 and TR20 showed an intersection point in 1997 and 1994,
respectively, and were located within the two critical lines, representing mutation points.
The extreme temperature intensity indices TNn (Figure 2g) and TNx (Figure 2h) both
increased at rates of 0.2 ◦C/decade. There was an intersection point between TNn and
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TNx within two critical lines in 1986 and 1996, respectively, and the mutation reinforced its
increase trend.

Figure 2. Interannual trends in extreme temperature indices on the Mongolian Plateau over the
last three decades.(Temporal trends of each extreme temperature index, (a) TN10P: Cold nights,
(b) TN90P: Warm nights, (c) TX10P: Cold days, (d) TX90P: Warm days, (e) SU25: Hot summer
days, (f) TR20: Nights stay hot, (g) TNn: An extremely low daily minimum temperature, (h) TNx:
An extremely high daily minimum temperature.)
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The trend in the extreme precipitation index indicated an increasing trend in the
extreme precipitation frequency index R20 of 0.05 days/decade (Figure 3a). Several in-
tersection points occurred from 1982 to 2012, among which two prominent intersection
points occurred in 1983 and 1992. There were increasing trends in the extreme precip-
itation intensity indices R95P and SDII (Figure 3b,c) at rates of 90.7 mm/decade and
1.1 mm/day/decade, respectively, with R95P mutating in 2006 and SDII mutating in
2005 (Figure 3).

Figure 3. Interannual trends in the extreme precipitation index on the Mongolian Plateau over the
last three decades.(Temporal trends of each extreme precipitation index, (a) R20: Number of moderate
precipitation days, (b) R95P: Very wet days, (c) SDII: Annual mean rainy day precipitation intensity.)

3.1.2. Spatial Variations in Extreme Climate Indices

There were decreasing trends in the spatial variations of TN10P (Figure 4a) and TX10P
(Figure 4c) in most parts of the Mongolian Plateau, among which areas showing a significant
decreasing trend were mainly located in the northeast, northwest, and southwest regions.
In contrast, TN10P and TX10P showed increasing trends in the central region, although
these trends were significant in few areas. TN90P (Figure 4b) and TX90P (Figure 4d) showed
increasing trends in most areas of the Mongolian Plateau, with a decreasing trend only in the
lower elevation central area. Areas showing significant increasing trends were mainly in the
western and northwestern regions, with few areas in the northeastern part of the Mongolian
Plateau. Areas showing a decreasing trend were mainly in the central and northwestern
parts, and areas showing a significant decreasing trend were in the central part. There were
increasing trends in SU25 (Figure 4e) and TR20 (Figure 4f) over most of the Mongolian
Plateau, with decreasing trends only evident in the central part. Areas showing significant
increasing trends were mainly in the northeastern, northwestern, and southeastern regions
of the Mongolian Plateau. Areas showing decreasing trends were mainly in the central and
southwest regions, with significant decreasing trends mainly in the central region. TNn
(Figure 4g) showed an increasing trend in most areas of the Mongolian Plateau, although
there was a decreasing trend in the southeast. Areas showing significant increasing trends
were mainly in northeast China. Areas showing significant decreasing trends were in
the southeast and southwest. TNx (Figure 4h) showed an increasing trend over most
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of the Mongolian Plateau and a decreasing trend in the central region. Areas showing
significant increasing trends were distributed in the northwestern and southeastern regions
of the Mongolian Plateau, whereas regions showing significant decreasing trends were
distributed in the central region.

Figure 4. Spatial variation in the extreme temperature index on the Mongolian Plateau over the last
three decades.(Spatial trends of each extreme temperature index, (a) TN10P: Cold nights, (b) TN90P:
Warm nights, (c) TX10P: Cold days, (d) TX90P: Warm days, (e) SU25: Hot summer days, (f) TR20:
Nights stay hot, (g) TNn: An extremely low daily minimum temperature, (h) TNx: An extremely
high daily minimum temperature).
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The present study analyzed the spatial variation in the extreme precipitation index
on the Mongolian Plateau (Figure 5). R20 (Figure 5a) showed an increasing trend in
the northeastern and northwestern regions of the Mongolian Plateau, whereas most of
the regions showing significant decreasing trends were in the southwestern and central
regions. The R95P (Figure 5b) and SDII (Figure 5c) indices showed decreasing trends
over most of the Mongolian Plateau, with areas showing an increasing trend mainly in the
northeastern region. R95P and SDII showed significant increasing trends in the northeastern
Mongolian Plateau, whereas areas showing significant decreasing trends were mostly in
the northwestern, southwestern, and central parts.

