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Abstract: Leaf area index(LAI) is an important indicator of crop growth and water status. With the
continuous development of precision agriculture, estimating LAI using an unmanned aerial vehicle
(UAV) remote sensing has received extensive attention due to its low cost, high throughput and
accuracy. In this study, multispectral and light detection and ranging (LiDAR) sensors carried by a
UAV were used to obtain multisource data of a cotton field. The method to accurately relate ground
measured data with UAV data was built using empirical statistical regression models and machine
learning algorithm models (RFR, SVR and ANN). In addition to the traditional spectral parameters,
it is also feasible to estimate LAI using UAVs with LiDAR to obtain structural parameters. Machine
learning models, especially the RFR model (R2 = 0.950, RMSE = 0.332), can estimate cotton LAI
more accurately than empirical statistical regression models. Different plots and years of cotton
datasets were used to test the model robustness and generality; although the accuracy of the machine
learning model decreased overall, the estimation accuracy based on structural and multisources was
still acceptable. However, selecting appropriate input parameters for different canopy opening and
closing statuses can alleviate the degradation of accuracy, where input parameters select multisource
parameters before canopy closure while structural parameters are selected after canopy closure.
Finally, we propose a gap fraction model based on a LAImax threshold at various periods of cotton
growth that can estimate cotton LAI with high accuracy, particularly when the calculation grid is
20 cm (R2 = 0.952, NRMSE = 12.6%). This method does not require much data modeling and has
strong universality. It can be widely used in cotton LAI prediction in a variety of environments.

Keywords: UAV; LiDAR; multispectral; LAI; multi-model comparison; machine learning; gap
fraction model

1. Introduction

Leaf area index (LAI) is defined as half of the total leaf area per unit ground surface
area. [1], which is an important indicator of crop growth and water consumption [2].
Conventional methods of LAI measurement include destructive sampling of plant samples
and indirect optical acquisition, both with disadvantages such as a small spatial range,
time-consumptive and laborious, with measurement errors easily influenced by human
factors [3,4]. Using remote sensing imagery allows a new method to estimate LAI with
large-scale and nondestructive characteristics [5–7]. However, satellite remote sensing data
are highly susceptible to adverse weather conditions and have low spatial and temporal
resolution [8]. UAVs carrying high-resolution sensors can effectively solve these problems,
and they have been widely used in monitoring crop growth indicators in recent years [9–12].

UAV remote sensing technology is divided into two categories: optical passive remote
sensing and LiDAR active remote sensing [13]. That is, the vegetation indices are calculated
by passively acquiring the canopy reflectance through UAVs equipped with multi-spectral
or hyperspectral cameras, and the vegetation structure information is acquired by UAVs
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equipped with LiDAR actively emitting a laser with the ability to penetrate the canopy.
Constructing statistical regression models to estimate LAI using the correlation between
VIs, structural parameters and LAI is the most common means, such as estimating LAI
through NDVI [14], and in forestry, tree structural parameters (height, strength and density)
are measured using LiDAR to build allometric models for research and analysis [15,16].
The method is simple and practical but not very accurate. With the advent of artificial
intelligence, some machine learning algorithms such as Random Forest Regression (RFR),
Support Vector Regression (SVR), Ridge Regression (RR) and Artificial Neural Network
(ANN) have performed well in crop phenotype monitoring [17–19]. Machine learning can
process large datasets and solve nonlinear problems with high accuracy and robustness.
However, LiDAR is usually applied to taller plants, and in optical remote sensing in
dense cropping patterns or the late stage of crop growth, the light saturation effect due
to canopy closure makes the estimation results low [20,21]. Therefore, the applicability
of UAV equipped with LiDAR for estimating LAI of low crops and the model’s accuracy
under different canopy structures are yet to be evaluated. Research has also shown that the
model estimation accuracy can be improved by fusing data from multiple sensors [21–23].
Therefore, it is significant to find the most suitable model framework to fuse multi-sensor
data for low-growth crops.

The gap fraction model based on Beer–Lambert’s law to estimate LAI is a universal
physical model widely used in forestry, as it does not require large amounts of measured
data for modeling but has high prediction accuracy. It is obtained using reflectance ratios:
ground point clouds to the total number of cloud points [24], ground return point intensity
to total intensity [25] and the ground return energy to the total return energy [26]. Addi-
tional methods calculate the gap fraction, analyze the correlation between the LAI and the
gap fraction and then estimate the vegetation LAI.

The estimation of LAI by the gap fraction model can be affected by many factors,
including grid size, leaf distribution, height threshold, noise and ground point classifica-
tion [13]. Among these, the calculation grid size will directly affect the estimation accuracy.
If the calculation grid is too large, it cannot fulfill the monitoring requirements, while too
small of a calculation grid will lead to the maximum values in some grids. Some studies opt
to select a larger grid, remove the maximum value or define 10 as the calculation threshold
to solve the equation [27–30]. However, the changing pattern of LAI value among crop
growth stages differs significantly. For example, the value of cotton LAI changes slowly
through the seedling and boll-opening stages, while it changes rapidly during the bud-
ding and boll stages. Therefore, the calculation grid size and definition threshold should
be processed differently among the crop growth stages, thereby improving the crop LAI
estimation accuracy from a UAV platform. To date, this remains relatively unstudied.

