Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Sample Collection and Data Acquisition
2.3. Calculating Canopy Coverage by Image Analysis
2.4. Construction of Critical N Dilution Curve
3. Results
3.1. Effect of N Application Rates on Plant N Accumulation, Plant Height, and Yield
3.2. Comparison of Different Dry Matter Models
3.3. Determination of Critical Nitrogen Dilution Curves
3.4. Nitrogen Nutrition Index () across Growth Stages under Different N Treatments
4. Discussion
4.1. Address the Saturation Problem of Estimating Dry Matter by Including Plant Height
4.2. Comparison of Different Types of Critical Nitrogen Dilution Curves
4.3. Yield Estimates by the Value
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kok, P.T.; Keng, H.; Avadhani, P.; Foo, J.T. Guide to Common Vegetables; Singapore Science Centre: Singapore, 1991. [Google Scholar]
- Cong, X.H.; Shi, F.Z.; Ruan, X.M.; Luo, Y.X.; Ma, T.C.; Luo, Z.X. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties. J. Appl. Ecol. 2017, 28, 1219–1226. [Google Scholar]
- Guo, J.; Wang, Y.; Fan, T.; Chen, X.; Cui, Z. Designing corn management strategies for high yield and high nitrogen use efficiency. Agron. J. 2016, 108, 922–929. [Google Scholar] [CrossRef]
- Lemaire, G.; Plenet, D.; Grindlay, D. Leaf N content as an indicator of crop N nutrition status. In Diagnosis of the Nitrogen Status in Crops; Springer: Berlin/Heidelberg, Germany, 1997; pp. 189–199. [Google Scholar]
- Greenwood, D.; Neeteson, J.; Draycott, A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment. In Fundamental, Ecological and Agricultural Aspects of Nitrogen Metabolism in Higher Plants; Springer: Berlin/Heidelberg, Germany, 1986; pp. 367–387. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Greenwood, D.; Gastal, F.; Lemaire, G.; Draycott, A.; Millard, P.; Neeteson, J. Growth rate and% N of field grown crops: Theory and experiments. Ann. Bot. 1991, 67, 181–190. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Yao, X.; Liu, X.; Cao, W.; Zhu, Y. Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crops Res. 2013, 149, 149–158. [Google Scholar] [CrossRef]
- Liang, X.-G.; Zhang, Z.-L.; Zhou, L.-L.; Shen, S.; Gao, Z.; Zhang, L.; Lin, S.; Pan, Y.-Q.; Zhou, S.-L. Localization of maize critical N curve and estimation of NNI by chlorophyll. Int. J. Plant Prod. 2018, 12, 85–94. [Google Scholar] [CrossRef]
- Du, L.; Li, Q.; Li, L.; Wu, Y.; Zhou, F.; Liu, B.; Zhao, B.; Li, X.; Liu, Q.; Kong, F. Construction of a critical nitrogen dilution curve for maize in Southwest China. Sci. Rep. 2020, 10, 13084. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, P.; Zhang, G.; Ran, J.; Shi, W.; Wang, D. A critical nitrogen dilution curve for japonica rice based on canopy images. Field Crops Res. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Ranjbar, A.; Rahimikhoob, A.; Ebrahimian, H.; Varavipour, M. Determination of Critical Nitrogen Dilution Curve Based on Canopy Cover Data for Summer Maize. Commun. Soil Sci. Plant Anal. 2020, 51, 2244–2256. [Google Scholar] [CrossRef]