Figure 5. Spatial variation in the extreme precipitation index on the Mongolian Plateau over the
last three decades.(Spatial trends of each extreme precipitation index, (a) R20: Number of moderate
precipitation days, (b) R95P: Very wet days, (c) SDII: Annual mean rainy day precipitation intensity.)

3.2. Spatiotemporal Variations in NDVI

There was an overall increasing trend in the annual mean vegetation NDVI of the
Mongolian Plateau at a rate of 0.0009/decade (Figure 6a). There were increasing NDVI
trends in Inner Mongolia and Mongolia at rates of 0.0004/decade and 0.001/decade,
respectively. The multi-year mean NDVI of the Mongolian Plateau, Inner Mongolia, and
Mongolia were 0.21, 0.24, and 0.19, respectively. The NDVI of the Mongolian Plateau
gradually decreased from east to west and from north to south (Figure 6b).

There was an increasing trend in the NDVI in 57.4% of the Mongolian Plateau
(Figure 7a), among which most of the southern and northern areas showed significant
increasing trends, accounting for 26.1% of the total study area. There was a decreasing
trend in the NDVI in 42.6% of the Mongolian Plateau, amongst which 14.0% of the regions
in the northwest and southeast showed significant decreasing trends (Figure 7b). There
were no obvious changes in the NDVI in Mongolia at different spatial scales, whereas there
were clear trends in Inner Mongolia (Figure 7b). There were increasing and decreasing
trends in the NDVI in ~55.1% and 44.9% of the areas in Mongolia, respectively. Areas
showing significant decreasing trends in the NDVI were distributed in the northern and
southeastern regions, accounting for 20.5% of the total study area. Areas with significant
decreasing trends were in the central and southwestern regions, accounting for 13.5% of the
study area (Figure 7a). There were increasing and decreasing trends in the NDVI in 60.5%
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and 39.5% of Inner Mongolia, respectively. Areas showing significant increasing trends in
the NDVI were distributed in the western region, accounting for 20.5% of the total study
area. Areas with significant decreasing trends in the NDVI were in the northeastern part of
the study area, accounting for 14.5% of the study area (Figure 7a).

Figure 6. Variation in vegetation on the Mongolian Plateau from 1982 to 2012; (a) the temporal change
in the normalized difference vegetation index (NDVI) and (b) spatial distribution of multi-year mean
variation in NDVI.

Figure 7. Spatial trends in the normalized difference vegetation index (NDVI) on the Mongolian
Plateau: (a) Spatial distribution of NDVI, (b) NDVI among the different regions expressed as a per-
centage of total change.

3.3. Effects of ECI on NDVI

The present study applied correlation analysis to examine the influence of climate
extremes on the NDVI (Figure 8). The number of moderate precipitation days (R20)
showed the strongest positive correlation with the NDVI, with a correlation coefficient
of 0.52, followed by very wet days (R95P) with a correlation coefficient (CC) of 0.24 and
nights that stay hot (TR20) with a CC of 0.23. The extreme precipitation indices generally
showed stronger correlations to the NDVI than the extreme temperature indices. The
present study avoided autocorrelation between each extreme climate index by using full
subset regression.

The present study conducted a full subset regression between 11 extreme climate
indices and the NDVI for 1982–2012 (Figure 9). Model results were referenced to the
adjusted R2. The full subset regression of the extreme climate indices and the NDVI formed
models with different subset sizes. The highest adjusted R2 was obtained when using the
three extreme climate indices R20, SU25, and TNx as independent variables. This result
indicated that model simulations using a linear combination of these three indices would
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show the optimal performance among all subsets. Decreasing or increasing any of the other
extreme climate indices decreased the performance of the model simulation.