Cotton is an important economic crop. Accurately predicting its growth and timing
of water supplementation and nutrients is the basis for ensuring stable and high yields.
Although different estimation methods based on various platforms can achieve better
inversion accuracy, most simply divide the data of a single test area into modeling and veri-
fication sets for inversion and accuracy verification and omit verification for the portability
of different environmental models. In addition, ground measured LAI is often obtained
using manual point-scale sampling, which reduces the model accuracy by replacing points
with surfaces. If UAV data can be accurately linked to ground-measured data, the accuracy
of the model could be improved significantly.

The objectives of this research were three-fold: (1) accurately relate UAV data to ground
samples, build a statistical (regression) model, machine learning LAI estimation model and
verify model robustness and portability using environmental data; (2) analyze the differ-
ences in LAI accuracy estimated by different models under open and closed cotton crop
canopies and (3) find the best calculation grid for the modified gap fraction model based
on a LAImax threshold at various periods of cotton growth and evaluate its applicability.
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2. Materials and Methods
2.1. Experimental Design and LAI Measurements

The experiment was carried out at the First Irrigation Experiment Station (40◦32′36.90”N,
81◦17′56.52”E) in Alaer City, Xinjiang, in 2020 and 2021. The area belongs to the continental
arid desert climate in the warm temperate zone with a large temperature difference between
day and night, strong surface evaporation and little rainfall. The soil texture of the experi-
ment station is sandy loam, in which the average soil capacity of 0–100 cm in experiments
A and C is 1.640 g cm−3 and 1.498 g cm−3 in experiment B. The average field capacity
in experiments A and C is 0.234 cm3 cm−3 and 0.226 cm3 cm−3 in experiment B. In 2020,
the annual evaporation was 2100 mm, the annual precipitation was 15.7 mm, the annual
average temperature was 14.6 ◦C and the annual average relative humidity was 49.7%. In
2021, the annual evaporation was 1986 mm, annual precipitation was 57.4 mm, the annual
average temperature was 12.7 ◦C and the annual average relative humidity was 50.1%.

Three experiments were conducted (Figure 1 and Table 1). We studied drip-irrigated
cotton growing under a 2.05-m-thick film. In experiment A (2021), the cotton variety used
was Zhongmian 113. Four planting modes (Figure 2) and three irrigation quota (300 mm,
375 mm and 450 mm) were used. In experiment B (2021), the cotton variety used was
Zhongmian 40. One planting mode was used: one film, two drips and six rows, with two
irrigation rates (300 mm and 450 mm) and three salt treatments (0.2%, 0.4% and 0.6%) were
studied. In experiment C (2020), the cotton variety used was Xinluzhong 47. The single
planting mode was one film, two drips and six rows, with three irrigation rates (300 mm,
375 mm and 450 mm) and three salt treatments (0.2%, 0.4% and 0.6%). Other agronomic
management was identical in each experiment. The data from experiment A were used
for modeling verification, while the data from experiments B and C were used to test the
model robustness and generalizability.
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Figure 1. Location of the Alaer Irrigation Experiment Station and general situation of the experimental
area (the red rectangles were the locations of the three test areas, the white rectangles were the different
treatment areas in each test area and the yellow rectangles were the ground LAI measurement squares,
and a/b/c/d in experiment A were present the four different planting modes).
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Table 1. Sampling date and corresponding growing seasons for the ground-measured leaf area index
(LAI) and unmanned aerial vehicle (UAV) missions in three experiments.

Experiment Year Samples Sensing and
Sampling Date Period

Experiment A 2021 51

3 June
20 June
13 July

3 August
28 August

Budding
Late budding

Flowering
Boll forming
Boll opening

Experiment B 2021 24

11 June
26 July

7 August
5 September

Budding
Flowering

Boll forming
Boll opening

Experiment C 2020 27
26 July

12 August
4 September

Flowering
Boll forming
Boll opening

There were only 3 valid samples in the last sampling of experiment A, due to the lodging phenomenon that occurred.
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Experiment plots were arranged in a split plot design. We randomly selected a 2.05 m2

(2.05 × 1) plot in each cell as the actual measurement quadrat, recording the fixed position
with a GPS instrument (Garmin Corporation, USA). A SunScan (Delta-T, UK) was used to
measure LAI in a cotton quadrat, with measurements taken at noon (14:00 Beijing time).

2.2. UAV Data Acquisition

UAV sensor (two DJI Matrice 600 Pro UAV, DJI, China) data were acquired after the
ground LAI values were measured (Figure 3). Multispectral data were acquired using a
RedEdge-M multispectral camera (MicaSense, USA) containing five bands—475 nm (blue),
560 nm (green), 668 nm (red), 717 nm (red edge) and 840 nm (NIR), with a focal length of
5.5 mm, a field angle of view of 47.2◦ and a resolution of 1280 × 960 pixels. The camera
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was equipped with a radiometric calibration plate that converted multispectral images
into reflectance images; calibration was performed before each flight. GS Pro (DJI, China)
software was used to plan the route and set the heading and side overlap rate (87%) and
flight height (70 m). Flight speed was held constant at 4 m/s, and the lens was oriented
vertically downward when shooting with a resolution of 5 cm/pixel.
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Figure 3. Two DJI Matrice 600 Pro UAV platforms used in this study: (A) DJI Matrice 600 Pro UAV;
(B) LiAir 200; (C) Micasense RedEdge-M multispectral camera.

