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Abstract: The high-precision geometric positioning of optical remote sensing satellites is the prereq-
uisite to determine the application capability of satellite image products. Its positioning accuracy is
related to the observation accuracy of each link in the imaging process, including satellite attitude,
orbit measurement accuracy, time synchronization accuracy, camera measurement accuracy, and
so on. Untimely and inaccurate on-orbit calibration will lead to great geometric positioning errors.
To optimize the positioning accuracy of satellite images with the rational function model (RFM)
under low positioning accuracy, our paper proposes an improved geometric quality model based on
the reorientation of internal and external orientation elements in the RFM model of remote sensing
images. By establishing the rational function positioning model, the external orientation model, and
the internal orientation model, the original image can be reorientated. Then, we use the improved
model to generate uniformly distributed virtual ground control points. By analyzing and verifying
the relationship between each rational polynomial coefficient (RPC) and its influence on geometric
positioning accuracy, we propose an RPC coefficients optimization method based on image offset
correction and positioning dominant coefficients. Finally, we use the small satellite “MN200Sar-1”
with low geometric accuracy for experimental verification. The results show that the model can
effectively eliminate the errors of internal and external elements in the on-orbit calibration, and the
positioning accuracy is improved from one hundred pixels to one pixel. At the same time, the rational
polynomial dominant coefficient optimization method can improve geometric positioning accuracy
without introducing additional compensation parameters.

Keywords: RFM; image reorientation; geometric quality; RPC; positioning dominant coefficients;
“MN200Sar-1”

1. Introduction

With the continuous rise of commercial remote sensing satellite technology, optical
remote sensing satellite resolution is becoming higher and higher, imaging mode is be-
coming more and more diverse, and high-resolution remote sensing earth observation has
become an important means of geospatial information acquisition. It is more urgent for the
national economy and national defense construction to master the characteristics of spatial
geographic information, which is widely used in change detection, multi-source data fu-
sion, digital elevation map (DEMs) generation, image classification, and other fields [1].
Therefore, how to achieve high-precision satellite geometric positioning has become the
focus of research. The development of small satellites provides a new method for obtaining
repeated observations in a short time. However, compared with standard satellite images,
the geometric performance of small satellite images is relatively poor, because the accuracy
of small satellite positioning and attitude measurement systems is relatively low, it may
have different degrees of time synchronization error, and the error cannot be eliminated by
the geometric calibration process. Compared with IKONOS, WorldView-2, and other satel-
lites, the positioning accuracy can be up to two orders of magnitude different. Therefore, it

Remote Sens. 2022, 14, 4443. https://doi.org/10.3390/rs14184443 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14184443
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184443?type=check_update&version=2


Remote Sens. 2022, 14, 4443 2 of 17

is necessary to study the geometric quality improvement of satellites with low geometric
positioning accuracy.

There are many kinds of full-link errors in satellite remote sensing imaging, including
satellite attitude measurement accuracy, orbit measurement accuracy, time synchronization
accuracy, and camera parameter accuracy. The attitude and orbit accuracy and time
synchronization accuracy are equivalent to external orientation accuracy, and camera
parameter accuracy is equivalent to internal orientation accuracy. The internal and external
orientation of satellites can be realized by the strict imaging model or rational function
model. Among them, the rational function model is independent of sensors, has simple
calculation and strong universality, and has become the mainstream model to replace
the strict imaging model for satellite post-processing [2–4]. The rational function model
generated by using the strict imaging model without control points has some systematic
errors [5,6], including incomplete calibration errors and random errors in the process of the
rational function model generation.

External orientation accuracy is determined by satellite attitude and orbit accuracy,
including installation errors, GPS orbit determination errors, eccentricity errors, attitude
determination errors, and time synchronization errors [7]. In order to eliminate these
errors, various compensation models are proposed, including the offset model, the affine
transformation model, and the quadratic polynomial model [8–10]. In general, external
orientation can be corrected by a small number of control points. However, the internal
orientation process is relatively complex, including satellite attitude jitter, camera distortion,
CCD translation, rotation errors, and other errors, which are difficult to correct with a simple
compensation model [11,12]. Most of the errors can be eliminated by on-orbit geometric
calibration. For example, Wang et al. proposed a robust on-orbit geometric calibration
method for both elements of interior and exterior orientation. This method has been used
in a ZY1-02C panchromatic camera and ZY-3 three-line array camera successfully [13].
Jiang et al. proposed an innovative method to eliminate time synchronization errors using
parallel observations of the panchromatic sensor onboard YG-12 [14]. Wang et al. proposed
a geometric correction method for ZY-3 satellite images based on virtual steady-state
reorientation [15]. In addition, cross-calibration [16], self-calibration [17–19], star-based
calibration [20,21], and other methods have been proposed to improve the accuracy of
satellite on-orbit calibration. However, on-orbit calibration can only calibrate system errors
such as camera installation and GPS eccentricity errors, but cannot completely calibrate
errors such as satellite attitude jitter and time synchronization. Moreover, the parameters
of the camera will change irregularly with the change in the satellite space environment.
Improper on-orbit calibration will affect the geometric positioning accuracy of the image.
Therefore, it is necessary to further improve the geometric accuracy of RPC parameters
generated by the strict imaging model.

