Estimating LAI for Cotton Using Multisource UAV Data and a Modified Universal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and LAI Measurements
2.2. UAV Data Acquisition
2.3. UAV Data Preprocessing
2.3.1. Multispectral Data Preprocessing
2.3.2. LiDAR Data Preprocessing
2.4. LAI Model Development
2.4.1. Empirical Statistical Regression Model Development
2.4.2. Machine Learning Model Development
2.4.3. Gap Fraction Model Development
2.5. Statistical Analysis and Validation
3. Results
3.1. Variation in Ground-Measured LAI
3.2. Model Development
3.3. Model Accuracy Assessment Using
4. Discussion
4.1. Parameter Performance and Comparison of Different Models
4.2. Verification of the Universality of Machine Learning Models
4.3. Parameter Determination for the Gap Fraction Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.M.; Black, T.A. Defining Leaf Area Index for Non-Flat Leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- BUNCE, J.A. Growth Rate, Photosynthesis and Respiration in Relation to Leaf Area Index. Ann. Bot. 1989, 63, 459–463. [Google Scholar] [CrossRef]
- Chen, J.M.; Rich, P.M.; Gower, S.T.; Norman, J.M.; Plummer, S. Leaf Area Index of Boreal Forests: Theory, Techniques, and Measurements. J. Geophys. Res. Atmos. 1997, 102, 29429–29443. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Q.; Liu, Q.; Li, X. LAI Retrieval and Uncertainty Evaluations for Typical Row-Planted Crops at Different Growth Stages. Remote Sens. Environ. 2008, 112, 94–106. [Google Scholar] [CrossRef]
- Hill, M.J.; Senarath, U.; Lee, A.; Zeppel, M.; Nightingale, J.M.; Williams, R.D.J.; McVicar, T.R. Assessment of the MODIS LAI Product for Australian Ecosystems. Remote Sens. Environ. 2006, 101, 495–518. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of Vegetation Indices for Regional Crop Green LAI Estimation from Landsat Images over Multiple Growing Seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, B.-H. Estimation of Leaf Area Index with Various Vegetation Indices from Gaofen-5 Band Reflectances. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 23–27 July 2018; pp. 2619–2622. [Google Scholar]
- von Bueren, S.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.; Yule, I. Comparative Validation of UAV Based Sensors for the Use in Vegetation Monitoring. Biogeosci. Discuss. 2014, 11, 3837–3864. [Google Scholar] [CrossRef]
- Li, S.; Yuan, F.; Ata-UI-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef]
- Hasan, U.; Sawut, M.; Chen, S. Estimating the Leaf Area Index of Winter Wheat Based on Unmanned Aerial Vehicle Rgb-Image Parameters. Sustainability 2019, 11, 6829. [Google Scholar] [CrossRef]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Tanaka, Y.; Imachi, Y.; Yamashita, M.; Katsura, K. Feasibility of Combining Deep Learning and Rgb Images Obtained by Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice. Remote Sens. 2021, 13, 84. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H. Estimation of LAI with the LiDAR Technology: A Review. Remote Sens. 2020, 12, 3457. [Google Scholar] [CrossRef]
- Tunca, E.; Köksal, E.S.; Çetin, S.; Ekiz, N.M.; Balde, H. Yield and Leaf Area Index Estimations for Sunflower Plants Using Unmanned Aerial Vehicle Images. Environ. Monit. Assess. 2018, 190, 682. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Sun, X.; Su, Y.; Guan, H.; Sun, Q.; Kelly, M.; Guo, Q. Development and Performance Evaluation of a Very Low-Cost UAV-LiDAR System for Forestry Applications. Remote Sens. 2021, 13, 77. [Google Scholar] [CrossRef]
- Richardson, J.J.; Moskal, L.M.; Kim, S.-H. Modeling Approaches to Estimate Effective Leaf Area Index from Aerial Discrete-Return LiDAR. Agric. For. Meteorol. 2009, 149, 1152–1160. [Google Scholar] [CrossRef]