- Zhao, B.; Ata-Ul-Karim, S.T.; Duan, A.; Liu, Z.; Wang, X.; Xiao, J.; Liu, Z.; Qin, A.; Ning, D.; Zhang, W. Determination of critical nitrogen concentration and dilution curve based on leaf area index for summer maize. Field Crops Res. 2018, 228, 195–203. [Google Scholar] [CrossRef]
- Jia, B.; Fu, J. Critical nitrogen dilution curve of drip-irrigated maize at vegetative growth stage based on leaf area index. Nongye Gongcheng Xuebao 2020, 36, 66–73. [Google Scholar]
- Zhao, B.; Yao, X.; Tian, Y.; Liu, X.; Ata-Ul-Karim, S.T.; Ni, J.; Cao, W.; Zhu, Y. New critical nitrogen curve based on leaf area index for winter wheat. Agron. J. 2014, 106, 379–389. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Ma, Y.; Wang, Y.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A new canopy chlorophyll index-based paddy rice critical nitrogen dilution curve in eastern China. Field Crops Res. 2021, 266, 108139. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.-M.; Machet, J.-M.; Thelier-Huché, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Khairun, N.; Teh, C.; Hawa, Z. Simultaneous effects of water and nitrogen stress on the vegetative and yield parameters of choy sum (Brassica chinensis var. parachinensis). Pertanika J. Trop. Agric. Sci. 2016, 39, 101–116. [Google Scholar]
- Hoogmoed, M.; Sadras, V.O. Water stress scatters nitrogen dilution curves in wheat. Front. Plant Sci. 2018, 9, 406. [Google Scholar] [CrossRef]
- Ziadi, N.; Brassard, M.; Bélanger, G.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Claessens, A.; Parent, L.É. Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agron. J. 2008, 100, 271–276. [Google Scholar] [CrossRef]
- Fricke, T.; Richter, F.; Wachendorf, M. Assessment of forage mass from grassland swards by height measurement using an ultrasonic sensor. Comput. Electron. Agric. 2011, 79, 142–152. [Google Scholar] [CrossRef]
- Batistoti, J.; Marcato Junior, J.; Ítavo, L.; Matsubara, E.; Gomes, E.; Oliveira, B.; Souza, M.; Siqueira, H.; Salgado Filho, G.; Akiyama, T. Estimating pasture biomass and canopy height in Brazilian savanna using UAV photogrammetry. Remote Sens. 2019, 11, 2447. [Google Scholar] [CrossRef]
- Hill, T. The effect of nitrogenous fertilizer and plant spacing on the yield of three Chinese vegetables—Kai lan, Tsoi sum and Pak choi. Sci. Hortic. 1990, 45, 11–20. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Cao, Q.; Yao, Y.; Zhao, G.; Yu, W.; Shen, J.; Yu, K.; Bareth, G. A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere 2018, 28, 814–822. [Google Scholar] [CrossRef]
Year | N rates (kg/ha) | Days After Transplanting | ||||
- | 18 | 24 | 30 | - | ||
2020 | 0 | - | 0.29 a | 0.57 b | 1.01 b | - |
25 | - | 0.32 a | 0.65 ab | 1.17 ab | - | |
50 | - | 0.35 a | 0.64 ab | 1.49 ab | - | |
100 | - | 0.33 a | 0.88 ab | 1.44 a | - | |
150 | - | 0.42 a | 0.83 a | 1.41 a | - | |
200 | - | 0.39 a | 0.83 ab | 1.48 a | - | |
Year | N rates (kg/ha) | Days After Transplanting | ||||
14 | 20 | 23 | 26 | 33 | ||
2021 | 0 | 0.15 b | 0.41 b | 0.55 b | 0.59 c | 0.89 d |
25 | 0.29 ab | 0.89 ab | 0.85 b | 1.48 bc | 1.45 cd | |
50 | 0.41 a | 1.57 a | 1.92 a | 2.07 ab | 2.59 bcd | |
100 | 0.44 a | 1.72 a | 2.11 a | 3.14 a | 3.07 abc | |
150 | 0.37 a | 1.36 ab | 2.13 a | 2.50 ab | 3.69 ab | |
