Geometric Quality Improvement Method of Optical Remote Sensing Satellite Images Based on Rational Function Model
Abstract
:1. Introduction
- (1)
- Firstly, the image geometry performance of the push-broom optical satellite “MN200Sar-1” is evaluated based on the rational function model. By analyzing the data error sources, the following conclusions are drawn: due to the influence of the time synchronization error, the geometric quality of the “MN200Sar-1” satellite is not stable, the positioning errors of the same orbit data are consistent, and the positioning accuracy of different orbit images vary greatly. For different orbit images, it is necessary to add GCPs to improve the geometric performance.
- (2)
- According to the geometrical characteristics of the optical satellite “MN200Sar-1”, a satellite geometric quality improvement model based on the internal and external orientation elements is proposed. The original image is redirected by establishing the sensor rational function positioning model, external orientation model, and internal orientation model successively. After correction, the error can reach pixel-level accuracy.
- (3)
- By analyzing the relative relationship of RPCs and the influence of a single RPC on the positioning accuracy, the RPC coefficients optimization method based on the image offset and geographical dominant coefficients is realized by using the virtual control points after RFM reorientation. This method can improve the positioning accuracy without introducing additional compensation parameters and achieve accurate positioning of satellite remote sensing images based on the RFM model.
2. Materials and Methods
2.1. Image Geometry Performance Analysis of “MN200Sar-1” Optical Satellite
2.1.1. “MN200Sar-1” Satellite Introduction
2.1.2. Image Geometric Performance Evaluation
2.1.3. Sensor Orientation Model Based on RFM
2.1.4. RPC Parameter Analysis
2.2. Satellite Geometric Accuracy Improvement Model Based on Internal and External Reorientation
2.2.1. External Orientation Model
2.2.2. Internal Orientation Model
2.2.3. RPC Coefficient Optimization Method Based on Image Square Correction and Geographical Location Dominant Coefficient Correction
3. Results
3.1. Verification the Accuracy of Internal and External Orientation Model
3.2. Verification the Accuracy of RPC Coefficient Optimization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 | a16 | a17 | a18 | a19 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 | b10 | b11 | b12 | b13 | b14 | b15 | b16 | b17 | b18 | b19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a0 | 1 | ||||||||||||||||||||||||||||||||||||||
a1 | 0 | 1 | |||||||||||||||||||||||||||||||||||||
a2 | 0 | 0 | 1 | ||||||||||||||||||||||||||||||||||||