- López-Calderón, M.J.; Estrada-Ávalos, J.; Rodríguez-Moreno, V.M.; Mauricio-Ruvalcaba, J.E.; Martínez-Sifuentes, A.R.; Delgado-Ramírez, G.; Miguel-Valle, E. Estimation of Total Nitrogen Content in Forage Maize (Zea Mays l.) Using Spectral Indices: Analysis by Random Forest. Agriculture 2020, 10, 451. [Google Scholar] [CrossRef]
- Singhal, G.; Bansod, B.; Mathew, L.; Goswami, J.; Choudhury, B.U.; Raju, P.L.N. Estimation of Leaf Chlorophyll Concentration in Turmeric (Curcuma Longa) Using High-Resolution Unmanned Aerial Vehicle Imagery Based on Kernel Ridge Regression. J. Indian Soc. Remote Sens. 2019, 47, 1111–1122. [Google Scholar] [CrossRef]
- Zhang, Z.; Masjedi, A.; Zhao, J.; Crawford, M.M. Prediction of Sorghum Biomass Based on Image Based Features Derived from Time Series of UAV Images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6154–6157. [Google Scholar]
- Cheng, Z.; Meng, J.; Shang, J.; Liu, J.; Huang, J.; Qiao, Y.; Qian, B.; Jing, Q.; Dong, T.; Yu, L. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model. Sensors 2020, 20, 6006. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, D.; Zhao, R.; Tang, W.; An, L.; Li, M.; Sun, H. Improving Estimation of LAI Dynamic by Fusion of Morphological and Vegetation Indices Based on UAV Imagery. Comput. Electron. Agric. 2022, 192, 106603. [Google Scholar] [CrossRef]
- De Almeida, D.R.A.; Broadbent, E.N.; Ferreira, M.P.; Meli, P.; Zambrano, A.M.A. Monitoring Restored Tropical Forest Diversity and Structure through UAV-Borne Hyperspectral and LiDAR Fusion. Remote Sens. Environ. 2021, 264, 112582. [Google Scholar] [CrossRef]
- Bork, E.W.; Su, J.G. Integrating LiDAR Data and Multispectral Imagery for Enhanced Classification of Rangeland Vegetation: A Meta Analysis. Remote Sens. Environ. 2007, 111, 11–24. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Pan, F.; Xi, X.; Li, G.; Nie, S.; Xia, S. Estimation of Wetland Vegetation Height and Leaf Area Index Using Airborne Laser Scanning Data. Ecol. Indic. 2015, 48, 550–559. [Google Scholar] [CrossRef]
- Luo, S.; Chen, J.M.; Wang, C.; Gonsamo, A.; Xi, X.; Lin, Y.; Qian, M.; Peng, D.; Nie, S.; Qin, H. Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 300–310. [Google Scholar] [CrossRef]
- Tang, H.; Brolly, M.; Zhao, F.; Strahler, A.H.; Schaaf, C.L.; Ganguly, S.; Zhang, G.; Dubayah, R. Deriving and Validating Leaf Area Index (LAI) at Multiple Spatial Scales through LiDAR Remote Sensing: A Case Study in Sierra National Forest, CA. Remote Sens. Environ. 2014, 143, 131–141. [Google Scholar] [CrossRef]
- Lang, A. Estimation of Leaf Area Index from Transmission of Direct Sunlight in Discontinuous Canopies. Agric. For. Meteorol. 1986, 37, 229–243. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology Comparison for Canopy Structure Parameters Extraction from Digital Hemispherical Photography in Boreal Forests. Agric. For. Meteorol. 2005, 129, 187–207. [Google Scholar] [CrossRef]
- Pisek, J.; Lang, M.; Nilson, T.; Korhonen, L.; Karu, H. Comparison of Methods for Measuring Gap Size Distribution and Canopy Nonrandomness at Järvselja RAMI (RAdiation Transfer Model Intercomparison) Test Sites. Agric. For. Meteorol. 2011, 151, 365–377. [Google Scholar] [CrossRef]
- van Gardingen, P.R.; Jackson, G.E.; Hernandez-Daumas, S.; Russell, G.; Sharp, L. Leaf Area Index Estimates Obtained for Clumped Canopies Using Hemispherical Photography. Agric. For. Meteorol. 1999, 94, 243–257. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Remote Sens. Environ. 1972, VIII, 1355. [Google Scholar]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A Broad-Band Leaf Chlorophyll Vegetation Index at the Canopy Scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report; NASA: Greenbelt, MD, USA; GSFC: Greenbelt, MD, USA, 1974.