Figure 8. Correlations between extreme weather events and the normalized difference vegetation
index (NDVI) on the Mongolian Plateau. (From green to blue, the correlation goes from positive
to negative).

Figure 9. Full subset regression diagram.

The optimal regression model was obtained by regressing the selected extreme climate
indices with the NDVI using the full subset regression (Table 3). The rank of the standard-
ized coefficients for the NDVI according to their influence was: R20 > SU25 > TNx. The
absolute values of the most important and least important standardized coefficients for
predicting the NDVI, namely, R20 and TNx, were 0.504 and 0.333, respectively. The optimal
regression model included one extreme precipitation index and two extreme temperature
indices, with the former more important for determining the NDVI. This result indicated
that extreme precipitation had a greater influence on the NDVI of the Mongolian Plateau
than extreme temperature.
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Table 3. Results of multiple linear regression between the extreme climate index and the normalized
difference vegetation index (NDVI) for the Mongolian Plateau.

Unnormalized
Coefficient

Normalization
Coefficient Significance

(constant) 0.273 × 10−1 0.001
R20 0.191 × 10−2 0.504 0.003

SU25 0.343 × 10−3 0.377 0.077
TNx −0.645 × 10−2 −0.333 −1.633

3.4. Projected Changes to and Impact of ECI on the Mongolian Plateau Based on CMIP6
3.4.1. Evaluation of the CMIP6 Models

The present study evaluated the regional performances of the 13 CMIP6 global circula-
tion models (GCMs) using Taylor diagrams. The model evaluations were conducted by
comparing model simulations to historical data from 1960 to 2012. The evaluation over a
longer period avoided errors associated with short-term evaluations (Figure 10). GCMs
driven by CMIP6 data showed poor performance in generating extreme precipitation
indices, whereas their performance in generating extreme temperature indices was signifi-
cantly greater. The simulations of extreme climate indices by the different models showed
better performance when averaged. Therefore, the present study applied multi-model
ensemble averaging to investigate the spatial and temporal changes in extreme climate
from 2021 to 2080.

Figure 10. Taylor diagram of extreme climate index model evaluation based on the optimal model (ref
is extreme climate index calculated from historical data, (a). R20: Number of moderate precipitation
days, (b). SU25: Hot summer days, (c). TNx: An extremely high daily minimum temperature).

3.4.2. Projected Changes in ECI

The present study conducted a comparison between future and historical extreme
climate events by predicting the characteristics of extreme climate events from 2021 to
2080. There were increasing trends in R20 under all three scenarios, SSP1-2.6, SSP2-4.5, and
SSP5-8.5 (Figure 11a), at rates of 0.3 days/decade, 0.4 days/decade, and 0.6 days/decade,
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respectively. There were increasing trends in SU25 under all three scenarios at rates of
2.9 days/decade, 5.0 days/decade, and 8.8 days/decade, respectively (Figure 11b). Under
all three scenarios, the mean change in SU25 was smaller during the first 30-year period
(161.98, 160.85, and 164.55 under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively) than in the
latter 30-year period (170.41, 176.37, and 190.87, respectively). There were increasing trends
in TNx under all three scenarios (Figure 11c) at rates of 0.2 ◦C/decade, 0.3 ◦C/decade,
and 0.5 ◦C/decade, respectively. Under all three scenarios, the mean changes in TNx were
smaller in the first 30 years (24.58, 24.60, and 24.79 under SSP1-2.6, SSP2-4.5, and SSP5-
8.5, respectively) than during the second 30 years (25.02, 25.48, and 26.39, respectively).
A comparison of the results with historical data showed that the simulations of both R20
and SU25 under SSP2-4.5 were closer to historical conditions, whereas the simulated effects
of TNx under the SSP1-2.6 scenario were closer to historical conditions.