a3 | 0 | 0 | 0 | 1 | |||||||||||||||||||||||||||||||||||
a4 | 0 | 0 | 0 | 0 | 1 | ||||||||||||||||||||||||||||||||||
a5 | 0 | 0 | 0 | 0 | 0.9 | 1 | |||||||||||||||||||||||||||||||||
a6 | 0.6 | 0 | 0.4 | 0.4 | 0 | 0 | 1 | ||||||||||||||||||||||||||||||||
a7 | 0.7 | 0 | 0.1 | 0 | 0 | 0.3 | 0.5 | 1 | |||||||||||||||||||||||||||||||
a8 | 0.7 | 0 | 0.3 | 0.4 | 0 | 0 | 0.9 | 0.5 | 1 | ||||||||||||||||||||||||||||||
a9 | 0.6 | 0 | 0.3 | 0.4 | 0 | 0 | 0.9 | 0.5 | 0.8 | 1 | |||||||||||||||||||||||||||||
a10 | 0 | 0.6 | 0 | 0 | 0.4 | 0.4 | 0 | 0 | 0 | 0 | 1 | ||||||||||||||||||||||||||||
a11 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | −0.3 | 0 | 0 | 0.6 | 1 | |||||||||||||||||||||||||||
a12 | 0 | 0.7 | 0 | 0 | 0.3 | 0.4 | 0 | 0 | 0 | 0 | 0.9 | 0.6 | 1 | ||||||||||||||||||||||||||
a13 | 0 | 0.6 | 0 | 0 | 0.3 | 0.5 | 0 | 0 | 0 | 0 | 0.9 | 0.6 | 0.8 | 1 | |||||||||||||||||||||||||
a14 | 0 | 0 | 0.7 | 0.7 | 0 | 0 | 0.3 | 0 | 0 | 0.3 | 0 | 0.3 | 0 | 0 | 1 | ||||||||||||||||||||||||
a15 | 0 | 0 | 0.9 | 0.8 | 0 | 0 | 0.4 | 0 | 0.4 | 0.4 | −0.4 | 0 | −0.4 | −0.3 | 0.6 | 1 | |||||||||||||||||||||||
a16 | 0 | 0 | 0.8 | 0.9 | 0 | 0 | 0.4 | 0 | 0.4 | 0.4 | −0.4 | 0 | −0.4 | 0 | 0.7 | 0.9 | 1 | ||||||||||||||||||||||
a17 | 0 | 0 | 0.6 | 0.8 | 0 | 0 | 0.3 | 0 | 0 | 0.4 | 0 | 0.4 | 0 | 0 | 0.9 | 0.5 | 0.7 | 1 | |||||||||||||||||||||
a18 | 0 | 0 | 0.8 | 0.9 | 0 | 0 | 0.4 | 0 | 0.5 | 0.4 | −0.4 | 0 | −0.5 | −0.3 | 0.6 | 0.9 | 1 | 0.6 | 1 | ||||||||||||||||||||
a19 | 0 | 0 | 0.7 | 0.9 | 0 | 0 | 0.4 | 0 | 0.3 | 0.5 | 0 | 0 | –0.3 | 0 | 0.7 | 0.7 | 1 | 0.8 | 0.9 | 1 | |||||||||||||||||||
b1 | −0.7 | 0 | 0 | 0 | 0 | 0 | −0.5 | −1 | −0.5 | −0.6 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||||||||||||||||||
b2 | 0 | 0 | 0 | 0 | −1 | −0.8 | 0.5 | 0 | 0.5 | 0.4 | −0.4 | 0 | −0.4 | −0.3 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 1 | |||||||||||||||||
b3 | 0 | 0 | 0 | 0 | −0.9 | −1 | 0.4 | 0 | 0.4 | 0.3 | −0.4 | 0 | −0.4 | −0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 1 | ||||||||||||||||
b4 | 0 | 0 | −0.7 | −0.7 | 0 | 0 | −0.3 | 0 | −0.3 | −0.3 | 0 | 0 | 0.3 | 0 | −1 | −0.7 | −0.8 | −0.9 | −0.7 | −0.7 | 0 | −0.3 | 0 | 1 | |||||||||||||||
b5 | 0 | 0 | −0.6 | −0.8 | 0 | 0 | −0.3 | 0 | −0.3 | −0.4 | 0 | 0 | 0 | 0 | −0.9 | −0.6 | −0.8 | −1 | −0.7 | −0.8 | 0 | 0 | 0 | 0.9 | 1 | ||||||||||||||
b6 | 0 | −0.6 | 0.4 | 0.4 | −0.4 | −0.4 | 0 | 0 | 0 | 0 | −1 | −0.5 | −0.9 | −0.9 | 0 | 0.6 | 0.6 | 0 | 0.7 | 0.5 | 0 | 0.4 | 0.4 | −0.4 | −0.3 | 1 | |||||||||||||
b7 | 0 | −0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.6 | −1 | −0.6 | −0.6 | 0 | 0 | 0 | −0.3 | 0 | 0 | −0.3 | 0 | 0 | 0 | 0 | 0.5 | 1 | ||||||||||||