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing Leaf Pigment Content and Activity with a Reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Liu, S.; Jin, X.; Nie, C.; Wang, S.; Yu, X.; Cheng, M.; Shao, M.; Wang, Z.; Tuohuti, N.; Bai, Y.; et al. Estimating Leaf Area Index Using Unmanned Aerial Vehicle Data: Shallow vs. Deep Machine Learning Algorithms. Plant Physiol. 2021, 187, 1551–1576. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhu, T.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote Prediction of Yield Based on LAI Estimation in Oilseed Rape under Different Planting Methods and Nitrogen Fertilizer Applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Thanisawanyangkura, S.; Sinoquet, H.; Rivet, P.; Cretenet, M.; Jallas, E. Leaf Orientation and Sunlit Leaf Area Distribution in Cotton. Agric. For. Meteorol. 1997, 86, 1–15. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Gurdak, R.; Dabrowska-Zielińska, K.; Bochenek, Z.; Kluczek, M.; Bartold, M.; Newete, S.W.; Chirima, G.J. Crop Growth Monitoring and Yield Prediction System Applying Copernicus Data for Poland Amp; South Africa. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6564–6567. [Google Scholar]
- Zhao, D.; Huang, L.; Li, J.; Qi, J. A Comparative Analysis of Broadband and Narrowband Derived Vegetation Indices in Predicting LAI and CCD of a Cotton Canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Fukuda, S.; Koba, K.; Okamura, M.; Watanabe, Y.; Hosoi, J.; Nakagomi, K.; Maeda, H.; Kondo, M.; Sugiura, D. Novel Technique for Non-Destructive LAI Estimation by Continuous Measurement of NIR and PAR in Rice Canopy. Field Crops Res. 2021, 263, 108070. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Erkbol, H.; Adrian, J.; Newcomb, M.; LeBauer, D.; Pauli, D.; Shakoor, N.; Mockler, T.C. Uav-Based Sorghum Growth Monitoring: A Comparative Analysis of LiDAR and Photogrammetry. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 489–496. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Paterson, A.H.; Jiang, Y.; Xu, R.; Robertson, J.S.; Snider, J.L.; Chee, P.W. In-Field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR. Front. Plant Sci. 2018, 9, 16. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Dou, Z.; Fang, Z.; Han, X.; Liu, Y.; Duan, L.; Zeeshan, M.; Arshad, M. Comparison of the Effects of Chemical Topping Agent Sprayed by a UAV and a Boom Sprayer on Cotton Growth. Agronomy 2022, 12, 1625. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Darvishsefat, A.A.; Abbasi, M.; Schaepman, M.E. Evaluation of Spectral Reflectance of Seven Iranian Rice Varieties Canopies. J. Agric. Sci. Technol. (JAST) 2011, 13, 1091–1104. [Google Scholar] [CrossRef]