LiDAR data were acquired using the LiAir 200 system (Green Valley, China) after the
multispectral data acquisition was complete. With this instrument, the laser wavelength
was 903 nm, the vertical angular resolution was 0.33◦, the horizontal angular resolution
was 0.2◦, the scanning frequency was 10HZ and the maximum effective measurement rate
was 720,000 Pts/sec. GS Pro software was also used for route planning, setting the heading
and side overlap rate (80%), flight height (50 m) and flight speed (5 m/s).

2.3. UAV Data Preprocessing
2.3.1. Multispectral Data Preprocessing

Multispectral data were processed using the agricultural multispectral module in a
Pix4D mapper (Pix4D SA, Switzerland). The solar radiation information collected by the
sensor module on the top of the UAV and the standard reflectance values of each band
taken by the radiation calibration plate were used for radiation calibration. Calibrated
images were spliced to obtain the reflectance images of each band from the test site.

Sixteen common VIs were selected in this study, and the VI maps of the test site were
obtained through band operation. Calculation formulas are shown in Table 2. Using the
quadrat GPS information, the corresponding 16 VIs were accurately extracted from the
vegetation index map for the subsequent analysis.
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Table 2. Definition and calculation formula of the selected vegetation indices (VIs) in this study.

VIs Name Formula Reference

GI Green–Red Ratio Index G/R [31]
RVI Ratio ChlorophyII Vegetation Index NIR/R [32]
CVI ChlorophyII Vegetation Index (NIR × R)/(G2) [33]
GLI Green Leaf Index (2G − R − B)/(2G + R + B) [34]

CIRE ChlorophyII Index—RedEdge NIR/RE − 1 [35]
CIG ChlorophyII Index—Green NIR/G − 1 [35]

NDVI Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [36]
GNDVI Green Normalized Difference Vegetation Index (NIR − G)/(NIR + G) [37]
NDREI Normalized Difference Red Edge Index (NIR − RE)/(NIR + RE) [38]

EVI Enhanced Vegetation Index 2.5(NIR − R)/(NIR + 6R − 7.5B + 1) [39]
EVI2 Enhanced Vegetation Index Without A Blue Band 2.5(NIR − R)/(NIR + 2.4R + 1) [40]
SAVI Soil Adjusted Vegetation Index 1.5(NIR − R)/(NIR + R + 0.5) [41]

OSAVI Optimized Soil Adjusted Vegetation Index 1.16(NIR − R)/(NIR + R + 0.16) [42]
NDGI Normalized Difference Greenness Vegetation (G − R)/(G + R) [43]
MTCI MERIS Terrestrial Chlorophyll Index (NIR − RE)/(RE − R) [44]

MCARI Modified Chlorophyll Absorption in Reflectance Index ((RE − R) − 0.2(RE − G))(RE/R) [45]

2.3.2. LiDAR Data Preprocessing

LiDAR360 software (Green Valley, China) were used to process and analyze the point
cloud data. The high/low gross noise of the original point cloud were first removed,
followed by dividing the point cloud into ground and vegetation points based on slope
filtering and an irregular triangulation algorithm. Ground points were used to normalize
the LiDAR data.

LiDAR can be used to extract a wide range of plant structural attributes, such as height,
stem diameter and canopy density. One hundred structural parameters were extracted from
the normalized LiDAR point cloud and created as raster bands. Then, all datasets were
resampled to a spatial resolution of 5 cm for the model establishment and data fusion. The
elevation parameters (including Elev_max, Elev_mean, Elev_stddev, etc.) directly reflect
the distribution of the cotton canopy in each sample, which are calculated by aggregating
the elevation statistics of all raster cells in the sample. The intensity parameter reflects
the reflectance and surface composition of the cotton to distinguish differences within the
canopy (leaves, branches, and bolls), also obtained by statistical aggregation of the raster
cells, while the density parameters reflect the internal structure of the cotton canopy, with
detailed definitions of each parameter in the table (Table S1). The structural parameters
derived from point cloud data are used as input parameters for the model, and the overall
shape and structural characteristics of cotton can be obtained by analyzing the statistics of
raster within the sample.

2.4. LAI Model Development
2.4.1. Empirical Statistical Regression Model Development

We used Origin 2021b software (OriginLab, USA) to screen the feature parameters.
Pearson’s correlation analysis was conducted between the measured LAI and correspond-
ing VIs and structural parameters using the correlation plot package. The sensitive feature
parameters with highly significant correlations were screened out. We reduced the di-
mension of the sensitive feature parameters using the Principal Component Analysis and
extracted the top three sensitive feature parameters with their contribution rate.

The feature parameters selected above were used to build optimal LAI models with
different empirical statistical regression modeling methods. The models include linear func-
tion (Equation (1)), exponential function (Equation (2)), logarithmic function (Equation (3)),
power function (Equation (4)) and multiple linear regression (Equation (5)).

LAI = aX + b (1)
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LAI = aeX (2)

LAI = aln(X) + b (3)

LAI = aXb (4)

LAI = a1X1 + a2X2 + a3X3 + a4X4 + . . . . . . + anXn + b (5)

where X, X1, X2, . . . . . . , Xn were the model input parameters.