b8 | 0 | −0.6 | 0.5 | 0.5 | −0.3 | −0.3 | 0.3 | 0 | 0.3 | 0 | −0.9 | −0.5 | −1 | −0.8 | 0.3 | 0.7 | 0.6 | 0 | 0.7 | 0.5 | 0 | 0.4 | 0.4 | −0.5 | −0.4 | 0.9 | 0.5 | 1 | |||||||||||
b9 | 0 | −0.6 | 0.3 | 0.3 | −0.3 | −0.4 | 0 | 0 | 0 | 0 | −1 | −0.5 | −0.9 | −1 | 0 | 0.5 | 0.5 | 0 | 0.5 | 0.3 | 0 | 0.4 | 0.4 | −0.3 | 0 | 1 | 0.6 | 0.9 | 1 | ||||||||||
b10 | −0.5 | 0 | −0.3 | −0.3 | 0 | 0 | −0.8 | −0.6 | −0.7 | −0.9 | 0 | 0 | 0.3 | 0 | −0.4 | −0.4 | −0.4 | −0.4 | −0.4 | −0.5 | 0.6 | −0.4 | −0.4 | 0.4 | 0.4 | −0.3 | 0 | −0.3 | 0 | 1 | |||||||||
b11 | −0.6 | 0 | 0 | 0 | 0 | −0.3 | −0.4 | −0.9 | −0.3 | −0.4 | 0 | 0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0 | −0.4 | 0 | 0 | 0.6 | 1 | ||||||||
b12 | −0.5 | 0 | −0.3 | −0.3 | 0.3 | 0 | −0.8 | −0.6 | −0.8 | −0.8 | 0.3 | 0 | 0.3 | 0 | −0.3 | −0.4 | −0.4 | −0.3 | −0.4 | −0.4 | 0.7 | –0.5 | –0.4 | 0.4 | 0.4 | –0.4 | 0 | –0.4 | –0.3 | 0.9 | 0.5 | 1 | |||||||
b13 | –0.4 | 0 | 0 | –0.3 | 0 | 0 | –0.7 | –0.6 | –0.6 | –0.9 | 0 | 0 | 0 | 0 | –0.4 | –0.3 | –0.4 | –0.5 | –0.4 | –0.5 | 0.6 | –0.3 | 0 | 0.4 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0.6 | 0.8 | 1 | ||||||
b14 | 0 | 0 | 0 | 0 | –0.9 | –0.9 | 0 | 0 | 0 | 0 | –0.4 | 0 | –0.3 | –0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 0.8 | –0.3 | 0 | 0.4 | 0 | 0.3 | 0.4 | 0 | 0.3 | 0 | 0 | 1 | |||||
b15 | 0 | 0 | 0 | 0 | –0.8 | –0.7 | 0.7 | 0 | 0.6 | 0.6 | –0.4 | 0 | –0.5 | –0.3 | 0 | 0.4 | 0.3 | 0 | 0.4 | 0 | –0.3 | 0.9 | 0.8 | –0.3 | –0.3 | 0.5 | 0 | 0.5 | 0.4 | –0.6 | 0 | –0.7 | –0.4 | 0.7 | 1 | ||||
b16 | 0 | 0 | 0 | 0 | –0.8 | –0.8 | 0.6 | 0 | 0.5 | 0.5 | –0.5 | 0 | –0.4 | –0.5 | 0 | 0.3 | 0 | 0 | 0.3 | 0 | 0 | 0.9 | 0.9 | 0 | 0 | 0.5 | 0 | 0.4 | 0.5 | –0.5 | 0 | –0.6 | –0.3 | 0.8 | 0.9 | 1 | |||
b17 | 0 | 0 | 0 | 0 | –0.8 | –0.9 | 0 | –0.3 | 0 | 0 | –0.4 | 0 | –0.3 | –0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | 0.9 | 0 | 0 | 0.4 | 0 | 0.3 | 0.4 | 0 | 0.4 | 0 | 0 | 0.9 | 0.6 | 0.7 | 1 | ||
b18 | 0 | 0 | 0 | 0 | –0.8 | –0.8 | 0.6 | 0 | 0.6 | 0.5 | –0.5 | 0 | –0.5 | –0.4 | 0 | 0.4 | 0.3 | 0 | 0.3 | 0 | 0 | 0.9 | 0.9 | –0.3 | 0 | 0.5 | 0 | 0.5 | 0.4 | –0.6 | 0 | –0.7 | –0.4 | 0.7 | 1 | 1 | 0.7 | 1 | |
b19 | 0 | 0 | 0 | 0 | –0.7 | –0.9 | 0.4 | 0 | 0.4 | 0.3 | –0.5 | 0 | –0.4 | –0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.8 | 0.9 | 0 | 0 | 0.5 | 0.3 | 0.4 | 0.5 | –0.3 | 0 | –0.4 | 0 | 0.7 | 0.8 | 1 | 0.8 | 0.9 | 1 |
References
- Tao, C.V.; Hu, Y. A Comprehensive Study of the Rational Function Model for Photogrammetric Processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1357. [Google Scholar]
- Xiong, Z.; Zhang, Y. Bundle Adjustment with Rational Polynomial Camera Models Based on Generic Method. IEEE Trans. Geosci. Remote Sens. 2011, 49, 190–202. [Google Scholar] [CrossRef]