Figure 11. Cont.
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Figure 11. Temporal trends of extreme climate indices during 2021–2080 on the Mongolian Plateau
for different SSP scenarios.((a1–a3): Temporal trends of R20 (Number of moderate precipitation days)
in the SSP126/SSP245/SSP585 scenario, (b1–b3): Temporal trends of SU25 (Hot summer days) in
the SSP126/SSP245/SSP585 scenario, (c1–c3): Temporal trends of TNx (An extremely high daily
minimum temperature) in the SSP126/SSP245/SSP585 scenario).

There was increasing spatial variation in anthropogenic radiative forcing. As shown
in Figure 12a, there was an increasing trend in R20 in most regions under the three sce-
narios at maximum rates of 0.8 days/decade, 1.3 days/decade, and 2.3 days/decade,
respectively. However, some areas in northeast China showed decreasing trends at rates
of 0.08 days/decade, 0.16 days/decade, and 0.35 days/decade, respectively. As shown
in Figure 12b, there were increasing trends in SU25 under all three scenarios at rates of
5.1 days/decade, 9.2 days/decade, and 15.6 days/decade, respectively. There were gradual
increasing trends in the southwest at rates of 0.01 days/decade, 0.05 days/decade, and
0.1 days/decade, respectively. As shown in Figure 12c, there were increasing trends in TNx
under all three scenarios at rates of 0.27 ◦C/decade, 0.42 ◦C/decade, and 0.69 ◦C/decade,
respectively. There were gradual increasing trends in some areas at rates of 0.09 ◦C/decade,
0.2 ◦C/decade, and 0.39 ◦C/decade, respectively. There were significant differences in
the spatial trends in R20 on the Mongolian Plateau among the three scenarios, and there
were gradual decreases in areas experiencing significantly higher anthropogenic radiative
forcing. The spatial trends in SU25 and TNx were consistent among the three scenarios,
and the areas of significantly higher SU25 and TNx gradually increased with increasing
anthropogenic radiative forcing.
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Figure 12. Cont.
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Figure 12. Spatial trends of extreme climate indices for different SSP scenarios across the Mongolian
Plateau during 2021–2080.((a1–a3): Spatial trends of R20 (Number of moderate precipitation days)
in the SSP126/SSP245/SSP585 scenario, (b1–b3): Spatial trends of SU25 (Hot summer days) in the
SSP126/SSP245/SSP585 scenario, (c1–c3): Spatial trends of TNx (An extremely high daily minimum
temperature) in the SSP126/SSP245/SSP585 scenario).

3.4.3. Projection of NDVI under the Influence of Extreme Climate

As outlined in Section 3.3, the present study identified the extreme climate indices
with the greatest influences on the NDVI using correlation analysis and full subset re-
gression. This analysis was extended by applying multiple linear regression to explore
the relationships between different extreme climate indices and the NDVI, and to extend
these regressions to predict future NDVI. There were increasing trends in the NDVI under
all three scenarios (Figure 13) at rates of 0.45 × 10−3/decade, 0.36 × 10−3/decade, and
0.31 × 10−3/decade. Under all three scenarios, the average future NDVI during the first
30 years was smaller than that over the last 30 years, and the average gradually decreased
with increasing radiation intensity. There was an increasing trend in the NDVI on the
Mongolian Plateau from 2021 to 2080, with a decreasing rate of increase compared with the
historical rate of change. Although the median NDVI decreased with increasing anthro-
pogenic radiative forcing, the trend was stable. The results showed that the future NDVI
will be lower than the historical NDVI under all three scenarios.