2.4.2. Machine Learning Model Development

Random Forest Regression (RFR), Support Vector Regression (SVR) and Artificial
Neural Network (ANN) were used in this study, because they can handle high-dimensional
datasets and have been successful in estimating LAI [46,47]. We compared the potential of
multispectral, LiDAR and fused two sensor data in estimating LAI by analyzing spectral
parameters, structural parameters and multisource parameters as input feature quantities
for each machine learning model. Python Scikit-learn was used to build the LAI machine
learning model.

RFR is a nonlinear integrated modeling approach based on multiple decision trees,
which can evaluate the importance of input parameters and partially handle the multi-
collinearity between these variables while showing an excellent tolerance for outliers and
noise. N_Estimators were iterated at the model training stage, where the parameters were
set from 1 to 1000 with increments of 50, and the optimal parameters were determined by
k-fold cross-validation.

SVR is a powerful machine learning algorithm based on a supervised learning model
with user-defined kernel functions and optimization parameters that construct the optimal
hyperplane in n-dimensional space and construct a regression by minimizing the distance
between data points in the training set and the hyperplane. In this study, the Gaussian
Radial Basis Function (RBF) was used as the kernel function. The C parameter acts as the
degree of tolerance when searching for the decision function, and the optimized C value
was set from 1 to 50 with increments of 1. The gamma parameter reflects the weight of the
input parameters and selects from 0.001 to 0.5 with increments of 0.0005. Both gamma and
C were iteratively adjusted at the model training stage.

ANN is a mathematical model inspired by the structure and behavior of the human
brain. The architecture of ANN minimizes the mean square bias by error correction learning
rules while adjusting the weights of each layer of neurons to reduce errors. It is often used
to deal with complex nonlinear relationships between canopy spectral and phenotypic
parameters with higher accuracy but lower model interpretability. In this study, the model
accuracy is evaluated according to different input feature parameters with a different
number of hidden layers and transmission algorithms to determine the best configuration
of ANN. Finally, a single hidden layer based on the backpropagation algorithm was selected.
The number of neurons in the hidden layer adjusted according to the characteristic number
of input samples.

2.4.3. Gap Fraction Model Development

The theoretical basis of the physical model for estimating LAI based on the correlation
of gap fractions is the Beer–Lambert law (Equation (6)). LiDAR cannot measure the gap
fraction directly, but the LAI can be estimated by analyzing the correlation between the
actively emitted laser data and the gap fraction. The LiDAR system used in this study can
estimate the gap fraction by counting the number or intensity of the point cloud while
using the extinction coefficient instead of the light attenuation phenomenon within the
canopy [16]. However, it was found that the intensity-based ratio information is noisier
and less stable than the number-based ratio information, and then, the calculation formula
was modified as follows (Equation (7)):

P(θ) = e−G(θ)·LAI/cos θ (6)
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LAI = −cos(ang)
k

× ln
(nground

nall

)
(7)

where P(θ) is the canopy gap fraction when the zenith angle is θ, k is the extinction
coefficient, ang is the average scanning angle and nground and nall are the ground and total
points of the calculation grid.

To maximize the light energy utilization for photosynthesis, leaves in the cotton canopy
grow in a radial direction, and the overall leaf inclination angle is approximately spherical
in space [48]. Therefore, in this study, we set extinction coefficient k as 0.5. We chose
5 computational grid cell pixels (10 cm, 20 cm, 50 cm, 100 cm and 200 cm) and resampled
the calculation results at 5 cm. The LAI estimation value was counted with pixel values
of the sample. Considering the extreme value phenomenon that may occur with a low
number of ground echoes, the LAImax value of local cotton from different periods was used
as the calculation threshold (Table 3).

Table 3. Thresholds limit at various periods of cotton used for model correction in this study.

Period LAImax

Budding 2
Late budding 3

Flowering 5
Boll-forming 7
Boll-opening 6

2.5. Statistical Analysis and Validation

The procedure of statistical analysis after data collection was shown in the flowchart
(Figure 4). There were 51 valid samples in experiment A. The method of cross-validation
was used for resampling, where 70% of the data was used as the training set (n = 36). The
remaining 30% were used as the validation set (n = 15). The statistical regression model
was constructed based on sensitive parameters filtered by a correlation analysis between
spectral/structural parameters and measured LAI, while machine learning models were
constructed and adjusted by using training sets of all the spectral parameters, all structural
parameters and multisource parameters as the input feature parameters, respectively.
Model accuracy was evaluated by the coefficient of determination (R2, Equation (8)) and
root mean square error (RMSE, Equation (9)) in the validation dataset. Experiment B
(different plots, n = 24) and experiment C (different years, n = 27) were used to test the
model robustness and generality. In addition, normalized root mean square error (NRMSE,
Equation (10)) was introduced to eliminate LAI dimension differences among experiments.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (8)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (9)

NRMSE =
RMSE

yi
∗ 100% (10)

where ŷi and yi are estimated, ground measured cotton LAI, y is the mean value of ground
measured LAI and n is the number of samples.
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3. Results
3.1. Variation in Ground-Measured LAI