In order to improve the accuracy of geometric positioning based on the rational func-
tion model, many scholars put forward various methods to improve it from different angles.
In terms of RPC parameters generation, different models are proposed to solve the problem
of ill-conditioned and over-parameterized features caused by highly correlated parameters.
The methods include 2-norm regularization-based methods [22,23] for ill-fitting and 1-norm
regularization-based methods [24] for sparse solutions. At the same time, in order to solve
the problem of input errors and noises, a series of improved methods based on principal
component analysis (PCA) [25,26] are proposed to reduce the influence of ill-condition
and over-parameterization through noise reduction in the design matrix. This method can
ensure that the generated RPC parameters are correct and better approximate to the results
of the strict imaging model, but it cannot correct the errors that the strict imaging model
cannot correct. Therefore, while ensuring the correctness of RPC parameters, many geomet-
ric quality improvement methods have been proposed. The correction parameters attached
to RFM are the most used offset compensation methods, including shift, shift and drift,
affine transformation, and second-order polynomial models [27,28]. Dong et al. proposed
an RPC image-space bias model that combines object-space information to improve the
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positioning accuracy of TianHui-1 images [29]. Cao et al. proposed a feasible nonlinear
bias compensation approach for ZiYuan-3 imagery with cubic splines to eliminate the influ-
ence of attitude oscillations on the RFM-based sensor orientation [30]. These methods can
improve the geometric quality of the RFM model to a certain extent, but the nonlinear error
caused by attitude oscillation or camera cannot be well-corrected. Therefore, a model to
improve the internal deviation of the RFM model needs to be proposed. In addition, in the
case of large geometric errors and large geometric differences between satellites in different
orbits, the above method cannot be completely applicable, and a targeted algorithm should
be proposed to improve the geometric accuracy.

The above methods can improve the geometric positioning accuracy, but additional
parameters are added in the process of use, which cannot be compatible with different
measurement systems. Therefore, the correction results need to be reflected by new RPC
parameters. Some scholars proposed using batch iterative least-squares methods, incremen-
tal discrete Kalman filtering methods, sequential least-squares methods, or pseudo ground
control points (GCPs) methods to recalculate RPC parameters [31,32]. The calculation of all
parameters takes a lot of time, and some of them have little effect on geometric accuracy but
strong correlation, so it is necessary to optimize RPC parameters. Tang et al. presented a
combined adjustment approach to integrate multi-source multi-resolution satellite imagery
for improved geo-positioning accuracy without the use of GCPs. When the method is
implemented, only part of RPCs is modified, but there is no theoretical analysis on RPC
selection, and some parameters are unnecessary [33].

In this paper, based on the evaluation and analysis of the geometrical quality of the
“MN200Sar-1” satellite, an RPC model of internal and external element reorientation model
is proposed to solve the problem of low geometric accuracy of the satellite. The model can
eliminate nonlinear deviation caused by attitude oscillation and other factors well. At the
same time, we analyze the correlation between RPCs and the influence of a single RPC
on geometric quality. Based on this, we realize the optimization of RPC parameters, and
realize the improvement of geometric accuracy without changing the original structure of
RPCs. Therefore, the paper’s contributions are as follows:

(1) Firstly, the image geometry performance of the push-broom optical satellite “MN200Sar-
1” is evaluated based on the rational function model. By analyzing the data error
sources, the following conclusions are drawn: due to the influence of the time synchro-
nization error, the geometric quality of the “MN200Sar-1” satellite is not stable, the
positioning errors of the same orbit data are consistent, and the positioning accuracy
of different orbit images vary greatly. For different orbit images, it is necessary to add
GCPs to improve the geometric performance.

(2) According to the geometrical characteristics of the optical satellite “MN200Sar-1”,
a satellite geometric quality improvement model based on the internal and exter-
nal orientation elements is proposed. The original image is redirected by estab-
lishing the sensor rational function positioning model, external orientation model,
and internal orientation model successively. After correction, the error can reach
pixel-level accuracy.

(3) By analyzing the relative relationship of RPCs and the influence of a single RPC on
the positioning accuracy, the RPC coefficients optimization method based on the
image offset and geographical dominant coefficients is realized by using the virtual
control points after RFM reorientation. This method can improve the positioning accu-
racy without introducing additional compensation parameters and achieve accurate
positioning of satellite remote sensing images based on the RFM model.

The remainder of this paper is organized as follows. Section 2 introduces the research
data of this paper and evaluates its geometric quality. Based on this, the methods of this
paper are proposed, including a satellite geometric quality improvement model based on
an internal and external reorientation model and RPC coefficient optimization method
based on image correction and geographical position dominant coefficient correction. In



Remote Sens. 2022, 14, 4443 4 of 17

Section 3, the feasibility and effectiveness of our method are verified by experimental
analysis. Section 4 summarizes this paper.

2. Materials and Methods
2.1. Image Geometry Performance Analysis of “MN200Sar-1” Optical Satellite
2.1.1. “MN200Sar-1” Satellite Introduction

The “MN200Sar-1” optical satellite was successfully launched on a “Long March
8” rocket from Hainan province on 27 February 2022. The satellite carries an X-band
commercial SAR sensor and an intelligent optical payload for moving target detection.
The optical load is composed of an optical camera and an onboard intelligent processing
unit. The camera adopts panchromatic two-line array push-broom imaging, and the
moving target image is collected in the push-broom scanning area. The onboard intelligent
processing unit can independently complete the level 0 to 1 pre-processing in orbit, and
realize the accelerated recognition of intelligent remote sensing images based on the pre-
processing. The satellite realizes a new imaging mechanism that replaces strip image
transmission with target and information transmission.

