Radiant Power Patterns Inferred from Remote Sensing Using a Cloud Computing Platform, during the 2021 Fagradalsfjall Eruption, Iceland
Abstract
:1. Introduction
Background
2. Data and Methods
2.1. High Temporal-Low Spatial Resolution Satellite
2.2. Low Temporal-Medium Spatial Resolution Satellite
2.3. Data Comparison
3. Results
3.1. Radiant Power Pattern
3.2. Comparison with MODVOLC Radiant Power
3.3. Comparison with the 2014–2015 Holuhraun Eruption
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sigurgeirsson, M.Á. The Younger-Stamp ar eruption at Reykjanes, SW-Iceland. Náttúrufræðingurinn 1995, 64, 211–230. [Google Scholar]
- Sæmundsson, K.; Sigurgeirsson, M.; Friðleifsson, G.Ó. Geology and structure of the Reykjanes volcanic system, Iceland. J. Volcanol. Geotherm. Res. 2020, 391, 106501. [Google Scholar] [CrossRef]
- Fischer, T.; Hrubcová, P.; Salama, A.; Doubravová, J.; Horálek, J.; Ágústsdóttir, T.; Gudnason, E.Á.; Hersir, G.P. Swarm seismicity illuminates stress transfer prior to the 2021 Fagradalsfjall eruption in Iceland. Earth Planet. Sci. Lett. 2022, 594, 117685. [Google Scholar] [CrossRef]
- Pedersen, G.B.M.; Belart, J.M.C.; Óskarsson, B.V.; Gudmundsson, M.T.; Gies, N.; Högnadóttir, T.; Hjartardóttir, Á.R.; Pinel, V.; Berthier, E.; Dürig, T.; et al. Volume, effusion rate, and lava transport during the 2021 Fagradalsfjall eruption: Results from near real-time photogrammetric monitoring. Geophys. Res. Lett. 2022, 49, e2021GL097125. [Google Scholar] [CrossRef]
- Esri World Imagery-Overview. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 11 February 2022).
- Kaneko, T.; Takasaki, K.; Maeno, F.; Wooster, M.J.; Yasuda, A. Himawari-8 infrared observations of the June–August 2015 Mt Raung eruption, Indonesia. Earth Planets Sp. 2018, 70, 89. [Google Scholar] [CrossRef]
- Wright, R.; Blackett, M.; Hill-Butler, C. Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys. Res. Lett. 2015, 42, 282–289. [Google Scholar] [CrossRef]
- Harris, A.; Blake, S.; Rothery, D.A.; Stevens, N.F. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data:Implications for real-time thermal volcano monitoring. J. Geophys. Res. 1997, 102, 19. [Google Scholar] [CrossRef]
- Wright, R.; Rothery, D.A.; Blake, S.; Harris, A.J.L.; Pieri, D.C. Simulating the response of the EOS Terra ASTER sensor to high-temperature volcanic targets. Geophys. Res. Lett. 1999, 26, 1773–1776. [Google Scholar] [CrossRef]
- Ilyinskaya, E.; Schmidt, A.; Mather, T.A.; Pope, F.D.; Witham, C.; Baxter, P.; Jóhannsson, T.; Pfeffer, M.; Barsotti, S.; Singh, A.; et al. Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland). Earth Planet. Sci. Lett. 2017, 472, 309–322. [Google Scholar] [CrossRef]
- Wright, R.; Blake, S.; Harris, A.J.L.; Rothery, D.A. A simple explanation for the space-based calculation of lava eruption rates. Earth Planet. Sci. Lett. 2001, 192, 223–233. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Flynn, L.P.; Keszthelyi, L.; Mouginis-Mark, P.J.; Rowland, S.K.; Resing, J.A. Calculation of lava effusion rates from Landstat TM data. Bull. Volcanol. 1998, 60, 52–71. [Google Scholar] [CrossRef]
- Wooster, M.J.; Kaneko, T. Satellite thermal analyses of lava dome effusion rates at Unzen Volcano, Japan. J. Geophys. Res. Solid Earth 1998, 103, 20935–20947. [Google Scholar] [CrossRef]
- Kaneko, T.; Yasuda, A.; Fujii, T. Simple empirical method for estimating lava-effusion rate using nighttime Himawari-8 1.6-µm infrared images. Earth Planets Sp. 2021, 73, 1–10. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Massimetti, F.; Delle Donne, D.; Ripepe, M.; Arias, H.; Barsotti, S.; Parra, C.B.; Centeno, R.G.; et al. Thermal Remote Sensing for Global Volcano Monitoring: Experiences From the MIROVA System. Front. Earth Sci. 2020, 7, 1–21. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Rothery, D.A.; Pieri, D.C.; Abrams, M.J.; Carere, V. Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVTRIS) data of volcanic hot spots. Int. J. Remote Sens. 1993, 14, 2919–2934. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Abramowicz, A.; Maniscalco, R.; Viccaro, M. The estimation of lava flow temperatures using landsat night-time images: Case studies from eruptions of Mt. Etna and Stromboli (Sicily, Italy), Kilauea (Hawaii Island), and Eyjafjallajökull and Holuhraun (Iceland). Remote Sens. 2020, 12, 2537. [Google Scholar] [CrossRef]