There were differences in the spectral reflectance between the soil and cotton canopy
(Figure 5), where the soil and cotton canopy showed large differences in the red edge and
NIR bands, which can be used to effectively reduce the noise interference of soil within
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the mixed image. At the same time, the canopy spectral reflectance of cotton in the three
experiments was affected by different growth environments, with experiment A showing
higher spectral reflectance in all bands and experiment B showing higher values in the RGB
band than experiment C. The measured LAI of cotton in each experiment showed a trend
of rapid increase in the early period and a slight decrease in the subsequent period, while
there were differences in the structure of cotton affected by different growth environments
in the three experiments (Figure 6). The LAI in experiment A used for modeling was
concentrated in the range of 0.12–6.02. Cotton in experiment B was affected by salt stress,
resulting in lower LAI values (0.64–3.68). On the contrary, the LAI values showed high
levels (2.6–5.52) in experiment C because of the sufficient light and heat resources in 2020.
However, the LAI showed large variability in different periods, making the training set
covers most of the possible scenarios of the LAI values. Thus, testing the model robustness
using experiments B and C data is necessary and meaningful.
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3.2. Model Development

We found a very significant negative correlation with LAI in blue, green and red bands
and a very significant positive correlation in the NIR band (Figures 7 and 8). The VIs also
showed very significant positive correlations with LAI, except GI, GLI and NDGI—among
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which, CVI, CIRE, CIG and NDREI had higher correlations (Figure 7). Height param-
eters were more highly correlated than the intensity and density parameters—among
which, Elev_AIH_5th, Elev_20th, Elev_sqrt_mean_sq and Elev_mean all had higher cor-
relations (Figure 8). PCA was used to dimensionally reduce the spectral, structural and
multisource parameters; spectral parameters (CIRE, GNDVI and MTCI); structural pa-
rameters (Elev_AIH_5th, Elev_sqrt_mean_sq and Coverage) and multisource parameters
(Elev_AIH_5th, GNDVI and MTCI), all screened for multiple statistical regression modeling.
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Figure 7. Pearson correlation diagram of the multispectral parameters and measured LAI.
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We calculated the accuracy based on the statistical regression models (Table 4). The R2

of the models ranged from 0.76 to 0.84, and the RMSE values were 0.923–1.767. Nonlinear
models had higher accuracy than the multivariate linear regression models. Among the
nonlinear models, the exponential function model based on spectral parameters performed
best, while the structural parameter model had the highest accuracy with the power
function model. Although the fusion of multisource data had the advantage of different
sensors, it was affected by the model structure of the model, and multiple linear regression
was ineffective at estimating the cotton LAI.
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Table 4. Quantitative relationship between the LAI and measured values based on statistical regres-
sion models in experiment A.

Input Dataset Feature Index Model Equation R2 RMSE

Spectral

CVI Power y = 0.148X1.849 0.810 1.100
CIRE Exponential y = 0.399e1.323X 0.824 1.056
CIG Exponential y = 0.446e0.350X 0.791 1.667

NDREI Exponential y = 0.211e6.239X 0.839 0.923
CIRE/GNDVI

/MTCI multivariate linear y = 2.973X1 − 2.762X2 + 0.357X3 − 0.081 0.787 1.130

Structure

Elve_AIH_5th Power y = 22.874X1.162 0.822 1.756
Elve_20th Power y = 16.883X1.116 0.816 1.767

Elve_sqrt_mean_sq Power y = 10.697X1.111 0.821 1.745
Elve_mean Power y = 11.356X1.113 0.821 1.746

Coverage/Elve_AIH_5th
/Elve _sqrt_mean_sq multivariate linear y = 4.912X1 + 16.88X2 − 10.414X3 − 0.249 0.760 1.573

Multisource Elve _AIH_5th/GNDVI/
MTCI multivariate linear y = 7.659X1 + 2.067X2 + 1.477X3 − 2.858 0.823 1.212

The multisource parameters performed better among three machine learning algo-
rithms, with the best performance based on the RFR algorithm (R2 = 0.950, RMSE = 0.332,
Table 5). The structural parameter model was slightly less accurate than the other models.

Table 5. Quantitative relationship between the LAI and measured values based on the machine
learning models in experiment A.

Model Input Dataset Feature Parameter Settings R2 RMSE NRMSE

RFR
Spectral 21 Tree = 200 0.886 0.531 22.3%

Structure 100 Tree = 300 0.630 0.960 40.3%
Multisource 121 Tree = 500 0.950 0.332 13.9%

SVR
Spectral 21 C = 4/Gamma = 0.03 0.889 0.524 22.0%

Structure 100 C = 2/Gamma = 0.0015 0.645 0.939 39.5%
Multisource 121 C = 8/Gamma = 0.01 0.843 0.504 21.2%

ANN
Spectral 21 Layer size = 5 0.850 0.608 25.5%

Structure 100 Layer size = 15 0.550 1.099 46.2%
Multisource 121 Layer size = 30 0.848 0.503 21.1%

LAI estimation of the gap fraction model modified based on the LAImax threshold at
various periods of cotton had a high estimation accuracy (the slope of the fitting equation
was close to 1, higher R2 and lower RMSE, Figure 9). For different-sized calculation grids,
the estimation accuracy first increases and then decreases with improvements in the spatial
resolution. High-resolution grids (10 cm, 20 cm and 50 cm) performed with higher accuracy
compared to lower-resolution grids (100 cm and 200 cm); the 20-cm grid performed the
best (R2 = 0.953, RMSE = 0.378), and the 200-cm grid performed the worst (R2 = 0.814,
RMSE = 0.786).
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Both statistical regression and machine learning showed an excellent fit for modeling
cotton LAI. However, the RMSE of the machine learning model was much lower than
the statistical regression model (RMSEmin of machine learning = 0.332 and RMSEmin of
statistical regression = 0.923). This indicated that the machine learning model could
more accurately reflect the true cotton LAI. Therefore, only the machine learning model
estimation results were analyzed in the subsequent testing set, and for the modified gap
fraction model, only the 10, 20 and 50 cm grid resolution results were analyzed.

