The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by an Adjacent Strike-Slip Fault
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deformation Measurement
2.2. Inversion of Fault Geometry and Slip Distribution
2.3. Coulomb Failure Stress Change
3. Results
3.1. Coseismic Deformation Mapping
3.2. Fault Geometry and Slip Distribution Model
3.3. Stress Change Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahe, B.; Ferrill, D.A.; Morris, A.P. Physical analog modeling of pull-apart basin evolution. Tectonophysics 1998, 285, 21–40. [Google Scholar] [CrossRef]
- Alper, G. Geometric characteristics of pull-apart basins. Lithosphere 2010, 2, 199–206. [Google Scholar]
- Groshong, R.H. Half-Graben Structures-Balanced Models of Extensional Fault-Bend Folds. Geol. Soc. Am. Bull. 1989, 101, 96–105. [Google Scholar] [CrossRef]
- Ring, U. The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East African rift system). Tectonics 1994, 13, 313–326. [Google Scholar] [CrossRef]
- Mann, P.J.; Hempton, M.R.; Bradley, D.C.; Burke, K.C. Development of Pull-Apart Basins. J. Geol. 1983, 91, 529–554. [Google Scholar] [CrossRef]
- Gartman, A.; Hein, J.R. Mineralization at Oceanic Transform Faults and Fracture Zones. In Transform Plate Boundaries and Fracture Zones; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Rodgers, D.A. Analysis of pull-apart basin development produced by en echelon strike-slip faults. Sediment. Obliq. Slip Mob. Zones 1980, 4, 27–41. [Google Scholar]
- Crowell, J.C. Origin of late cenozoic basins in southern california. Mod. Anc. Geosynclinal Sediment. 1974, 57, 190–204. [Google Scholar]
- Taghipour, K.; Khatib, M.M.; Heyhat, M.; Shabanian, E.; Vaezihir, A. Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zones. Tectonophysics 2018, 742, 15–33. [Google Scholar] [CrossRef]
- Lavier, L.L.; Buck, W.R. Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting. J. Geophys. Res. 2002, 107, 2122. [Google Scholar] [CrossRef]
- Seminsky, K.Z. Major factors of the evolution of basins and faults in the Baikal Rift Zone: Tectonophysical analysis. Geotecton 2009, 43, 486. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Active Faulting and Tectonics in China. J. Geophys. Res. 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. J. Geophys. Res. 1979, 84, 3425–3459. [Google Scholar] [CrossRef]
- Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, K.D. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 1992, 20, 589–592. [Google Scholar] [CrossRef]
- Mats, V.D. The structure and development of the Baikal rift depression. Earth-Sci. Rev. 1993, 34, 81–118. [Google Scholar] [CrossRef]
- Klyuchevskii, A.V.; Dem’yanovich, V.M. Stress-strain state of the lithosphere in the southern Baikal region and northern Mongolia from data on seismic moments of earthquakes. Izv.-Phys. Solid Earth 2006, 42, 416–428. [Google Scholar] [CrossRef]
- Krivonogov, S.K.; Safonova, I.Y. Basin structures and sediment accumulation in the Baikal Rift Zone: Implications for Cenozoic intracontinental processes in the Central Asian Orogenic Belt. Gondwana Res. 2017, 47, 267–290. [Google Scholar] [CrossRef]
- Zolotarev, A.G.; Kulakov, V.S.; Khilko, S.D. Khubsugul upland. Geomorphology of Mongolian People Republic. In Proceedings of the Join Soviet-Mongolian Scientific-Research Geological Expedition; Nauka: Moscow, Russia, 1982; Volume 28, pp. 109–122. (In Russian) [Google Scholar]
- Zorin, Y.A.; Tumtanov, E.K.; Arvisbaatar, N. Structure of Cenozoic basins of the Prekhubsugul region from gravity data. Geol. Geophys. 1989, 10, 130–136. (In Russian) [Google Scholar]