Figure 13. Temporal trends in the normalized difference vegetation index (NDVI) on the Mongolian
Plateau under different SSP scenarios.((a–c): Temporal trends of NDVI in SSP126/SSP248/SSP585
scenarios from 2012 to 2080, (d): Stability of NDVI changes in SSP126/SSP248/SSP585 scenarios).
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As shown in Figure 14, there was an increasing spatial variation in the NDVI under the
SSP1-2.6 scenario over most of the Mongolian Plateau, with significant increases mainly in
the northwestern and southeastern parts. Areas showing significant decreasing trends were
mostly in the southwestern and northeastern parts. As shown in Figure 14b, there were
increasing trends in the NDVI in most of the Mongolian Plateau under the SSP2-4.5 scenario,
with significant increases mainly in the northern and northeastern parts. Areas showing
significant decreasing trends were mostly in the central parts. As shown in Figure 14c,
there was a decreasing trend in the NDVI in most of the Mongolian Plateau under the
SSP5-8.5 scenario. Areas showing significant decreasing trends were mostly found in the
northeastern, northwestern, and southwestern regions. There were significant increasing
trends in the NDVI in the northwestern and southeastern regions. Future trends in the
NDVI in the northeastern and southwestern parts of the Mongolian Plateau were more
consistent with historical trends compared to those in the central parts. There was a general
decline in areas with an increasing NDVI and radiation intensity on the Mongolian Plateau
over the next 60 years, whereas there was an increase in areas showing a decreasing trend.

Figure 14. Spatial variation in NDVI on the Mongolian Plateau from 2021 to 2080.((a–c): Spatial
trends of NDVI in SSP126/SSP248/SSP585 scenarios from 2012 to 2080).

4. Discussion

The NDVI is an important indicator of vegetation growth status for studying environ-
mental changes in Mongolian Plateau ecosystems since it responds to climate change and
is an essential link in environmental change studies [45]. The exploration of the relation-
ship between climate extremes and the NDVI showed that the highest correlations were
obtained for hot summer days (SU25), extremely high daily minimum temperatures (TNx),
and a number of moderate precipitation days (R20). This result indicated that increases
in the maximum temperature and frequency of precipitation will have greater impacts on
ecosystems. The sensitivity of Mongolian Plateau vegetation to changes in precipitation
frequency and maximum temperature can be attributed to: (1) The position of the Mon-
golian Plateau between China and Mongolia and its geographically diverse vegetation.
Climate extremes are also considered to be key drivers of biodiversity patterns that can
trigger changes in ecosystems by altering species composition, diversity, and functional
attributes [46,47]. (2) Climate, topography, and vegetation have a mutually regulating
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relationship, with vegetation dependent on precipitation and topography influencing the
distribution of temperature and precipitation [48,49]. The Mongolian Plateau has large
differences in elevation between the east and west. Regions of different altitudes and vege-
tation types show different sensitivities to the factors examined here, with lower elevations
having decreases in the number of very warm nights (TN90P) and warm days (TX90P),
whereas the remaining areas had increases in these factors. Meanwhile, since periods of
vegetation growth and precipitation occur simultaneously, an increase in the frequency of
precipitation directly leads to changes in vegetation biomass, and in turn, acting on the
NDVI. (3) Although the NDVI of the Mongolian Plateau is strongly correlated with precipi-
tation, the vegetation biomasses in areas with dense vegetation and high precipitation are
a result of accumulation over many years and are less affected by seasonal climate [50].

The study of future trends in the extreme climate index from 2021 to 2080 based on
CMIP6 data showed general trends of increasing temperature and precipitation on the
Mongolian Plateau. There were long-term gradual increases in the extreme climate index
and its mean. A comparison of future trends in the extreme climate index with that of the
past showed that means of the future periods will be larger. Moreover, there was a gradual
increase in the extreme climate index with increasing anthropogenic radiative forcing.
This result is consistent with the conclusion of the IPCC, which reports future increases
in the global temperature [51,52]. Increases in the emissions of greenhouse gases, such
as CO2 and N2, into the atmosphere, will result in changes to energy and material cycles
in the biosphere, which, in turn, will lead to increasing global temperatures and frequent
meteorological disasters, such as floods [53,54]. These assertions explain the observation in
the present study of changes in extreme climate with increasing radiative forcing at different
emission intensities and their gradual enhancement. In addition, a previous, systematic
AR6 assessment of changes in extreme climate events showed that global extreme heat
events and precipitation will continue the increases that have been especially evident since
the 1950s. This study also concluded that anthropogenic factors were the main drivers of
most changes in extreme climate events since the 1950s. The AR5 assessment also analyzed
the drivers of extreme climate events at regional scales using multiple attribution methods,
obtaining results consistent with the present study. The above results provide an additional
explanation for the increase in the extreme climate index and extreme precipitation with
an increasing temperature index and increasing radiation intensity [55,56]. Both the increase
in emission intensity and anthropogenic disturbances have resulted in changes in the
material and energy cycles of ecosystems, which further interfere with the growth and
development of vegetation on the Mongolian Plateau through their effects on the ecosystem,
climate, and environment. These assertions are consistent with the findings of the present
study on the relationship between climate extremes and the NDVI, in which the increasing
trend in the NDVI gradually slowed with increasing radiation intensity. This was spatially
expressed as a gradual decrease in areas with increasing NDVI trends and a gradual
increase in areas with decreasing NDVI trends.