- Behrens, T.; Kraft, M.; Wiesler, F. Influence of Measuring Angle, Nitrogen Fertilization, and Variety on Spectral Reflectance of Winter Oilseed Rape Canopies. J. Plant Nutr. Soil Sci. 2004, 167, 99–105. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Wang, Z.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C.C. A Comparison of Estimating Crop Residue Cover from Sentinel-2 Data Using Empirical Regressions and Machine Learning Methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Noguera, M.; Aquino, A.; Ponce, J.M.; Cordeiro, A.; Silvestre, J.; Arias-Calderón, R.; Marcelo, M.D.E.; Jordão, P.; Andújar, J.M. Nutritional Status Assessment of Olive Crops by Means of the Analysis and Modelling of Multispectral Images Taken with UAVs. Biosyst. Eng. 2021, 211, 1–18. [Google Scholar] [CrossRef]
- Wang, C.; Feng, M.-C.; Yang, W.-D.; Ding, G.-W.; Sun, H.; Liang, Z.-Y.; Xie, Y.-K.; Qiao, X.-X. Impact of Spectral Saturation on Leaf Area Index and Aboveground Biomass Estimation of Winter Wheat. Spectrosc. Lett. 2016, 49, 241–248. [Google Scholar] [CrossRef]
- Zhao, X.; Su, Y.; Li, W.; Hu, T.; Liu, J.; Guo, Q. A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas. Can. J. Remote Sens. 2018, 44, 287–298. [Google Scholar] [CrossRef]
- Xiaohua, Z.; Xiaoming, F.; Yingshi, Z.; Xiaoning, S. Scale Effect and Error Analysis of Crop LAI Inversion. J. Remote Sens. 2010, 14, 579–592. [Google Scholar]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Milenković, M.; Schnell, S.; Holmgren, J.; Ressl, C.; Lindberg, E.; Hollaus, M.; Pfeifer, N.; Olsson, H. Influence of Footprint Size and Geolocation Error on the Precision of Forest Biomass Estimates from Space-Borne Waveform LiDAR. Remote Sens. Environ. 2017, 200, 74–88. [Google Scholar] [CrossRef]
- Pang, Y.; Lefsky, M.; Sun, G.; Ranson, J. Impact of Footprint Diameter and Off-Nadir Pointing on the Precision of Canopy Height Estimates from Spaceborne LiDAR. Remote Sens. Environ. 2011, 115, 2798–2809. [Google Scholar] [CrossRef]
- Bates, J.S.; Montzka, C.; Schmidt, M.; Jonard, F. Estimating Canopy Density Parameters Time-Series for Winter Wheat Using Uas Mounted LiDAR. Remote Sens. 2021, 13, 710. [Google Scholar] [CrossRef]
Experiment | Year | Samples | Sensing and Sampling Date | Period |
---|---|---|---|---|
Experiment A | 2021 | 51 | 3 June 20 June 13 July 3 August 28 August | Budding Late budding Flowering Boll forming Boll opening |
Experiment B | 2021 | 24 | 11 June 26 July 7 August 5 September | Budding Flowering Boll forming Boll opening |
Experiment C | 2020 | 27 | 26 July 12 August 4 September | Flowering Boll forming Boll opening |
VIs | Name | Formula | Reference |
---|---|---|---|
GI | Green–Red Ratio Index | G/R | [31] |
RVI | Ratio ChlorophyII Vegetation Index | NIR/R | [32] |