- Orkhonselenge, A.; Krivonogov, S.K.; Mino, K.; Kashiwaya, K.; Safonova, I.; Yamamoto, M.; Kashima, K.; Nakamura, T.; Kim, J. Holocene sedimentary records from Lake Borsog, eastern shore of Lake Khuvsgul, Mongolia, and their paleoenvironmental implications. Quat. Int. 2013, 290, 95–109. [Google Scholar] [CrossRef]
- Golenetsky, S.I.; Misharina, L.A. Seismicity and earthquake focal mechanisms in the Baikal rift zone. Tectonophysics 1978, 45, 71–85. [Google Scholar] [CrossRef]
- Demberel, S.; Klyuchevskii, A. Lithospheric stress in Mongolia, from earthquake source data. Geosci. Front. 2017, 8, 1323–1337. [Google Scholar]
- Battogtokh, D.; Bayasgalan, A.; Wang, K.; Ganzorig, D.; Bayaraa, J. The 2021 Mw 6.7 Khankh earthquake in the Khuvsgul rift, Mongolia. Mong. Geosci. 2021, 26, 46–61. [Google Scholar] [CrossRef]
- Liu, G.; Qiao, X.; Yu, P.; Zhou, Y.; Zhao, B.; Xiong, W. Rupture Kinematics of the 11 January 2021 Mw 6.7 Hovsgol, Mongolia, Earthquake and Implications in the Western Baikal Rift Zone, Seismol. Res. Lett. 2021, 92, 3318–3326. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Radziminovich, N.A.; Fang, N.; Xie, L. Transtensional coseismic fault slip of the 2021 Mw 6.7 Turt Earthquake and heterogeneous tectonic stress surrounding the Hovsgol Basin, Northwest Mongolia. Tectonophysics 2022, 836, 229407. [Google Scholar] [CrossRef]
- Philippon, M.; Willingshofer, E.; Sokoutis, D.; Corti, G.; Sani, F.; Bonini, M.; Cloetingh, S. Slip re-orientation in oblique rifts. Geology 2015, 42, 147–150. [Google Scholar] [CrossRef]
- Fanavoll, S.; Lippard, S.J. Possible oblique-slip faulting in the Skagerrak Graben, as interpreted from high resolution seismic data. Nor. Geol. Tidsskr. 1994, 74, 146–151. [Google Scholar]
- Rao, G.; He, C.; Cheng, Y.; Yu, Y.; Hu, J.; Chen, P.; Yao, Q. Active Normal Faulting along the Langshan Piedmont Fault, North China: Implications for Slip Partitioning in the Western Hetao Graben. J. Geol. 2018, 126, 99–118. [Google Scholar] [CrossRef]
- Brune, S. Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithosphericscale experiments from rift to breakup. Geochem. Geophys. Geosyst. 2014, 15, 3392–3415. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Elliott, J.R.; Jolivet, R.; Gonzalez, P.J.; Avouac, J.P.; Hollingsworth, J.; Searle, M.P.; Stevens, V.L. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 2016, 9, 174–180. [Google Scholar] [CrossRef]
- Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.; Barbot, S.; Tapponnier, P.E.; Peltzer, G.; Socquet, A.; Sun, J.F. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR. Geophys. J. Int. 2016, 205, 536–547. [Google Scholar] [CrossRef]
- Wang, T.; Wei, S.J.; Jonsson, S. Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake. Geophys. Res. Lett. 2015, 42, 7022–7030. [Google Scholar] [CrossRef]
- Feng, G.; Hetland, E.A.; Ding, X.; Li, Z.; Zhang, L. Coseismic fault slip of the 2008 Mw 7.9 Wenchuan earthquake estimated from InSAR and GPS measurements. Geophys. Res. Lett. 2010, 37, L01302. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Calais, É.; Vergnolle, M.; San’kov, V.; Lukhnev, A.V.; Miroshnitchenko, A.; Amarjargal, S.; Déverchère, J. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia. J. Geophys. Res. 2003, 108, 2501. [Google Scholar] [CrossRef]
- Styron, R.; Pagani, M. The GEM Global Active Faults Database. Earthq. Spectra 2020, 36 (Suppl. S1), 160–180. [Google Scholar] [CrossRef]
- Khilko, S.D.; Kurushin, R.A.; Kochetkov, V.M.; Misharina, L.A.; Melnikova, V.I.; Gileva, N.A.; Lastochkin, S.V.; Baljinnyam, I.; Monkhoo, D. Earthquakes and Principles of Seismic Zoning of Mongolia; Nauka: Moscow, Russia, 1985; 224p, (In Russian). Available online: http://refhub.elsevier.com/S0040-1951(22)00201-3/rf0100 (accessed on 21 January 2022).