The “MN200Sar-1” onboard processing unit can provide real-time onboard data de-
coding, radiometric correction, image registration, geometric correction, sea–land segmen-
tation, frame difference, object detection, and other functions. Among them, onboard
geometric correction is realized by periodical uploading of on-orbit calibration parameters.
In order to relieve the pressure of satellite–ground data transmission and improve the
efficiency of data acquisition, the satellite only needs to downlink the original data with
the corresponding RPCs. However, the accuracy of RPCs will be affected by the untimely
uploading of calibration parameters and some random error such as attitude oscillation.
Table 1 describes the parameters of the “MN200Sar-1” smart camera.

Table 1. Description of the intelligent camera of the “MN200Sar-1” satellite.

Spectral Range
(nm) Pixel Size (µm) Focal Length

(mm)

Ground
Sample

Distance (m)
Bits

Line
Frequency

(kHz)

CMOS
Detector
Number

B1: 450–900
B2: 450–900 2.5 630 2 10 3.899 5120

2.1.2. Image Geometric Performance Evaluation

We collected twenty-four sets of data from the six orbits of “MN200Sar-1” since its
launch. The collection period was from April to July 2022. The data were located in
different regions, and the geographical range is very large. We used digital orthophoto map
(DOM) data with high geometric accuracy to conduct scale-invariant feature transform
(SIFT) matching with experimental data to obtain high-quality GCPs and ensure that the
registration accuracy is within one pixel. By comparing the pixel errors of RPCs and control
points, the geometric accuracy of the image was verified as shown in Table 2 and Figure 1.

According to Table 2, we draw the following conclusions: the errors vary greatly in
different orbits, and vary little in the same orbit. The maximum error can reach hundreds
of pixels, the minimum is only a few pixels. According to the satellite design, the maximum
error caused by side-swing, attitude stability, and other reasons will not exceed 300 m.
Therefore, the above error is mainly caused by the asynchronism between attitude time,
orbit time, and image time, and the error is a random error, which cannot be compensated
for in geometric calibration. At the same time, the change rule of image geometric errors
with time and CMOS is analyzed. With the change in time, the errors of different images
vary evenly along the orbit and across the orbit. In addition, the errors change slightly
across the orbit and change a lot along the orbit. With the change in CMOS, different data
errors change linearly along the orbit, while the change is relatively small and irregular
across the orbit. Therefore, it is not enough to use only offset compensation or affine
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transformation compensation for the satellite images, and the internal nonlinear errors
need to be simulated.

Table 2. Validation of image geometric accuracy.

Data Name Acquisition
Data Roll Angle (◦) Pitch Angle (◦) Yaw Angle (◦) Max Pixel

Error
RMSE

Pixel Error

0428-Baotou-28 28 April 2022 34.34 −1.13 1.59 443.367 408.849

0428-Baotou-32 28 April 2022 34.34 −1.13 1.59 439.059 416.996

0428-Baotou-33 28 April 2022 34.34 −1.13 1.59 429.906 416.207

0430-Baotou-43 30 April 2022 0.57 0.01 0.17 13.321 11.045

0430-Baotou-49 30 April 2022 0.57 0.01 0.17 5.552 3.751

0517-Weihai-47 17 May 2022 −5.76 0.01 0.14 112.947 109.275

0609-Haerbin-34 09 June 2022 −27.71 0.06 0.12 447.915 431.198

0614-Dunhuang-43 14 June 2022 19.04 −0.05 0.15 324.597 312.339
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Figure 1. The error changes with time and CMOS of different images: (a1,a2) the error across orbit
direction changes with time, (b1,b2) the error along orbit direction changes with time, (c1,c2) the
error across orbit direction changes with CMOS, (d1,d2) the error along orbit direction changes with
CMOS. (Red in-dicates across orbit direction, blue indicates along orbit direction).

2.1.3. Sensor Orientation Model Based on RFM

The sensor orientation model mainly includes strict imaging model and general
imaging model, in which rational function model is the most commonly used. The rational
function model represents the image point coordinates (R, C) as the polynomial ratio of
ground coordinates (Lon, Lat, H): rn = P1(Lonn ,Latn ,Hn)

P2(Lonn ,Latn ,Hn)

cn = P3(Lonn ,Latn ,Hn)
P4(Lonn ,Latn ,Hn)

(1)

where (Lonn, Latn, Hn) and (rn, cn), respectively, represent the normalized coordinates of
ground point coordinates (Lon, Lat, H) and (R, C) after translation and scaling, and the
value range is [−1, 1]. Each polynomial Pi (i = 1, 2, 3, 4) has a maximum power of 3, and the
sum of the powers of each coordinate component of each term does not exceed 3. The RFM
relates the ground coordinates of ground object points with the coordinates of image points
in the form of polynomial ratios. The geometric accuracy improves with the increase in the
polynomial order of the model. For flat areas, first-order RFM can meet the requirements,
while for mountainous and hilly areas, third-order RFM is required. Therefore, we choose
third-order RFM, which is usually composed of 78 parameters, namely, ai, bi, ci, and di
(i = 0–19). Generally speaking, b0 and d0 are 1. Taking P1 as an example, the formula is
expressed as:
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P1 = a0 + a1 × Lonn + a2 × Latn + a3 × Hn + a4 × Lonn × Latn + a5 × Lonn × Hn+
a6 × Latn × Hn + a7 × Lonn