3.3. Model Accuracy Assessment Using

When only the spectral parameters were input, all three machine learning algorithms
performed poorly (R2: 0.102–0.167, NRMSE: 58.9–60.4%, Table 6). The structural and
multisource parameters exhibited different accuracies under different machine learning
models (Table 6), whereas the RFR model performed better when importing multisource
parameters (R2 = 0.835). The accuracy of the SVR model decreased when the fusion
multisource parameters (R2 = 0.665) and the ANN model were reasonably accurate, with
two different input parameters (structural parameters: R2 = 0.751, NRMSE = 28.7% and
multisource parameters: R2 = 0.746, NRMSE = 29.3%).
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Table 6. Quantitative relationship between the LAI and measured values based on the machine
learning models in test dataset (experiments B and C).

Input Dataset Feature Index Test Dataset
Equation R2 RMSE NRMSE

Spectral
RFR Y = 0.12X + 1.558 0.167 1.793 56.9%
SVR Y = 0.081X + 1.638 0.102 1.855 58.9%

ANN Y = 0.132X + 1.402 0.111 1.902 60.4%

Structure
RFR Y = 0.748X + 0.096 0.76 0.992 31.5%
SVR Y = 0.675X + 0.077 0.848 1.132 35.9%

ANN Y = 1.02X − 0.39 0.751 0.905 28.7%

Multisource
RFR Y = 0.593X + 0.566 0.835 0.998 31.7%
SVR Y = 0.553X + 0.978 0.665 0.955 30.3%

ANN Y = 1.001X + 0.382 0.746 0.923 29.3%

In order to obtain the reasons for the degradation of the model accuracy in the test set,
further analysis of the LAI estimation results based on machine learning models before and
after cotton canopy closure was carried out (Table 7 and Figure 10). The accuracy of RFR is
higher than SVR and ANN in machine learning models. However, the model accuracy for
different canopy conditions is related to the input parameters. In this study, for example,
RFR based on multisource parameters before canopy closure has a higher accuracy, while
RFR based on structural parameters performs better after canopy closure. Machine learning
models based on RFR and SVR have a higher fitting accuracy before canopy closure than
after closure with the spectral parameters input. However, models based on the structural
parameters were more accurate after canopy closure. Multisource parameters that fused
spectral and structural parameters could improve the accuracy of the RFR model and ANN
model before canopy closure, but the accuracy declined relative to that of the structural
parameter model after canopy closure, while the accuracy of the SVR model did not change
significantly before and after canopy closure.

Table 7. Quantitative relationship between the LAI and measured values based on machine learning
models before and after canopy closure in the test dataset (experiments B and C).

Input Dataset Feature Index Before Canopy Closure After Canopy Closure
Equation R2 RMSE NRMSE Equation R2 RMSE NRMSE

Spectral
RFR Y = 0.104X + 1.59 0.242 1.261 59.5% Y = 0.137X + 1.495 0.081 2.086 53.9%
SVR Y = 0.052X + 1.712 0.439 1.305 61.5% Y = 0.134X + 1.424 0.084 2.158 55.7%

ANN Y = 0.086X + 1.561 0.075 1.341 63.2% Y = 0.266X + 0.839 0.167 2.211 57.1%

Structure
RFR Y = 0.668X + 0.4 0.680 0.815 38.4% Y = 1.018X − 1.046 0.801 1.099 28.4%
SVR Y = 0.607X + 0.334 0.853 0.798 37.6% Y = 0.903X − 0.887 0.857 1.317 34.0%

ANN Y = 0.649X + 0.128 0.645 1.006 47.4% Y = 1.158X − 0.741 0.672 0.827 21.3%

Multisource
RFR Y = 0.529X + 0.703 0.969 0.707 33.3% Y = 0.676X + 0.245 0.670 1.159 29.9%
SVR Y = 0.401X + 1.424 0.751 0.872 41.1% Y = 0.902X − 0.459 0.724 1.009 26.1%

ANN Y = 0.67X + 0.702 0.848 0.581 27.4% Y = 0.946X + 0.861 0.530 1.100 28.4%
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machine learning models based on the spectral parameters, (B) represents machine learning mod-
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multisource parameters (note: the black dotted line is a 1:1 line).

Estimation of the test dataset based on the modified gap fraction model was more
accurate (R2 above 0.9) than the machine learning models (Table 8). The model accuracy
was consistent with the modeling set under different calculation grid sizes, where the 20-cm
grid also performed best (R2 = 0.955, NRMSE = 10.1%).

Table 8. Quantitative relationships between the LAI and measured values with different calculation
grids based on the modified gap fraction model before and after canopy closure in the test dataset
(experiments B and C) based on the maximum threshold modified porosity model.