CVI | ChlorophyII Vegetation Index | (NIR × R)/(G2) | [33] |
GLI | Green Leaf Index | (2G − R − B)/(2G + R + B) | [34] |
CIRE | ChlorophyII Index—RedEdge | NIR/RE − 1 | [35] |
CIG | ChlorophyII Index—Green | NIR/G − 1 | [35] |
NDVI | Normalized Difference Vegetation Index | (NIR − R)/(NIR + R) | [36] |
GNDVI | Green Normalized Difference Vegetation Index | (NIR − G)/(NIR + G) | [37] |
NDREI | Normalized Difference Red Edge Index | (NIR − RE)/(NIR + RE) | [38] |
EVI | Enhanced Vegetation Index | 2.5(NIR − R)/(NIR + 6R − 7.5B + 1) | [39] |
EVI2 | Enhanced Vegetation Index Without A Blue Band | 2.5(NIR − R)/(NIR + 2.4R + 1) | [40] |
SAVI | Soil Adjusted Vegetation Index | 1.5(NIR − R)/(NIR + R + 0.5) | [41] |
OSAVI | Optimized Soil Adjusted Vegetation Index | 1.16(NIR − R)/(NIR + R + 0.16) | [42] |
NDGI | Normalized Difference Greenness Vegetation | (G − R)/(G + R) | [43] |
MTCI | MERIS Terrestrial Chlorophyll Index | (NIR − RE)/(RE − R) | [44] |
MCARI | Modified Chlorophyll Absorption in Reflectance Index | ((RE − R) − 0.2(RE − G))(RE/R) | [45] |
Period | LAImax |
---|---|
Budding | 2 |
Late budding | 3 |
Flowering | 5 |
Boll-forming | 7 |
Boll-opening | 6 |
Input Dataset | Feature Index | Model | Equation | R2 | RMSE |
---|---|---|---|---|---|
Spectral | CVI | Power | y = 0.148X1.849 | 0.810 | 1.100 |
CIRE | Exponential | y = 0.399e1.323X | 0.824 | 1.056 | |
CIG | Exponential | y = 0.446e0.350X | 0.791 | 1.667 | |
NDREI | Exponential | y = 0.211e6.239X | 0.839 | 0.923 | |
CIRE/GNDVI /MTCI | multivariate linear | y = 2.973X1 − 2.762X2 + 0.357X3 − 0.081 | 0.787 | 1.130 | |
Structure | Elve_AIH_5th | Power | y = 22.874X1.162 | 0.822 | 1.756 |
Elve_20th | Power | y = 16.883X1.116 | 0.816 | 1.767 | |
Elve_sqrt_mean_sq | Power | y = 10.697X1.111 | 0.821 | 1.745 | |
Elve_mean | Power | y = 11.356X1.113 | 0.821 | 1.746 | |
Coverage/Elve_AIH_5th /Elve _sqrt_mean_sq | multivariate linear | y = 4.912X1 + 16.88X2 − 10.414X3 − 0.249 | 0.760 | 1.573 | |
Multisource | Elve _AIH_5th/GNDVI/ MTCI | multivariate linear | y = 7.659X1 + 2.067X2 + 1.477X3 − 2.858 | 0.823 | 1.212 |
Model | Input Dataset | Feature | Parameter Settings | R2 | RMSE | NRMSE |
---|---|---|---|---|---|---|
RFR | Spectral | 21 | Tree = 200 | 0.886 | 0.531 | 22.3% |
Structure | 100 | Tree = 300 | 0.630 | 0.960 | 40.3% | |
Multisource | 121 | Tree = 500 | 0.950 | 0.332 | 13.9% | |
SVR | Spectral | 21 | C = 4/Gamma = 0.03 | 0.889 | 0.524 | 22.0% |
Structure | 100 | C = 2/Gamma = 0.0015 | 0.645 | 0.939 | 39.5% | |
Multisource | 121 | C = 8/Gamma = 0.01 | 0.843 | 0.504 | 21.2% | |
ANN | Spectral | 21 | Layer size = 5 | 0.850 | 0.608 | 25.5% |
Structure | 100 | Layer size = 15 | 0.550 | 1.099 | 46.2% | |
Multisource | 121 | Layer size = 30 | 0.848 | 0.503 | 21.1% |