2 + a8 × Latn
2 + a9 × Hn

2 + a10 × Lonn × Latn × Hn+
a11 × Lonn

3 + a12 × Lonn × Latn
2 + a13 × Lonn × Hn

2 + a14 × Lonn
2 × Latn + a15 × Latn

3+
a16 × Latn × Hn

2 + a17 × Lonn
2 × Hn + a18 × Latn

2 × Hn + a19 × Hn
3

(2)

RFM adopts regularization to improve the stability of solving each parameter in the
model and reduce the data selection error caused by excessive data level differences in the
calculation process. The regularization formula is expressed as:

Lonn = Lon−Lon0
LonS

Latn = Lat−Lat0
LatS

Hn = H−H0
HS{

rn = R−R0
RS

cn = C−C0
CS

(3)

where Lon0, Lat0, H0, R0, and C0 are the regularized translation coefficient, and LonS, LatS,
HS, RS, and CS are the regularized scaling coefficient.

2.1.4. RPC Parameter Analysis

(1) RPC correlation analysis
Firstly, the correlation between RPCs is analyzed from a mathematical point of view.

According to the corresponding coordinate points and RFM, functions related to RPC
parameters could be established as follows:{

f (Xrpc) = r− rn
f (Xrpc) = c− cn

(4)

where (r, c) and (rn, cn), respectively, represent the regularized image point coordinates of
GCPs and the image point coordinates calculated by RFM. The coefficient matrix of image
point k is established as follows:

Ak =

 ∂ fk
∂Xrpc
∂gk

∂Xrpc

 =

[
1, Lonn, · · · , Hn

3,−rnLonn, · · · ,−rnHn
3

1, Lonn, · · · , Hn
3,−cnLonn, · · · ,−cnHn

3

]
(5)

The cofactor matrix is established as:

Q = AT PA =
n

∑
k=1

Ak
T Pk Ak (6)

where n represents the number of image points, and Pk is the identity matrix. Therefore,
the correlation coefficients cij between RPCs is defined as:

cij =
qij√

qii
√qjj

(7)

where q is the cofactor of each RPC in the cofactor matrix, and i and j are the parameters of
each RPC (i, j = 0–19).

We analyze the correlation of RPCs of the “MN200Sar-1” satellite and select uniformly
distributed virtual control points in multiple images to calculate the mean correlation
coefficients. We make cij > 0.7 as highly correlated and cij < 0.2 as irrelevant, denoted by 0.
The calculation results are shown in Table 3 and Figure 2.
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Table 3. Matrix of correlation coefficients between RPCs (only the correlation coefficients from
a0 to a10 are listed here, and the detailed correlation coefficient matrix from a0 to b19 is shown in
Appendix A, where bold indicates cij > 0.7).

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a0 1
a1 0 1
a2 0 0 1
a3 0 0 0 1
a4 0 0 0 0 1
a5 0 0 0 0 0.9 1
a6 0.6 0 0.4 0.4 0 0 1
a7 0.7 0 0.1 0 0 0.3 0.5 1
a8 0.7 0 0.3 0.4 0 0 0.9 0.5 1
a9 0.6 0 0.3 0.4 0 0 0.9 0.5 0.8 1
a10 0 0.6 0 0 0.4 0.4 0 0 0 0 1
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According to Table 3 and Figure 2, we can see that a0 is strongly correlated with a7,
a8, and similarly, a1 is strongly correlated with a11, a12, which will inevitably lead to ill-
conditioned and indeterminate forms of regular equations in the solution of least squares.
In terms of polynomial order, the correlation coefficients between zero-order terms and
first-order terms of RPCs are very small, but there is a strong correlation between some
second-order coefficients and third-order coefficients. In addition, the correlation between
a and b (c and d) is complex.

(2) Analysis of the importance of a single RPC parameter to geometric accuracy
We calculate the influence of a single RPC on the geometric accuracy, set an error of

0.01 r (r is the coefficient value) for each RPC, and calculate the difference between the
image coordinates and those with 0.01 r, as shown in Figure 3. We find that different RPCs
have different influences on the geometric accuracy. When the error range is 0.01 r, the first
four terms of a and c have a great influence on the geometric accuracy, while the influence
of other parameters on the accuracy can be ignored. At the same time, the effect of b and
d, the denominator term, on the geometric accuracy, is close to zero and also negligible.
Therefore, we take the parameters that have a greater impact on the geometric accuracy
as the dominant coefficients, namely, the zero-order term and first-order term of RFM. By
improving the accuracy of the dominant coefficients, the geometric positioning accuracy of
RPCs can be rapidly and effectively improved without changing the original RPCs.
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Based on the above analysis, we propose a geometric quality improvement model for
the “MN200Sar-1” optical satellite based on internal and external element reorientation.
Secondly, through the analysis of RPC parameters, the dominant coefficients which have a
great influence on RPCs are determined, and the dominant coefficient and image square
offset compensation is proposed to correct RPC parameters. This model can not only pro-
vide a set of additional compensation parameters for the internal and external orientation
elements to improve the geometric accuracy of the original RFM model, but also provide
optimized RPC parameters. The model in this paper is shown in Figure 4.
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Figure 4. Improved geometric accuracy model.