- Hu, Y.; Tao, C.V. Updating Solutions of the Rational Function Model Using Additional Control Information. Photogramm. Eng. Remote Sens. 2002, 68, 715–724. [Google Scholar]
- Fraser, C.S.; Dial, G.; Grodecki, J. Sensor Orientation via RPCs. ISPRS J. Photogramm. Remote Sens. 2005, 60, 182–194. [Google Scholar] [CrossRef]
- Grodecki, J.; Dial, G. Block Adjustment of High-Resolution Satellite Images Described by Rational Polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-Orbit Geometric Calibration and Validation of Luojia 1-01 Night-Light Satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef]
- Hong, Z.; Tong, X.; Liu, S.; Chen, P.; Xie, H.; Jin, Y. A Comparison of the Performance of Bias-Corrected RSMs and RFMs for the Geo-Positioning of High-Resolution Satellite Stereo Imagery. Remote Sens. 2015, 7, 16815–16830. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Aguilar, F.J.; Saldaña, M.D.; Fernández, I. Geopositioning Accuracy Assessment of GeoEye-1 Panchromatic and Multispectral Imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 218–226. [Google Scholar] [CrossRef]
- Tong, X.; Liu, S.; Weng, Q. Bias-Corrected Rational Polynomial Coefficients for High Accuracy Geo-positioning of QuickBird Stereo Imagery. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Tong, X.; Ye, Z.; Li, L.; Liu, S.; Jin, Y.; Chen, P.; Xie, H.; Zhang, S. Detection and Estimation of Along-Track Attitude Jitter from Ziyuan-3 Three-Line-Array Images Based on Back-Projection Residuals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4272–4284. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, M.; Cheng, Y.; He, L.; Xue, L. An Improved Jitter Detection Method Based on Parallax Observation of Multispectral Sensors for Gaofen-1 02/03/04 Satellites. Remote Sens. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yang, B.; Hu, F.; Zang, X. On-Orbit Geometric Calibration Model and Its Applications for High-Resolution Optical Satellite Imagery. Remote Sens. 2014, 6, 4391–4408. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, G.; Li, D.; Tang, X.; Huang, W.; Litao, L. Correction of Distortions in YG-12 High-Resolution Panchromatic Images. Photogramm. Eng. Remote Sens. 2015, 81, 25–36. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Jin, S.; Pan, J.; Zhu, Q. Correction of ZY-3 Image Distortion Caused by Satellite Jitter via Virtual Steady Reimaging Using Attitude Data. ISPRS J. Photogramm. Remote Sens. 2016, 119, 108–123. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, G.; Zhao, R.; Li, S.; Li, J. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration. Sensors 2017, 17, 2903. [Google Scholar] [CrossRef]
- Zhang, G.; Deng, M.; Cai, C.; Zhao, R. Geometric Self-Calibration of YaoGan-13 Images Using Multiple Overlapping Images. Sensors 2019, 19, 2367. [Google Scholar] [CrossRef]