The study of extreme climate change in different regions using the Extreme Climate
Index, defined by the Expert Group on Climate Change Detection and Indicators (ETCCDI)
of the World Meteorological Organization (WMO), has shown that different extreme climate
indices have different adaptations to regional studies [57]. Therefore, the limitations of
using extreme climate indices for different regions should be noted when using them. First,
the selection of climate data and index definitions, different data sources, and definition
methods may lead to uncertainties, for example, when using site data to calculate 27 extreme
climate indices using RClimDex(1.0) software, it should be noted that the annual extreme
climate of some of these indices then uses the annual average value, which is different
from the calculation method of the raster data. Second, in the choice of percentile values,
it is necessary to compare the effects of different percentile values according to the actual
climate conditions of the Mongolian Plateau. Here, only the percentile values included
in the extreme climate index calculated using the RClimDex software are compared, and
the percentile values of other values are not considered. Third, climate change on the



Remote Sens. 2022, 14, 4642 20 of 23

Mongolian Plateau is very complex, the current understanding of its related feedback
processes and mechanisms is still greatly lacking, and climate models have difficulty
describing its complex physical processes in detail [58]. Lin et al. [59] concluded that for
regional features, a higher horizontal resolution may affect the response to the internal
variability of the climate system, and the impact varies across regions. A high resolution
may perform better in exploring extreme indices at regional scales, and more attention
should also be paid to the development of high-resolution regional climate models in
the future.

5. Conclusions

The present study investigated the historical and possible future temporal and spatial
changes in extreme climate events over the Mongolian Plateau under different climate
scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) using the latest CMIP6 simulations. The
influence of the ECI on vegetation on the plateau was discussed by adopting full subset
regression analysis, correlation analysis, and multiple linear regression analysis. The main
conclusions of the present study are listed below:

(1) There were increasing trends in temperature and precipitation on the Mongolian
Plateau from 1982 to 2012. There were increases in temperature in the western and
northwestern parts and decreases in the central part of the plateau. There were
increases in the extreme precipitation frequency index in the northeast and northwest
and decreases in the central region, whereas there were increases in the extreme
precipitation intensity index in the northeast and southwest, with the opposite in
the northwest.

(2) There were increasing trends in the NDVI in most parts of the Mongolian Plateau,
although at slow rates of increase. The analysis of the relationship between climate
extremes and the NDVI showed that extreme precipitation had a greater effect on the
NDVI than extreme temperature. The analysis of the relationship between extreme
climate indices and the NDVI by full subset regression showed that R20, SU25, and
TNx had the greatest influences on the NDVI.

(3) There were increasing trends in R20, SU25, and TNx from 2021 to 2080 under all
three scenarios. There was a gradual increase in the rate of change with increasing
radiation intensity. There were decreases in the areas showing decreasing trends
with increasing radiation intensity under the three extreme climate indices compared
with that under historical change, whereas there were increases in the areas showing
increasing trends.

(4) Although there were increasing trends in the NDVI under all three scenarios, the rates
of increase of these trends decreased continuously with increasing radiation intensity.
The future NDVI was lower than the historical NDVI under all three scenarios. There
was a gradual decrease in the areas showing an increasing trend and a gradual increase
in areas showing a decreasing trend as radiation intensity increased.
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