Firstly, we perform high-precision geometric registration on “MN200Sar-1” satellite
remote sensing images and DOM images to obtain the GCPs. Secondly, we use the GCPs
obtained and the original RPCs for external orientation, and use the affine transforma-
tion model to simulate external orientation parameters (e0, e1, e2, f 0, f 1, f 2), as shown in
Equation (9). Then, we use the external orientation parameters solved, combined with
GCPs, to solve the internal orientation model, and obtain the internal orientation param-
eters (g0, g1, g2, g3) and (k0, k1, k2, k3), as shown in Equation (10). After the reorientation
of the external and internal elements, a high-precision geometric positioning model can
be obtained. In order to update RPCs, we use the reorientation positioning model to
obtain the virtual GCPs, then we introduce the offset parameters (e0, f 0) of the original
RPCs to conduct coarse error correction, and then modify the dominant coefficients by the
least-square method to obtain the new RPC model to improve the geometric positioning
accuracy of the images.

2.2. Satellite Geometric Accuracy Improvement Model Based on Internal and
External Reorientation
2.2.1. External Orientation Model

RFM achieves the geometric positioning of sensors by fitting strict imaging models, but
the errors caused by satellite position and attitude will inevitably spread to RPC parameters.
At the same time, the “MN200Sar-1” satellite contains synchronization time error, which
can affect the positioning accuracy of kilometer level at most. According to the analysis,
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the positioning accuracy of different orbits varies greatly, and the above errors are mainly
constant errors, which can be compensated for by the external orientation model.

In this paper, the image square compensation model [5,34] is adopted, and the
relationship between image coordinates and ground coordinates described by RFM in
Equation (1) as: Rr + ∆R = P1(Lonn ,Latn ,Hn)

P2(Lonn ,Latn ,Hn)
RS + R0

Cr + ∆C = P3(Lonn ,Latn ,Hn)
P4(Lonn ,Latn ,Hn)

CS + C0
(8)

where Rr and Cr represent the truth value of GCPs, and (∆R, ∆C) represents the systematic
error compensation of image points, which can be simulated by an affine transformation
model. Here, because the geometric error of “MN200Sar-1” satellite is relatively large, only
using the system error compensation parameter cannot compensate for the distortion well,
so we choose the first-order error compensation here.{

∆R = e0 + e1R + e2C
∆C = f0 + f1R + f2C

(9)

where (e0, e1, e2, f 0, f 1, f 2) are described as affine transformation compensation parameters.

2.2.2. Internal Orientation Model

RFM can compensate for the constant error after external orientation, but for the
nonlinear errors caused by camera distortion or attitude oscillations, which will cause
image distortion and band registration distortion, the external orientation model cannot be
corrected, so the internal orientation model should be used for nonlinear compensation.

The internal orientation model does not need to strip the errors of various internal
elements and restore their true values, but only needs to restore the correct orientation of
the imaging probe in the camera coordinate system. Therefore, we use the probe pointing
angle model commonly used in geometric calibration to achieve internal orientation [7].
The pointing angle is a comprehensive expression of the errors of each element of interior
orientation. The strict physical distortion model of a line scan camera is essentially a
polynomial model, which can be fitted with a cubic polynomial, as shown in Equation (10):{

Ro− Rr = g0 + g1 × s + g2 × s2 + g3 × s3

Co− Cr = k0 + k1 × s + k2 × s2 + k3 × s3 (10)

where Ro and Co represent pixel coordinate values after external calibration, (g0, g1, g2, g3)
and (k0, k1, k2, k3) represent polynomial coefficients, and s represents the probe number.
After internal orientation, the correct orientation of the camera can be recovered and
nonlinear errors can be compensated for.

Generally, the external orientation model can compensate for most of the linear errors,
while the internal orientation model can compensate for the nonlinear errors caused by
camera and other factors. For satellites with high positioning accuracy, the external ori-
entation model is sufficient. For small satellites with low positioning accuracy, such as
MN200Sar-1, both internal and external orientation models are needed to compensate.

2.2.3. RPC Coefficient Optimization Method Based on Image Square Correction and
Geographical Location Dominant Coefficient Correction

According to the correlation of RPCs and the influence analysis of each parameter on
the geometric accuracy, we take the zero-order term and first-order term of the polynomial
as the dominant geographical location coefficients. Since the correlation between these
terms is relatively weak, and has a great impact on the geometric accuracy, so the stability
of imaging geometry can be improved while the positioning accuracy can be improved.
At the same time, for the data with large geometric errors, we first introduce the image
offset correction to improve RPC parameters and compensate for large linear errors. On
this basis, we recalculate the dominant coefficients and fine-adjust the RPC parameters.
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Firstly, the improved RPC parameters are taken as the initial values, the dominant
parameters in the virtual control points are calculated by using the model after internal and
external orientation, and the optimized parameters are combined with the unoptimized
parameters to construct new RPC parameters. Therefore, the error equation of parameters
to be optimized is constructed as follows:

vl =
∂ln
∂a0

∆a0 +
∂ln
∂a1

∆a1 +
∂ln
∂a2

∆a2 +
∂ln
∂a3

∆a3+
∂ln
∂c0

∆c0 +
∂ln
∂c1

∆c1 +
∂ln
∂c2

∆c2 +
∂ln
∂c3

∆c3 −
(
ln − l0)

vs =
∂sn
∂a0

∆a0 +
∂sn
∂a1

∆a1 +
∂sn
∂a2

∆a2 +
∂sn
∂a3

∆a3+
∂sn
∂c0

∆c0 +
∂sn
∂c1

∆c1 +
∂sn
∂c2

∆c2 +
∂sn
∂c3

∆c3 −
(
sn − s0)