Feature Index
Test Dataset

R2 RMSE NRMSE

10 cm 0.948 0.338 10.7%
20 cm 0.955 0.319 10.1%
50 cm 0.902 0.457 14.5%

4. Discussion
4.1. Parameter Performance and Comparison of Different Models

We performed sensitivity screening for 16 commonly used VIs and found that the
empirical statistical model based on NDREI had the highest accuracy in estimating LAI [49].
Although CVI, CIRE and CIG among the VIs were more correlated with LAI (Figure 7),
studies have shown that red edge bands (680–760 nm) were sensitive to LAI [50], and the
NIR band (780–1100 nm) could be used to distinguish plant leaves from other tissues [51,52].
In this study, the NIR reflectance value of cotton canopy showed a significant positive
correlation with LAI (Figure 7), while the reflectance value of the soil and cotton canopy
showed large differences in the red edge and NIR bands (Figure 5), NDREI was calculated
based on the normalized difference between the NIR and red edge bands, which increased
the differences between leaves and soil and could effectively remove the influence of
soil noise within the mixed image. One hundred structural parameters were based on
LiDAR, where the elevation parameters were better correlated than the intensity/density
parameters in this study (Figure 8) [25]. That is because cotton has thinner stalks and
a larger leaf area ratio than other crops, and the intensity parameter is unsuitable for
estimating the LAI alone. In order to maximize light energy utilization for photosynthesis,
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the leaves in the canopy will grow in the surrounding direction, and the leaves inside the
canopy are relatively small, so the relationship between the density parameter and LAI is
relatively weak. The elevation parameters, especially elevation percentile, were extremely
strongly and positively correlated with LAI, because they accurately represent the structural
distribution of different crop heights, and there is a direct significant correlation between
plant height and leaf area [53]. Meanwhile, the cotton structure resembles a trapezoid [54],
and more information is contained in the relatively low position of the canopy. Thus, the
empirical statistical regression model based on Elev_AIH_5th has a higher accuracy than
other structural parameters in the LAI estimation.

For the statistical regression models, LAI and spectral/structural parameters have a non-
linear relationship that is determined by the physiological characteristics of cotton [55,56].
Although the nonlinear empirical statistical regression model based on sensitive parameters
can simulate the trend between parameters and LAI, the absolute deviation of the LAI
estimates from the measured values is large, which shows that the nonlinear relationship
and suitable input parameters cannot fully explain the growth pattern of cotton LAI. On
the contrary, machine learning models focus on mining the intrinsic connection between
input parameters and LAI without focusing on the mathematical quantitative formula of
the model in this study. The input parameters are where a variety of spectral information
allows for a complete presentation of the optical information of the LAI, the elevation
parameters reflect the distribution directly, the intensity parameter reflects the surface
composition and the density parameters reflect the internal structure. Optimizing the
model structure by adjusting the combination of input parameters theoretically solves the
multicollinearity problem of predictors. At the same time, there are many uncertainties
in cotton under different growth environments, and the modeling framework of simple
empirical statistics cannot handle the effect of noise. Due to the powerful ability to fuse
data and handle noise, the machine learning models performed with higher accuracy than
the statistical regression models in estimating LAI.

4.2. Verification of the Universality of Machine Learning Models

The accuracy of machine learning models for estimating LAI decreased in the test
datasets. This was because machine learning models only learn from known samples and
interpret the results based on statistical knowledge. Therefore, their application was only
valid in calibrated regions [57]. The growth pattern of cotton is different under different
space–time conditions, with consequent changes in the canopy spectral reflectance and
structure, which leads to a decrease in the estimation accuracy of the machine learning
model in the tested dataset. Thus, it is important and necessary to test the robustness
of the model using cotton data sets from different growth environments. In this study,
the machine learning models were tested using data from cotton in different plots and
years, where the structure and canopy spectral reflectance of cotton was affected by the
environment (Figures 5 and 6). The accuracy of machine learning models based on spec-
tral parameters decreased most [58,59]. However, the machine learning model based on
structural parameters is closely related to the growth pattern of cotton, whose intrinsic
relationship was less affected by structural changes, although the estimation accuracy is
decreased in the test data but is still acceptable. The accuracy of the RFR model fused with
multisource parameters was higher than that of spectral or structural parameters, because
this method did not need to perform feature selection when processing multi-feature data.
Instead, it performs weight distribution modeling based on the input parameters, which
improves the fitting accuracy as the input parameters increase [60]. In this study, the weight
of the structural parameters of the RFR model based on multiple source parameters is
large, and the LAI is estimated more accurately by obtaining beneficial spectral information
when stabilizing the model variation trend. The SVR eliminates feature information when
finding the most suitable hyperplane fit data by SG smoothing and noise reduction, which
is influenced by the input parameters and Cost (C) [9,19]. This study sets a high Cost
(C = 8), and with the increase of the input parameters, the eliminated information also



Remote Sens. 2022, 14, 4272 18 of 22

increases, leading to a decrease in the model accuracy. Although the accuracy of the ANN
estimation improves with increasing the input parameters, the limited boosting, lower
training efficiency and the need for a larger input sample size [60,61] limit its application in
estimating cotton LAI.