- Delouis, B.; Deverchere, J.; Melnikova, V.; Radziminovitch, N.; Loncke, L.; Larroque, C.; Ritz, J.F.; San’kov, V. A reappraisal of the 1950 (Mw 6.9) Mondy earthquake, Siberia, and its relationship to the strain pattern at the south-western end of the Baikal rift zone. Terra Nova 2002, 14, 491–500. [Google Scholar] [CrossRef]
- Melnikova, V.; Gileva, N.A.; Arefyev, S.S.; Bykova, V.; Seredkina, A.I. The 27 August 2008, Mw = 6.3 Kultuk earthquake (South Baikal): The stress-strain state of the source area from the aftershock data. Izv. Phys. Solid Earth 2013, 49, 563–576. (In Russian) [Google Scholar] [CrossRef]
- Dobrynina, A.A.; Sankov, V.A.; Tcydypova, L.R.; German, V.I.; Chechelnitsky, V.V.; Ulzibat, M. Hovsgol earthquake 5 December 2014, MW = 4.9: Seismic and acoustic effects. J. Seismol. 2017, 22, 377–389. [Google Scholar] [CrossRef]
- Jiang, H.J.; Feng, G.C.; Wang, T.; Burgmann, R. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake, Geophys. Res. Lett. 2017, 44, 1758–1767. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Ro, E.C.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 361. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochem. Geophy. Geosy. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef]
- Jonsson, S.; Zebker, H.; Segall, P.; Amelung, F. Fault slip distribution of the 1999 M-w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Hector Mine earthquake, southern California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Liu, G.X.; Zhang, R.; Li, T.; Jia, H.G.; Nie, Y.J. Extracting 3D ground deformation velocity field by multi-platform persistent scatterer SAR interferometry. Chinese J. Geophys. 2012, 55, 2598–2610. (In Chinese) [Google Scholar] [CrossRef]
- Wang, T.; Wei, S.J.; Shi, X.H.; Qiu, Q.; Li, L.L.; Peng, D.J.; Weldon, R.J.; Barbot, S. The 2016 Kaikoura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth Planet. Sci. Lett. 2018, 482, 44–51. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Fielding, E.J.; Lundgren, P.R.; Taymaz, T.; Yolsal-Cevikbilen, S.; Owen, S.E. Fault-Slip Source Models for the 2011 M7.1 Van Earthquake in Turkey from SAR Interferometry, Pixel Offset Tracking, GPS, and Seismic Waveform Analysis. Seismol. Res. Lett. 2013, 84, 579–593. [Google Scholar] [CrossRef]
- Wang, T.; Jonsson, S. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3271–3278. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R.; Roth, F.; Enescu, B.; Hainzl, S.; Ergintav, S. Afterslip and viscoelastic relaxation following the 1999 M 7.4 Izmit earthquake from GPS measurements. Geophys. J. Int. 2009, 178, 1220–1237. [Google Scholar] [CrossRef]
- Xue, L.; Sun, J.B.; Shen, Z.K. InSAR coseismic deformation observation of the 12 January 2010 Haiti earthquake and its coseismic slip distribution inversion. Seismol. Geol. 2011, 33, 157–174, (In Chinese with English abstract). [Google Scholar]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide; U.S. Geological Survey Open-File Report 1060; U.S. Geological Survey: Menlo Park, CA, USA, 2011; 63p. Available online: https://pubs.usgs.gov/of/2011/1060/ (accessed on 21 January 2022).
- French, M.E.; Condit, C.B. Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions. Earth Planet. Sci. Lett. 2019, 528, 115828. [Google Scholar] [CrossRef]
- Kobayashi, T.; Morishita, Y.; Yarai, H. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line. Tectonophysics 2018, 733, 85–99. [Google Scholar] [CrossRef]
- Smith, M.; Mosley, P. Crustal heterogeneity and basement influence on the development of the Kenya Rift, East Africa. Tectonics 1993, 12, 591–606. [Google Scholar] [CrossRef]