- Jiang, Y.; Cui, Z.; Zhang, G.; Wang, J.; Xu, M.; Zhao, Y.; Xu, Y. CCD Distortion Calibration Without Accurate Ground Control Data for Pushbroom Satellites. ISPRS J. Photogramm. Remote Sens. 2018, 142, 21–26. [Google Scholar] [CrossRef]
- Wang, M.; Cheng, Y.; Tian, Y.; He, L.; Wang, Y. A New On-Orbit Geometric Self-Calibration Approach for the High-Resolution Geostationary Optical Satellite GaoFen4. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1670–1683. [Google Scholar] [CrossRef]
- Chen, X.; Xing, F.; You, Z.; Zhong, X.; Qi, K. On-Orbit High-Accuracy Geometric Calibration for Remote Sensing Camera Based on Star Sources Observation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, Y.; Wang, J.; Zhang, G. Star-Based Calibration of the Installation Between the Camera and Star Sensor of the Luojia 1-01 Satellite. Remote Sens. 2019, 11, 2081. [Google Scholar] [CrossRef]
- Wu, Y.; Ming, Y. A Fast and Robust Method of Calculating RFM Parameters for Satellite Imagery. Remote Sens. Lett. 2016, 7, 1112–1120. [Google Scholar] [CrossRef]
- Cao, J.; Fu, J. Estimation of Rational Polynomial Coefficients Based on Singular Value Decomposition. J. Appl. Remote Sens. 2018, 12, 044003. [Google Scholar]
- Long, T.; Jiao, W.; He, G. RPC Estimation via $\ell_1$-Norm-Regularized Least Squares (L1LS). IEEE Trans. Geosci. Remote Sens. 2015, 53, 4554–4567. [Google Scholar] [CrossRef]
- Naeini, A.A.; Moghaddam, S.H.A.; Sheikholeslami, M.M.; Amiri-Simkooei, A. Application of PCA Analysis and QR Decomposition to Address RFM’s Ill-Posedness. Photogramm. Eng. Remote Sens. 2020, 86, 17–21. [Google Scholar] [CrossRef]
- Gholinejad, S.; Amiri-Simkooei, A.; Alizadeh Moghaddam, S.H.; Alizadeh Naeini, A. An Automated PCA-based Approach towards Optimization of The Rational Function Model. ISPRS J. Photogramm. Remote Sens. 2020, 165, 133–139. [Google Scholar] [CrossRef]
- Liu, J.; Jia, B.; Jiang, T.; Jiang, G. Extrapolative Positioning of RPC Model of TH-1 Satellite Three-Line Imagery. Geomat. Spat. Inf. Technol. 2013, 36, 20–21+25. [Google Scholar]
- Aguilar, M.A.; Saldaña, M.D.; Aguilar, F.J. Assessing Geometric Accuracy of the Orthorectification Process from GeoEye-1 and WorldView-2 Panchromatic Images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, R.; Fan, D.; Gu, L.S.; Ji, S. A Novel RPC Bias Model for Improving the Positioning Accuracy of Satellite Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 2, 35–41. [Google Scholar] [CrossRef]
- Cao, J.; Fu, J.; Yuan, X.; Gong, J. Nonlinear Bias Compensation of ZiYuan-3 Satellite Iimagery with Cubic Splines. ISPRS J. Photogramm. Remote Sens. 2017, 133, 174–185. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, X. Refinement of RPCs Based on Systematic Error Compensation for Virtual Grid. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 185–189. [Google Scholar]