Selecting the appropriate input parameters for different canopy opening and closing
statuses can alleviate the degradation of accuracy in this study, where input parameters se-
lect multisource parameters before canopy closure while structural parameters are selected
after canopy closure. Since the applicability of the two sensors before and after canopy
closure is different, the canopy of cotton is small before the canopy closure, and LiDAR
obtains less cotton point cloud data and more soil point clouds, whose noise disturbs the
estimation accuracy of the machine learning model based on the structural parameters;
at this time, using the spectral characteristics can accurately separate the features, and
fusion spectral and the structural parameters can effectively improve the accuracy of the
LAI estimation. LiDAR can accurately obtain canopy and internal information by actively
emitting laser light that penetrates the canopy after canopy closure. The machine learning
models based on structural parameters estimate cotton LAI with a high accuracy. However,
the spectral is limited by the light saturation problem to estimate the canopy physiological
parameters [62]; once fused, the spectral parameters estimate the cotton LAI accuracy
decrease instead.

4.3. Parameter Determination for the Gap Fraction Model

The LAI accuracy estimated by the gap fraction model was affected by the proportion
of vegetation points and the calculation scale effect. The former was primarily related to
observation equipment and data processing. In this study, the flight parameters were ad-
justed to suit the situation at the study site, and weeds in plots were removed through field
management measures to eliminate the influence of spectral noise. At the same time, slope
filtering and irregular triangular network encryption algorithms [63] were used to divide
the point cloud into ground points and non-ground points. Finally, combined with the
growth pattern of cotton, a height threshold of 5 cm was set when the crop growth was small
and fixed to 10 cm after the budding period to separate the vegetation and ground point
clouds. This enabled us to accurately calculate the proportion of vegetation point clouds.

The scale effect was caused by the nonuniformity in the spatial distribution of cotton
leaves and nonlinearity of the inversion function [64]. Reducing the scale effect impacts by
choosing a suitable computational grid is crucial for the accurate estimation of cotton LAI.
Owing to plant spacing [28] and for other reasons, a large calculation grid is usually set
in forestry. In this study, the quadrat was 2.05 m2. If the calculation grid is too large, the
size of the open space would not match and lead to inaccurate calculations. Therefore, we
set the minimum and maximum grid sizes at 10 cm (plant spacing) and 200 cm (ground
quadrat), and five computing units of 20 cm, 50 cm and 100 cm were added for analysis.
We estimated the LAI with nine different grids in advance (10 cm, 15 cm, 20 cm, 25 cm,
30 cm, 35 cm, 40 cm, 45 cm and 50 cm). The estimation accuracy showed an overall trend of
increasing and then decreasing, with 20 cm performing the best and maintaining a very
high level of accuracy. We used 20 cm in this study as the most representative parameter.
At the same time, the continuing resolution was not calculated, because the difference
in accuracy between 5-cm steps was not obvious, and there would be some systematic
and noise errors if smaller steps were used. However, the dense planting of cotton may
maximize the value in some calculation grids and affect the estimation results. Using the
LAImax of cotton in each period as the grid threshold can effectively solve this problem.
Since the growth pattern of cotton LAI was not the same in different periods, which was
particularly necessary to set thresholds for each period. To maximize the light energy
utilization for photosynthesis leaves in the cotton canopy growth in a radial direction,
the overall leaf inclination angle is approximately spherical in space [48]. Therefore, it
can be assumed that the leaf distribution is homogeneous within each raster. Using the
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maximum LAI at each reproductive stage as the threshold can simulate its real situation
while reducing the noise and scale effects.

We did not explore the specific deviation induced by scale effects in this study but
presented a method to modify the model based on the LAImax threshold at various periods
of cotton growth. From this, we analyzed the LAI estimation accuracy under different grid
sizes. The accuracy was highest when the calculation grid was set to 20 cm, which might be
due to cotton morphology and the effect of the growth height. Usually, researchers adjusted
the scale according to indicators from the research object to obtain more comprehensive
ground vegetation information. In such cases, taller trees with larger unit canopies were
used to obtain information at low resolutions [65–67], while low herbs required higher
resolutions for more comprehensive information [68]; cotton was in between. In addition,
there were almost no pure ground pixels in the 20-cm calculation grid. At the same time,
for the areas with a low point cloud penetration rate caused by leaf occlusion in the quadrat,
the influence of the maximum value could be effectively avoided by applying the upper
threshold value. Therefore, the choice of a 20-cm resolution was the most suitable.

5. Conclusions

We used an UAV equipped with multispectral cameras and LiDAR to obtain cotton
remote sensing data to find a method to accurately estimate cotton LAI. Our results showed
that, in addition to the traditional spectral parameters, it is also feasible to estimate LAI
using UAVs with LiDAR to obtain the structural parameters. Machine learning models,
especially the RFR model, can estimate cotton LAI more accurately than empirical statis-
tical regression models. When datasets from different environments are used to test the
universality of the model, the overall accuracy of the machine learning model decreases.
However, the estimated accuracy of the model, except for the model based on the spectral,
remains within an acceptable range. Meanwhile, selecting appropriate input parameters
for different canopy opening and closing statuses can alleviate accuracy degradation. For
example, this study selects multisource parameters as input parameters before canopy
closure and structural parameters after canopy closure. Finally, we propose a gap fraction
model based on a LAImax threshold at various periods of cotton growth, which can estimate
cotton LAI with a high accuracy, particularly when the calculation grid is 20 cm (R2 = 0.952,
NRMSE = 12.6%). This method does not require much data modeling and has a strong
universality, but it is essential to press the LAImax threshold of the crop for reducing the
noise and select the most appropriate computational grids. The two suitable settings may
also vary among crops, and future study is required.
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