(11)

where (a0, a1, a2, a3) and (c0, c1, c2, c3) are the parameters to be optimized, (ln, sn) are the
virtual control point values after regularization, and (l0, s0) are the values calculated by the
initial RPCs. Calculated using N control points, the error equation is abbreviated as:

V = B∆− t (12)

B =



∂l1
∂a0

∂l1
∂a1

∂l1
∂a2

∂l1
∂a3

0 0 0 0

0 0 0 0 ∂s1
∂a0

∂s1
∂a1

∂s1
∂a2

∂s1
∂a3

...
...

...
...

...
...

...
...

∂lN
∂a0

∂lN
∂a1

∂lN
∂a2

∂lN
∂a3

0 0 0 0

0 0 0 0 ∂sN
∂a0

∂sN
∂a1

∂sN
∂a2

∂sN
∂a3


∆ =



∆a0
∆a1
∆a2
∆a3
∆c0
∆c1
∆c2
∆c3


t =


l1 − l0

s1 − s0

...
lN − l0

sN − s0

 (13)

Therefore, the dominant coefficients ∆ are solved by the least-square method to obtain
the optimized dominant coefficients.

3. Results

Our paper tests six sets of images from Section 2. In order to verify the positioning
accuracy, the DOM images with high geometric accuracy are used for registration with
“MN200Sar-1” satellite remote sensing images to obtain accurate and evenly distributed
control points. The GCP distribution is shown in Figure 5. The selected image size is
4500 × 4500, and each image has about 300–700 control points. Two experiments were
designed to evaluate the proposed model. One is used to evaluate the accuracy of the
internal and external orientation model, and the other is used to evaluate the accuracy of
the model after the optimization of RPC coefficients.
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3.1. Verification the Accuracy of Internal and External Orientation Model

In this experiment, we verify the proposed reorientation model. Compared with
the offset compensation model, the affine transform compensation model, and the object–
space bias compensation model, the validity and precision of the proposed model are
verified. The comparison results of different methods are shown in Table 4. Taking the 0517-
Weihai-50 image as an example, the error change rules of different methods are compared
in Figure 6.

Table 4. Accuracy verification of different methods (The bold indicates the result with the best
accuracy index).

Data Name Method
MAX (Pixel) RMSE(Pixel)

r c Planimetry r c Planimetry

0428-
Baotou-28

no compensation −429.489 110.062 443.367 400.225 83.531 408.849

offset compensation −38.363 −56.435 68.239 19.796 16.983 26.083

affine transform
compensation 1.368 28.947 28.979 0.476 6.500 6.517

object–space bias
compensation 1.244 27.644 27.672 0.524 5.601 5.625

our model 0.480 27.195 27.199 0.270 5.072 5.079

0517-
Weihai-50

no compensation −113.216 −20.042 114.976 109.35 19.340 111.047

offset compensation 6.832 3.659 7.750 2.801 1.025 2.983

affine transform
compensation 1.897 2.016 2.768 0.769 0.726 1.056

object–space bias
compensation 1.699 2.002 2.626 0.746 0.669 1.002

our model 1.155 1.060 1.568 0.293 0.320 0.434

0614-
Dunhuang-43

no compensation −324.183 −16.393 324.597 312.209 9.025 312.339

offset compensation −23.4008 −7.9792 24.724 11.480 2.632 11.778

affine transform
compensation 1.091 4.840 4.961 0.298 2.315 2.334

object–space bias
compensation 1.006 4.366 4.480 0.277 2.015 2.034

our model 0.972 1.671 1.933 0.233 0.616 0.659

According to the comparative analysis of different methods in Table 4, the position-
ing accuracy of the proposed method is the highest in multiple data. When the RPCs
are used for positioning, the positioning error of 0428-Baotou-28, 0517-Weihai-50, and
0614-Dunhuang-43 images can reach a maximum of 443.367 pixels, 114.976 pixels, and
324.597 pixels, respectively. It can be seen that the errors of different orbits vary greatly, so
it is necessary to correct and compensate the RPCs of each orbit image separately. Compar-
ative analysis shows that for the 0517-Weihai-50 image, offset compensation can reduce
the error to 2.983 pixels, affine transform compensation can reduce it to 1.056 pixels, object–
space bias compensation can reduce it to 1.002 pixels, and the proposed model can reduce it
to 0.434 pixels. This is mainly because the nonlinear errors in geometric correction of RPCs
are fully considered and compensated for by our model. For the 0428-Baotou-28 image,
due to the large geometric error of RPCs, the model in this paper has fully compensated for
it, and only part of random errors cannot be compensated for.
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According to Figure 6, taking the 0517-Weihai-50 image as an example, the error
change rule of different methods is analyzed. In the case of no compensation, the error is
mainly distributed in the direction along the orbit, which can be up to 100 pixels, while the
across-orbit direction is relatively small, only 20 pixels. After offset compensation, the error
is reduced to 10 pixels, but the error distribution is the same as that without compensation.
After affine transformation compensation or object–space bias compensation, the errors
have nonlinear distribution along and across the orbit, so it is necessary to carry out
nonlinear compensation. After the nonlinear error compensation in our method, the errors
are evenly distributed and reduced to less than one pixel.
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Then, we analyze the error distribution of different methods in Figure 7 to verify the
correctness of the proposed method. According to the results of error distribution, the
direction of error distribution is consistent before error compensation. After the offset
compensation, the error distribution and error size are scattered. After compensating by
the affine transformation, the error is relatively small in the center position and large in
the edge position, showing a certain divergence. This is also consistent with the view
discussed above, that is, after affine transformation compensation, there are still some
nonlinear errors with certain regularity. However, after the compensation of our model, the
error is greatly reduced and has no regularity, so the error no longer has the condition of
compensation again.
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3.2. Verification the Accuracy of RPC Coefficient Optimization