Input Dataset | Feature Index | Test Dataset | |||
---|---|---|---|---|---|
Equation | R2 | RMSE | NRMSE | ||
Spectral | RFR | Y = 0.12X + 1.558 | 0.167 | 1.793 | 56.9% |
SVR | Y = 0.081X + 1.638 | 0.102 | 1.855 | 58.9% | |
ANN | Y = 0.132X + 1.402 | 0.111 | 1.902 | 60.4% | |
Structure | RFR | Y = 0.748X + 0.096 | 0.76 | 0.992 | 31.5% |
SVR | Y = 0.675X + 0.077 | 0.848 | 1.132 | 35.9% | |
ANN | Y = 1.02X − 0.39 | 0.751 | 0.905 | 28.7% | |
Multisource | RFR | Y = 0.593X + 0.566 | 0.835 | 0.998 | 31.7% |
SVR | Y = 0.553X + 0.978 | 0.665 | 0.955 | 30.3% | |
ANN | Y = 1.001X + 0.382 | 0.746 | 0.923 | 29.3% |
Input Dataset | Feature Index | Before Canopy Closure | After Canopy Closure | ||||||
---|---|---|---|---|---|---|---|---|---|
Equation | R2 | RMSE | NRMSE | Equation | R2 | RMSE | NRMSE | ||
Spectral | RFR | Y = 0.104X + 1.59 | 0.242 | 1.261 | 59.5% | Y = 0.137X + 1.495 | 0.081 | 2.086 | 53.9% |
SVR | Y = 0.052X + 1.712 | 0.439 | 1.305 | 61.5% | Y = 0.134X + 1.424 | 0.084 | 2.158 | 55.7% | |
ANN | Y = 0.086X + 1.561 | 0.075 | 1.341 | 63.2% | Y = 0.266X + 0.839 | 0.167 | 2.211 | 57.1% | |
Structure | RFR | Y = 0.668X + 0.4 | 0.680 | 0.815 | 38.4% | Y = 1.018X − 1.046 | 0.801 | 1.099 | 28.4% |
SVR | Y = 0.607X + 0.334 | 0.853 | 0.798 | 37.6% | Y = 0.903X − 0.887 | 0.857 | 1.317 | 34.0% | |
ANN | Y = 0.649X + 0.128 | 0.645 | 1.006 | 47.4% | Y = 1.158X − 0.741 | 0.672 | 0.827 | 21.3% | |
Multisource | RFR | Y = 0.529X + 0.703 | 0.969 | 0.707 | 33.3% | Y = 0.676X + 0.245 | 0.670 | 1.159 | 29.9% |
SVR | Y = 0.401X + 1.424 | 0.751 | 0.872 | 41.1% | Y = 0.902X − 0.459 | 0.724 | 1.009 | 26.1% | |
ANN | Y = 0.67X + 0.702 | 0.848 | 0.581 | 27.4% | Y = 0.946X + 0.861 | 0.530 | 1.100 | 28.4% |
Feature Index | Test Dataset | ||
---|---|---|---|
R2 | RMSE | NRMSE | |
10 cm | 0.948 | 0.338 | 10.7% |
20 cm | 0.955 | 0.319 | 10.1% |
50 cm | 0.902 | 0.457 | 14.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Han, Q.; Feng, Y.; Kang, S. Estimating LAI for Cotton Using Multisource UAV Data and a Modified Universal Model. Remote Sens. 2022, 14, 4272. https://doi.org/10.3390/rs14174272
Yan P, Han Q, Feng Y, Kang S. Estimating LAI for Cotton Using Multisource UAV Data and a Modified Universal Model. Remote Sensing. 2022; 14(17):4272. https://doi.org/10.3390/rs14174272
Chicago/Turabian StyleYan, Puchen, Qisheng Han, Yangming Feng, and Shaozhong Kang. 2022. "Estimating LAI for Cotton Using Multisource UAV Data and a Modified Universal Model" Remote Sensing 14, no. 17: 4272. https://doi.org/10.3390/rs14174272
APA StyleYan, P., Han, Q., Feng, Y., & Kang, S. (2022). Estimating LAI for Cotton Using Multisource UAV Data and a Modified Universal Model. Remote Sensing, 14(17), 4272. https://doi.org/10.3390/rs14174272