- Aufaristama, M.; Hoskuldsson, A.; Jonsdottir, I.; Ulfarsson, M.O.; Thordarson, T. New insights for detecting and deriving thermal properties of lava flow using infrared satellite during 2014-2015 effusive eruption at Holuhraun, Iceland. Remote Sens. 2018, 10, 151. [Google Scholar] [CrossRef]
- Zakšek, K.; Hort, M.; Lorenz, E. Satellite and ground based thermal observation of the 2014 effusive eruption at Stromboli Volcano. Remote Sens. 2015, 7, 17190–17211. [Google Scholar] [CrossRef]
- Bonny, E.; Thordarson, T.; Wright, R.; Höskuldsson, A.; Jónsdóttir, I. The Volume of Lava Erupted During the 2014 to 2015 Eruption at Holuhraun, Iceland: A Comparison Between Satellite- and Ground-Based Measurements. J. Geophys. Res. Solid Earth 2018, 123, 5412–5426. [Google Scholar] [CrossRef]
- Davies, A.G.; Calkins, J.; Scharenbroich, L.; Vaughan, R.G.; Wright, R.; Kyle, P.; Castańo, R.; Chien, S.; Tran, D. Multi-instrument remote and in situ observations of the Erebus Volcano (Antarctica) lava lake in 2005: A comparison with the Pele lava lake on the jovian moon Io. J. Volcanol. Geotherm. Res. 2008, 177, 705–724. [Google Scholar] [CrossRef]
- Wright, R.; Pilger, E. Satellite observations reveal little inter-annual variability in the radiant flux from the Mount Erebus lava lake. J. Volcanol. Geotherm. Res. 2008, 177, 687–694. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P. Space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002. Geology 2004, 32, 189–192. [Google Scholar] [CrossRef]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781139029346. [Google Scholar]
- Genzano, N.; Pergola, N.; Marchese, F. A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data. Remote Sens. 2020, 12, 3232. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202. [Google Scholar] [CrossRef]
- Melorose, J.; Perroy, R.; Careas, S. MODIS FIRE PRODUCTS (Version. MODIS Sci. Team 2006, 1, 1–34. [Google Scholar]
- Giglio, L.; Justice, C. MYD14A1 MODIS/Aqua Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V006 [Data set]. NASA EOSDIS L. Process. DAAC. 2015.
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. Atmos. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilger, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 2002, 82, 135–155. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. MODVOLC: Near-real-time thermal monitoring of global volcanism. J. Volcanol. Geotherm. Res. 2004, 135, 29–49. [Google Scholar] [CrossRef]
- Pedersen, G.B.M.; Höskuldsson, A.; Dürig, T.; Thordarson, T.; Jónsdóttir, I.; Riishuus, M.S.; Óskarsson, B.V.; Dumont, S.; Magnusson, E.; Gudmundsson, M.T.; et al. Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J. Volcanol. Geotherm. Res. 2017, 340, 155–169. [Google Scholar] [CrossRef]
- Wright, R. MODVOLC: 14 years of autonomous observations of effusive volcanism from space. Geol. Soc. Spec. Publ. 2016, 426, 23–53. [Google Scholar] [CrossRef] [Green Version]
Initial Phase | Peak I | Decrease | Peak II | Pause | Peak III | Overall Eruption | |
---|---|---|---|---|---|---|---|
Spearman correlation | 0.52 | 0.72 | 0.55 | 0.34 | 0.44 | 0.62 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aufaristama, M.; Hoskuldsson, A.; van der Meijde, M.; van der Werff, H.; Moreland, W.M.; Jonsdottir, I. Radiant Power Patterns Inferred from Remote Sensing Using a Cloud Computing Platform, during the 2021 Fagradalsfjall Eruption, Iceland. Remote Sens. 2022, 14, 4528. https://doi.org/10.3390/rs14184528
Aufaristama M, Hoskuldsson A, van der Meijde M, van der Werff H, Moreland WM, Jonsdottir I. Radiant Power Patterns Inferred from Remote Sensing Using a Cloud Computing Platform, during the 2021 Fagradalsfjall Eruption, Iceland. Remote Sensing. 2022; 14(18):4528. https://doi.org/10.3390/rs14184528
Chicago/Turabian StyleAufaristama, Muhammad, Armann Hoskuldsson, Mark van der Meijde, Harald van der Werff, William Michael Moreland, and Ingibjorg Jonsdottir. 2022. "Radiant Power Patterns Inferred from Remote Sensing Using a Cloud Computing Platform, during the 2021 Fagradalsfjall Eruption, Iceland" Remote Sensing 14, no. 18: 4528. https://doi.org/10.3390/rs14184528
APA StyleAufaristama, M., Hoskuldsson, A., van der Meijde, M., van der Werff, H., Moreland, W. M., & Jonsdottir, I. (2022). Radiant Power Patterns Inferred from Remote Sensing Using a Cloud Computing Platform, during the 2021 Fagradalsfjall Eruption, Iceland. Remote Sensing, 14(18), 4528. https://doi.org/10.3390/rs14184528