In this experiment, we compared the accuracy of RPC parameters before and after
optimization, and the statistics are shown in Table 5. Results of the original RPC model,
the reorientation model, and the RPC optimization model are compared. Compared with
RPCs without compensation, the geometric positioning accuracy can be greatly improved
after RPC optimization, but the accuracy is slightly lower than that of the reorientation
model. Therefore, the reorientation model should be used when high positioning accuracy
is needed. However, for some cases that do not need high positioning accuracy, the faster
RPC coefficients optimization model is used.
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Table 5. RPC coefficient optimization precision comparison.

Data Name Method
MAX (Pixel) RMSE(Pixel)

r c Planimetry r c Planimetry

0430-
Baotou-48

no compensation −2.615 −5.247 5.862 1.974 3.735 4.225

Reorientation model 0.307 0.585 0.661 0.078 0.128 0.150

RPC coefficients
optimization model 0.793 3.285 3.379 0.256 1.536 1.557

0517-
Weihai-50

no compensation −113.216 −20.042 114.976 109.35 19.340 111.047

Reorientation model 1.155 1.060 1.567 0.293 0.320 0.434

RPC coefficients
optimization model 6.438 5.583 8.522 1.802 2.018 2.705

0609-Haerbin-34

no compensation −447.393 −29.904 448.391 430.664 20.735 431.163

Reorientation model 0.511 3.197 3.237 0.125 1.131 1.138

RPC coefficient
optimization model 3.724 6.681 7.649 1.713 6.376 6.602

4. Conclusions

On-orbit geometric calibration is widely used to improve the accuracy of geometric
positioning, but late calibration parameters will affect the geometric correction, and then
affect the generated RPC parameters. In addition, time synchronization error and attitude
oscillation error cannot be compensated for by the geometric calibration method. Therefore,
the geometric quality improvement model based on RPCs is extremely important.

In this paper, we propose a geometric accuracy improvement model based on RPCs,
including a reorientation model of internal and external elements and an optimization
method of RPCs based on geographical dominant coefficients. We make a detailed analysis
of RPCs, and theoretically verify the relationship between RPCs and the influence of RPCs
on geographical positioning accuracy. At the same time, the geometric calibration method
is introduced to realize the reorientation of RFM, and the accuracy is improved under the
condition of large geometric error. Experimental comparison results of multiple images
prove the effectiveness of our model. For most images, the geometric accuracy can be
improved to less than 2 pixels.

To improve geometric accuracy, we can improve advanced technical components, such
as self-calibration, which will be used to reduce geometric errors. In addition, with the
wide application of deep learning algorithms in registration algorithms, we can consider
using deep learning models to simulate the geometric deviation of image imaging in future
work, and realize the improvement of geometric accuracy.
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Appendix A

Table A1. Matrix of correlation coefficients between RPCs. (bold indicates correlation coefficients > 0.7).

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19

a0 1
a1 0 1
a2 0 0 1
a3 0 0 0 1
a4 0 0 0 0 1
a5 0 0 0 0 0.9 1
a6 0.6 0 0.4 0.4 0 0 1
a7 0.7 0 0.1 0 0 0.3 0.5 1
a8 0.7 0 0.3 0.4 0 0 0.9 0.5 1
a9 0.6 0 0.3 0.4 0 0 0.9 0.5 0.8 1
a10 0 0.6 0 0 0.4 0.4 0 0 0 0 1
a11 0 0.9 0 0 0 0 0 −0.3 0 0 0.6 1
a12 0 0.7 0 0 0.3 0.4 0 0 0 0 0.9 0.6 1
a13 0 0.6 0 0 0.3 0.5 0 0 0 0 0.9 0.6 0.8 1
a14 0 0 0.7 0.7 0 0 0.3 0 0 0.3 0 0.3 0 0 1
a15 0 0 0.9 0.8 0 0 0.4 0 0.4 0.4 −0.4 0 −0.4 −0.3 0.6 1
a16 0 0 0.8 0.9 0 0 0.4 0 0.4 0.4 −0.4 0 −0.4 0 0.7 0.9 1
a17 0 0 0.6 0.8 0 0 0.3 0 0 0.4 0 0.4 0 0 0.9 0.5 0.7 1
a18 0 0 0.8 0.9 0 0 0.4 0 0.5 0.4 −0.4 0 −0.5 −0.3 0.6 0.9 1 0.6 1