- Petit, C.; Déverchère, J.; Houdry, F.; Sankov, V.A.; Melnikova, V.I.; Delvaux, D. Present-day stress field changes along the baikal rift and tectonic implications. Tectonics 1996, 15, 1171–1191. [Google Scholar] [CrossRef]
- Corti, G.; Philippon, M.; Sani, F.; Keir, D.; Kidane, T. Re-orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments. Terra Nova 2013, 25, 396–404. [Google Scholar] [CrossRef]
- Osagiede, E.E.; Rosenau, M.; Rotevatn, A.; Gawthorpe, R.; Jackson, C.A.-L.; Rudolf, M. Influence of zones of pre-existing crustal weakness on strain localization and partitioning during rifting: Insights from analog modeling using high-resolution 3D digital image correlation. Tectonics 2021, 40, e2021TC006970. [Google Scholar] [CrossRef]
- Tape, C.; Silwal, V.; Ji, C.; Keyson, L.H.; West, M.E.; Ruppert, N. Transtensional Tectonics of the Minto Flats Fault Zone and Nenana Basin, Central Alaska. Bull. Seismol. Soc. Am. 2015, 105, 2081–2100. [Google Scholar] [CrossRef]
- Schweickert, R.A.; Lahren, M.M.; Smith, K.D.; Howle, J.F.; Ichinose, G.A. Transtensional deformation in the Lake Tahoe region, California and Nevada, USA. Tectonophysics 2004, 392, 303–323. [Google Scholar] [CrossRef]
- Jiang, G.; Wen, Y.; Li, K.; Fang, L.; Xu, C.; Zhang, Y.; Xu, X. A NE-Trending Oblique-Slip Fault Responsible for the 2016 Zaduo Earthquake (Qinghai, China) Revealed by InSAR Data. Pure Appl. Geophys. 2018, 175, 4275–4288. [Google Scholar] [CrossRef]
- Toda, S.; Kaneda, H.; Okada, S.; Ishimura, D.; Mildon, Z.K. Slip-partitioned surface ruptures for the Mw 7.0 16 April 2016 Kumamoto, Japan, earthquake. Earth Planets Space 2016, 68, 1–11. [Google Scholar] [CrossRef]
- King, G.; Klinger, Y.; Bowman, D.; Tapponnier, P. Slip-partitioned surface breaks for the mw 7.8 2001 kokoxili earthquake, China. Bull. Seismol. Soc. Am. 2005, 95, 731–738. [Google Scholar] [CrossRef]
- Fitch, T. Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific. J. Geophys. Res. 1972, 77, 4432–4462. [Google Scholar] [CrossRef]
- Bowman, D.; King, G.; Tapponnier, P. Slip partinioning by elastoplastic propagation of oblique slip at depth. Science 2003, 300, 1121–1123. [Google Scholar] [CrossRef]
- Withjack, M.O.; Jamison, W.R. Deformation produced by oblique rifting. Tectonophysics 1986, 126, 99–124. [Google Scholar] [CrossRef]
- Tron, V.; Brun, J.P. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 1991, 188, 71–84. [Google Scholar] [CrossRef]
- Strecker, M.R.; Blisniuk, P.M.; Eisbacher, G.H. Rotation of extension direction in the central Kenya rift. Geology 1990, 18, 299–302. [Google Scholar] [CrossRef]
- Bonini, M.; Souriot, T.; Boccaletti, M.; Brun, J.P. Successive orthogonal and oblique extension episodes in a rift zone: Laboratory experiments with application to the Ethiopian Rift. Tectonics 1997, 16, 347–362. [Google Scholar] [CrossRef]
- Titus, S.; Fossen, H.; Pedersen, R.; Tikoff, B. Pull-apart formation and strike-slip partitioning in an obliquely divergent setting, Leka Ophiolite, Norway. Tectonophysics 2002, 354, 101–119. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. EOS Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
Study | Epicenter | Auxiliary Plane 1 | Auxiliary Plane 2 | Depth (km) | Mw | Data |
---|---|---|---|---|---|---|
Latitude/Longitude | Strike/Dip/Rake | Strike/Dip/Rake | ||||
gCMT a | 51.32°N/100.39°E | 354°/43°/−143° | 236°/66°/−53° | 13.9 | 6.8 | Seismic |
USGS1 b | 51.28°N/100.44°E | 16°/32°/−110° | 219°/60°/−78° | 11.5 | 6.74 | W-phase |
USGS2 b | 51.28°N/100.44°E | 245°/58°/−35° | 356°/61°/−143° | 8 | 6.65 | Body wave |
GFZ c | 51.21°N/100.47°E | 226°/51°/−60° | 4°/47°/−121° | 18 | 6.7 | Seismic |
CENC d | 51.28°N/100.5°E | / | / | 10 | 6.8 | Seismic |
IPGP e | 51.24°N/100.44°E | 358°/46°/−139° | 237°/62°/−52° | 13 | 6.84 | Seismic |
GSRAS f | 51.32°N/100.42°E | 228°/46°/0° | 29º/46°/−103° | 20 | Mb 6.5 | Seismic |