200 | 0.40 a | 1.47 a | 2.21 a | 2.60 ab | 4.92 a | |
Year | N rates (kg/ha) | Days After Transplanting | ||||
- | 16 | 20 | 25 | - | ||
2022 | 0 | - | 0.15 b | 0.24 b | 0.28 b | - |
25 | - | 0.32 ab | 0.44 ab | 0.48 ab | - | |
50 | - | 0.27 ab | 0.49 ab | 0.51 ab | - | |
100 | - | 0.33 ab | 0.53 ab | 0.66 a | - | |
150 | - | 0.37 a | 0.42 ab | 0.60 a | - | |
200 | - | 0.41 a | 0.57 a | 0.75 a | - |
Year | N rates (kg/ha) | Days After Transplanting | ||||
- | 18 | 24 | 30 | - | ||
2020 | 0 | - | 8.07 b | 21.37 b | 27.33 c | - |
25 | - | 8.37 ab | 22.33 ab | 26.63 c | - | |
50 | - | 8.43 ab | 23.93 ab | 32.67 ab | - | |
100 | - | 9.67 ab | 25.73 ab | 27.93 bc | - | |
150 | - | 10.13 a | 24.40 ab | 35.97 a | - | |
200 | - | 10.33 a | 28.50 a | 32.77 ab | - | |
Year | N rates (kg/ha) | Days After Transplanting | ||||
14 | 20 | 23 | 26 | 33 | ||
2021 | 0 | 5.67 a | 13.33 c | 20.20 c | 21.10 b | 37.40 c |
25 | 7.67 a | 14.67 bc | 22.33 bc | 28.33 ab | 40.67 bc | |
50 | 8.40 a | 17.10 abc | 28.33 ab | 32.67 a | 48.67 ab | |
100 | 9.00 a | 19.67 a | 31.70 a | 34.33 a | 45.80 abc | |
150 | 7.70 a | 17.60 abc | 31.33 a | 32.33 a | 50.67 ab | |
200 | 8.33 a | 18.80 ab | 28.90 ab | 33.33 a | 51.33 a | |
Year | N rates (kg/ha) | Days After Transplanting | ||||
- | 16 | 20 | 25 | - | ||
2022 | 0 | - | 10.33 b | 18.67 b | 25.67 ab | - |
25 | - | 11.33 b | 19.33 ab | 28.00 ab | - | |
50 | - | 12.33 ab | 19.67 ab | 25.33 b | - | |
100 | - | 13.00 ab | 20.67 ab | 27.33 ab | - | |
150 | - | 13.67 ab | 20.00 ab | 29.00 a | - | |
200 | - | 14.00 a | 22.67 a | 26.33 ab | - |
N Rates (kg/ha) | Fresh Yield (kg m−2) | ||
---|---|---|---|
2020 | 2021 | 2022 | |
0 | 0.37 b | 0.34 c | 0.08 b |
25 | 0.38 b | 0.64 bc | 0.16 ab |
50 | 0.56 a | 0.92 ab | 0.17 ab |
100 | 0.62 a | 1.23 a | 0.22 a |
150 | 0.57 a | 1.23 a | 0.19 a |
200 | 0.50 ab | 1.43 a | 0.21 a |
Year | Model Types | Formula | R2 | |
---|---|---|---|---|
2021 | DM | 0.94 | 0.11 | |
CC | 0.85 | 0.14 | ||
CC × Height | 0.92 | 0.14 | ||
2022 | DM | 0.92 | 0.20 | |
CC | 0.98 | 0.06 | ||
CC × Height | 0.94 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Shi, J.; Sun, S.; Zhu, L.; He, Y.; Jin, R.; Luo, L.; Zhao, L.; Peng, J.; Zhou, Z. Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information. Remote Sens. 2022, 14, 3964. https://doi.org/10.3390/rs14163964
Wang Z, Shi J, Sun S, Zhu L, He Y, Jin R, Luo L, Zhao L, Peng J, Zhou Z. Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information. Remote Sensing. 2022; 14(16):3964. https://doi.org/10.3390/rs14163964
Chicago/Turabian StyleWang, Zhao, Jiang Shi, Sashuang Sun, Lijun Zhu, Yiyin He, Rong Jin, Letan Luo, Lin Zhao, Junxiang Peng, and Zhenjiang Zhou. 2022. "Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information" Remote Sensing 14, no. 16: 3964. https://doi.org/10.3390/rs14163964
APA StyleWang, Z., Shi, J., Sun, S., Zhu, L., He, Y., Jin, R., Luo, L., Zhao, L., Peng, J., & Zhou, Z. (2022). Estimation of Dry Matter and N Nutrient Status of Choy Sum by Analyzing Canopy Images and Plant Height Information. Remote Sensing, 14(16), 3964. https://doi.org/10.3390/rs14163964