a19 0 0 0.7 0.9 0 0 0.4 0 0.3 0.5 0 0 –
0.3 0 0.7 0.7 1 0.8 0.9 1

b1 −0.7 0 0 0 0 0 −0.5 −1 −0.5 −0.6 0 0.3 0 0 0 0 0 0 0 0 1
b2 0 0 0 0 −1 −0.8 0.5 0 0.5 0.4 −0.4 0 −0.4 −0.3 0 0.3 0 0 0 0 0 1
b3 0 0 0 0 −0.9 −1 0.4 0 0.4 0.3 −0.4 0 −0.4 −0.4 0 0 0 0 0 0 0 0.9 1
b4 0 0 −0.7 −0.7 0 0 −0.3 0 −0.3 −0.3 0 0 0.3 0 −1 −0.7 −0.8 −0.9 −0.7 −0.7 0 −0.3 0 1
b5 0 0 −0.6 −0.8 0 0 −0.3 0 −0.3 −0.4 0 0 0 0 −0.9 −0.6 −0.8 −1 −0.7 −0.8 0 0 0 0.9 1
b6 0 −0.6 0.4 0.4 −0.4 −0.4 0 0 0 0 −1 −0.5 −0.9 −0.9 0 0.6 0.6 0 0.7 0.5 0 0.4 0.4 −0.4 −0.3 1
b7 0 −0.9 0 0 0 0 0 0 0 0 −0.6 −1 −0.6 −0.6 0 0 0 −0.3 0 0 −0.3 0 0 0 0 0.5 1
b8 0 −0.6 0.5 0.5 −0.3 −0.3 0.3 0 0.3 0 −0.9 −0.5 −1 −0.8 0.3 0.7 0.6 0 0.7 0.5 0 0.4 0.4 −0.5 −0.4 0.9 0.5 1
b9 0 −0.6 0.3 0.3 −0.3 −0.4 0 0 0 0 −1 −0.5 −0.9 −1 0 0.5 0.5 0 0.5 0.3 0 0.4 0.4 −0.3 0 1 0.6 0.9 1
b10 −0.5 0 −0.3 −0.3 0 0 −0.8 −0.6 −0.7 −0.9 0 0 0.3 0 −0.4 −0.4 −0.4 −0.4 −0.4 −0.5 0.6 −0.4 −0.4 0.4 0.4 −0.3 0 −0.3 0 1
b11 −0.6 0 0 0 0 −0.3 −0.4 −0.9 −0.3 −0.4 0 0.4 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 −0.4 0 0 0.6 1

b12 −0.5 0 −0.3 −0.3 0.3 0 −0.8 −0.6 −0.8 −0.8 0.3 0 0.3 0 −0.3 −0.4 −0.4 −0.3 −0.4 −0.4 0.7 –
0.5

–
0.4 0.4 0.4 –

0.4 0 –
0.4

–
0.3 0.9 0.5 1

b13
–
0.4 0 0 –

0.3 0 0 –
0.7

–
0.6

–
0.6

–
0.9 0 0 0 0 –

0.4
–
0.3

–
0.4

–
0.5

–
0.4

–
0.5 0.6 –

0.3 0 0.4 0.5 0 0 0 0 1 0.6 0.8 1

b14 0 0 0 0 –
0.9

–
0.9 0 0 0 0 –

0.4 0 –
0.3

–
0.4 0 0 0 0 0 0 0 0.9 0.8 –

0.3 0 0.4 0 0.3 0.4 0 0.3 0 0 1

b15 0 0 0 0 –
0.8

–
0.7 0.7 0 0.6 0.6 –

0.4 0 –
0.5

–
0.3 0 0.4 0.3 0 0.4 0 –

0.3 0.9 0.8 –
0.3

–
0.3 0.5 0 0.5 0.4 –

0.6 0 –
0.7

–
0.4 0.7 1

b16 0 0 0 0 –
0.8

–
0.8 0.6 0 0.5 0.5 –

0.5 0 –
0.4

–
0.5 0 0.3 0 0 0.3 0 0 0.9 0.9 0 0 0.5 0 0.4 0.5 –

0.5 0 –
0.6

–
0.3 0.8 0.9 1

b17 0 0 0 0 –
0.8

–
0.9 0 –

0.3 0 0 –
0.4 0 –

0.3
–
0.5 0 0 0 0 0 0 0 0.7 0.9 0 0 0.4 0 0.3 0.4 0 0.4 0 0 0.9 0.6 0.7 1

b18 0 0 0 0 –
0.8

–
0.8 0.6 0 0.6 0.5 –

0.5 0 –
0.5

–
0.4 0 0.4 0.3 0 0.3 0 0 0.9 0.9 –

0.3 0 0.5 0 0.5 0.4 –
0.6 0 –

0.7
–
0.4 0.7 1 1 0.7 1

b19 0 0 0 0 –
0.7

–
0.9 0.4 0 0.4 0.3 –

0.5 0 –
0.4

–
0.6 0 0 0 0 0 0 0 0.8 0.9 0 0 0.5 0.3 0.4 0.5 –

0.3 0 –
0.4 0 0.7 0.8 1 0.8 0.9 1
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