Liu, G., et al., 2021 [24] | / | 353°/51°/−109° | / | 2–15 | 6.75 | Descending InSAR and Seismic (Nonlinear inversion) |
Liu, G., et al., 2021 [24] | 51.34°N/100.33°E | 345°/42°/- | / | 2–15 | 6.75 | Descending InSAR and Seismic (Grid search) |
Liu, X., et al., 2022 [25] | 51.34°N/100.33°E | 341°/54°/−146° | / | 8.9 | 6.75 | Descending InSAR and Seismic |
This study | / | 340°/53°/−116° | / | / | 6.71 | Descending and ascending InSAR |
USGS (Mw5.6) | 51.31°N/100.42°E | 25°/46°/−116° | 239°/49°/−66° | 18 | 5.6 | W-phase |
gCMT (Mw5.6) | 51.31°N/100.43°E | 63°/37°/−50° | 197°/63°/−116 | 27.5 | 5.7 | Seismic |
Satellite | Track | Frame | Mode | Timeline | Mean Heading Angle (°) | Mean Incidence Angle (°) | North Coef. | East Coef. | Vertical Coef. |
---|---|---|---|---|---|---|---|---|---|
Sentinel-1B | 04 | 166 | Descending | 7 January 2021 | −164.5830 | 33.9736 | −0.1486 | 0.5387 | 0.8293 |
19 January 2021 | |||||||||
ALOS-2 | 555 | / | Ascending | 14 July 2020 | −10.4586 | 36.3027 | −0.1075 | −0.5822 | 0.8059 |
13 July 2021 | |||||||||
ALOS-2 | 966 | / | Ascending | 30 June 2020 | −11.2252 | 31.4267 | −0.1015 | −0.5114 | 0.8533 |
29 June 2021 |
Parameter | Lower | Upper | Initial | Optimal | Mean | Median | 2.5% | 97.5% |
---|---|---|---|---|---|---|---|---|
Fault length (m) | 29,935 | 50,000 | 30,000 | 33,064.3 | 33,189.6 | 32,720.9 | 30,017.4 | 41,402.9 |
Fault width (m) | 5000 | 20,000 | 5000 | 5594.64 | 6055.25 | 5664.36 | 5595.08 | 10,179.7 |
Fault depth (m) | 4000 | 10,000 | 5000 | 4632.39 | 5145.04 | 4824.68 | 4132.58 | 9279.32 |
Fault dip (°) | −70 | −45 | −50 | −52.922 | −49.839 | −48.3797 | −62.285 | −45.1317 |
Fault strike (°) | 150 | 170 | 160 | 160.115 | 161.503 | 160.873 | 160.033 | 160.553 |
Fault X (m) | 15,000.7 | 15,000.7 | 15,000.7 | 15,000.7 | 15,000.7 | 15,000.7 | 15,000.7 | 15,000.7 |
Fault Y (m) | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 |
Fault strike slip (m) | 1.5 | 3.5 | 1 | 1.01138 | 1.12829 | 1.03767 | 1.00131 | 2.27079 |
Fault dip slip (m) | 1.5 | 3.5 | 1 | 1.00591 | 1.05307 | 1.0184 | 1.0006 | 1.41873 |
Study | Latitude (°N) | Longitude (°E) | Length (km) | Width (km) | Depth (km) | Dip (°) | Strike (°) | Rake (°) | Slip (m) |
---|---|---|---|---|---|---|---|---|---|
Liu, G., et al. (2021) [24] | 51.58 | 100.14 | 60 | 30 | 0 | 75 | 90 | 0 (left-lateral) | 1 |
GAF-DB | 51.75 | 100.35 | 60 | 30 | 0 | 75 | 90 | 0 (left-lateral) | 1 |
This study | 51.6 | 100.6 | 60 | 30 | 0 | 75 | 90 | 0 (left-lateral) | 1 |
Satellite | Track | Frame | Mode | Timeline | Heading Angle (°) | Incidence Angle (°) | Baseline (m) |
---|---|---|---|---|---|---|---|
Sentinel-1B | 55 | 166 | Ascending | 29 April 2021 | −15.40 | 33.89 | 76.91 |
11 May 2021 | |||||||
Sentinel-1B | 04 | 419 | Descending | 25 April 2021 | −164.59 | 33.98 | 60.61 |
7 May 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wang, T.; Zhao, L. The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by an Adjacent Strike-Slip Fault. Remote Sens. 2022, 14, 4553. https://doi.org/10.3390/rs14184553
He Y, Wang T, Zhao L. The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by an Adjacent Strike-Slip Fault. Remote Sensing. 2022; 14(18):4553. https://doi.org/10.3390/rs14184553
Chicago/Turabian StyleHe, Yuqing, Teng Wang, and Li Zhao. 2022. "The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by an Adjacent Strike-Slip Fault" Remote Sensing 14, no. 18: 4553. https://doi.org/10.3390/rs14184553
APA StyleHe, Y., Wang, T., & Zhao, L. (2022). The 2021 Mw6.7 Lake Hovsgol (Mongolia) Earthquake: Irregular Normal Faulting with Slip Partitioning Controlled by an Adjacent Strike-Slip Fault. Remote Sensing, 14(18), 4553. https://doi.org/10.3390/rs14184553