- Di, K.; Ma, R.; Li, R.X. Rational Functions and Potential for Rigorous Sensor Model Recovery. Photogramm. Eng. Remote Sens. 2003, 69, 33–41. [Google Scholar]
- Tang, X.; Zhang, G.; Zhu, X.; Pan, H.; Jiang, Y.; Zhou, P.; Wang, X. Triple Linear-array Image Geometry Model of ZiYuan-3 Surveying Satellite and Its Validation. Int. J. Image Data Fusion 2013, 4, 33–51. [Google Scholar] [CrossRef]
- Li, D.; Zhang, G.; Jiang, W.; Yuan, X. SPOT-5 HRS Satellite Imagery Block Adjustment Without GCPS or with Single GCP. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 377–381. [Google Scholar]
Spectral Range (nm) | Pixel Size (μm) | Focal Length (mm) | Ground Sample Distance (m) | Bits | Line Frequency (kHz) | CMOS Detector Number |
---|---|---|---|---|---|---|
B1: 450–900 B2: 450–900 | 2.5 | 630 | 2 | 10 | 3.899 | 5120 |
Data Name | Acquisition Data | Roll Angle (°) | Pitch Angle (°) | Yaw Angle (°) | Max Pixel Error | RMSE Pixel Error |
---|---|---|---|---|---|---|
0428-Baotou-28 | 28 April 2022 | 34.34 | −1.13 | 1.59 | 443.367 | 408.849 |
0428-Baotou-32 | 28 April 2022 | 34.34 | −1.13 | 1.59 | 439.059 | 416.996 |
0428-Baotou-33 | 28 April 2022 | 34.34 | −1.13 | 1.59 | 429.906 | 416.207 |
0430-Baotou-43 | 30 April 2022 | 0.57 | 0.01 | 0.17 | 13.321 | 11.045 |
0430-Baotou-49 | 30 April 2022 | 0.57 | 0.01 | 0.17 | 5.552 | 3.751 |
0517-Weihai-47 | 17 May 2022 | −5.76 | 0.01 | 0.14 | 112.947 | 109.275 |
0609-Haerbin-34 | 09 June 2022 | −27.71 | 0.06 | 0.12 | 447.915 | 431.198 |
0614-Dunhuang-43 | 14 June 2022 | 19.04 | −0.05 | 0.15 | 324.597 | 312.339 |
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
a0 | 1 | ||||||||||
a1 | 0 | 1 | |||||||||
a2 | 0 | 0 | 1 | ||||||||
a3 | 0 | 0 | 0 | 1 | |||||||
a4 | 0 | 0 | 0 | 0 | 1 | ||||||
a5 | 0 | 0 | 0 | 0 | 0.9 | 1 | |||||
a6 | 0.6 | 0 | 0.4 | 0.4 | 0 | 0 | 1 | ||||
a7 | 0.7 | 0 | 0.1 | 0 | 0 | 0.3 | 0.5 | 1 | |||
a8 | 0.7 | 0 | 0.3 | 0.4 | 0 | 0 | 0.9 | 0.5 | 1 | ||
a9 | 0.6 | 0 | 0.3 | 0.4 | 0 | 0 | 0.9 | 0.5 | 0.8 | 1 | |
a10 | 0 | 0.6 | 0 | 0 | 0.4 | 0.4 | 0 | 0 | 0 | 0 | 1 |
Data Name | Method | MAX (Pixel) | RMSE(Pixel) | ||||
---|---|---|---|---|---|---|---|
r | c | Planimetry | r | c | Planimetry | ||
0428- Baotou-28 | no compensation | −429.489 | 110.062 | 443.367 | 400.225 | 83.531 | 408.849 |
offset compensation | −38.363 | −56.435 | 68.239 | 19.796 | 16.983 | 26.083 | |
affine transform compensation | 1.368 | 28.947 | 28.979 | 0.476 | 6.500 | 6.517 | |
object–space bias compensation | 1.244 | 27.644 | 27.672 | 0.524 | 5.601 | 5.625 | |
our model | 0.480 | 27.195 | 27.199 | 0.270 | 5.072 | 5.079 | |
0517- Weihai-50 | no compensation | −113.216 | −20.042 | 114.976 | 109.35 | 19.340 | 111.047 |
offset compensation | 6.832 | 3.659 | 7.750 | 2.801 | 1.025 | 2.983 | |
affine transform compensation | 1.897 | 2.016 | 2.768 | 0.769 | 0.726 | 1.056 | |
object–space bias compensation | 1.699 | 2.002 | 2.626 | 0.746 | 0.669 | 1.002 | |
our model | 1.155 | 1.060 | 1.568 | 0.293 | 0.320 | 0.434 | |
0614-Dunhuang-43 | no compensation | −324.183 | −16.393 | 324.597 | 312.209 | 9.025 | 312.339 |
offset compensation | −23.4008 | −7.9792 | 24.724 | 11.480 | 2.632 | 11.778 | |
affine transform compensation | 1.091 | 4.840 | 4.961 | 0.298 | 2.315 | 2.334 | |
object–space bias compensation | 1.006 | 4.366 | 4.480 | 0.277 | 2.015 | 2.034 | |
our model | 0.972 | 1.671 | 1.933 | 0.233 | 0.616 | 0.659 |
Data Name | Method | MAX (Pixel) | RMSE(Pixel) | ||||
---|---|---|---|---|---|---|---|
r | c | Planimetry | r | c | Planimetry | ||
0430- Baotou-48 | no compensation | −2.615 | −5.247 | 5.862 | 1.974 | 3.735 | 4.225 |
Reorientation model | 0.307 | 0.585 | 0.661 | 0.078 | 0.128 | 0.150 | |
RPC coefficients optimization model | 0.793 | 3.285 | 3.379 | 0.256 | 1.536 | 1.557 | |
0517- Weihai-50 | no compensation | −113.216 | −20.042 | 114.976 | 109.35 | 19.340 | 111.047 |
Reorientation model | 1.155 | 1.060 | 1.567 | 0.293 | 0.320 | 0.434 | |
RPC coefficients optimization model | 6.438 | 5.583 | 8.522 | 1.802 | 2.018 | 2.705 | |
0609-Haerbin-34 | no compensation | −447.393 | −29.904 | 448.391 | 430.664 | 20.735 | 431.163 |
Reorientation model | 0.511 | 3.197 | 3.237 | 0.125 | 1.131 | 1.138 | |
RPC coefficient optimization model | 3.724 | 6.681 | 7.649 | 1.713 | 6.376 | 6.602 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhong, R.; Yang, C.; Zhao, K.; Zhang, C.; Li, Y. Geometric Quality Improvement Method of Optical Remote Sensing Satellite Images Based on Rational Function Model. Remote Sens. 2022, 14, 4443. https://doi.org/10.3390/rs14184443
Li Q, Zhong R, Yang C, Zhao K, Zhang C, Li Y. Geometric Quality Improvement Method of Optical Remote Sensing Satellite Images Based on Rational Function Model. Remote Sensing. 2022; 14(18):4443. https://doi.org/10.3390/rs14184443
Chicago/Turabian StyleLi, Qingyang, Ruofei Zhong, Cankun Yang, Ke Zhao, Chenchen Zhang, and Yue Li. 2022. "Geometric Quality Improvement Method of Optical Remote Sensing Satellite Images Based on Rational Function Model" Remote Sensing 14, no. 18: 4443. https://doi.org/10.3390/rs14184443
APA StyleLi, Q., Zhong, R., Yang, C., Zhao, K., Zhang, C., & Li, Y. (2022). Geometric Quality Improvement Method of Optical Remote Sensing Satellite Images Based on Rational Function Model. Remote Sensing, 14(18), 4443. https://doi.org/10.3390/rs14184443