Extraction of Citrus Trees from UAV Remote Sensing Imagery Using YOLOv5s and Coordinate Transformation
Abstract
:1. Introduction
- 1.
- UAV remote sensing images were collected to generate the orthophoto map of the citrus orchard.
- 2.
- The accuracy of the traditional target detection algorithm, based on the Hough transform and the YOLOv5-based deep learning algorithm, were analyzed to determine the higher-precision algorithm as the method to extract the pixel coordinates of the citrus tree.
- 3.
- The extracted pixel coordinates were transformed into the Universal Transverse Mercator (UTM) coordinate system according to the geographic information in the orthophoto map, and the transformation accuracy was also verified.
- 4.
- The geodetic coordinate transformation of the space rectangular coordinate system was carried out according to the inverse calculation formula of Gauss–Krüger and the transformation accuracy was verified as well.
- 5.
- A coordinate conversion app was developed to achieve the batch conversion of pixel coordinates to UTM coordinates and geodetic coordinates, which helps improve coordinate conversion efficiency and simplify work complexity.
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. The Overall Scheme of Fruit Tree Identification and Coordinate Extraction
2.3. Remote Sensing Data Collection and Orthophoto Mapping
2.4. Citrus Tree Identification
2.4.1. Citrus Tree Detection Method Based on Hough Transform
2.4.2. Detection Method Based on YOLOv5 Target Detection Algorithm
2.4.3. Training Parameter Setting and Evaluation
2.5. Citrus Tree Coordinate Extraction
2.5.1. Conversion of Citrus Tree Pixel Coordinates to UTM Projection Coordinates
2.5.2. Conversion from UTM Projection Coordinates of Fruit Trees to WGS84 Coordinates
3. Results
3.1. Comparison and Analysis of Citrus Trees Identification
3.2. Orthophoto Map Accuracy Verification
3.3. UTM Coordinate Verification
3.4. Coordinate Conversion App Design and WGS84 Coordinate Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Annual Report on Fruit Production in China. Available online: https://data.stats.gov.cn/index.htm (accessed on 20 July 2022).
- Shan, Y. Present situation, development trend and countermeasures of citrus industry in China. J. Chin. Inst. Food Sci. Technol. 2008, 1, 1–8. [Google Scholar]
- Shu, M.Y.; Li, S.L.; Wei, J.X.; Che, Y.P.; Li, B.G.; Ma, T.Y. Extraction of citrus crown parameters using UAV platform. Trans. Chin. Soc. Agric. Eng. 2021, 37, 68–76. [Google Scholar]
- Wang, H.; Noguchi, N. Navigation of a robot tractor using the centimeter level augmentation information via Quasi-Zenith Satellite System. Eng. Agric. Environ. Food 2019, 12, 414–419. [Google Scholar] [CrossRef]
- Zhou, J.; He, Y.Q. Research progress on navigation path planning of agricultural machinery. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–14. [Google Scholar]
- Guo, C.Y.; Zhang, S.; Zhao, L.; Chen, J. Research on autonomous navigation system of orchard agricultural vehicle based on RTK-BDS. J. Agric. Mech. Res. 2020, 8, 254–259. [Google Scholar]
- Chen, K.; Tian, G.Z.; Gu, B.X.; Liu, Y.F.; Wei, J.S. Design and Simulation of front frame of orchard automatic obstacle avoidance Lawn Mower. Jiangsu Agric. Sci. 2020, 48, 226–232. [Google Scholar]
- Qiu, W.; Sun, H.; Sun, Y.H.; Liao, Y.Y.; Zhou, L.F.; Wen, Z.J. Design and test of circulating air-assisted sprayer for dwarfed orchard. Trans. Chin. Soc. Agric. Eng. 2021, 37, 18–25. [Google Scholar]
- Qiu, W.; Li, X.L.; Li, C.C.; Ding, W.M.; Lv, X.L.; Liu, Y.D. Design and test of a novel crawler-type multi-channel air-assisted orchard sprayer. Int. J. Agric. Biol. Eng. 2020, 13, 60–67. [Google Scholar] [CrossRef]
- Song, C.C.; Zhou, Z.Y.; Wang, G.B.; Wang, X.W.; Zang, Y. Optimization of the groove wheel structural parameters of UAV-based fertilizer apparatus. Trans. Chin. Soc. Agric. Eng. 2021, 37, 1–10. [Google Scholar]
- Qi, Y.; Dong, X.; Chen, P.; Lee, K.-H.; Lan, Y.; Lu, X.; Jia, R.; Deng, J.; Zhang, Y. Canopy Volume Extraction of Citrus reticulate Blanco cv. Shatangju Trees Using UAV Image-Based Point Cloud Deep Learning. Remote Sens. 2021, 13, 3437. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, H.; Huang, X.; Ma, C.; Wang, L.; Liu, H.; Lan, Y. Research Progress and Prospects of Agricultural Aero-Bionic Technology in China. Appl. Sci. 2021, 11, 10435. [Google Scholar] [CrossRef]
- Li, V.; Selam, A.; Beniamin, A.; Kamal, A. A novel method for detecting morphologically similar crops and weeds based on the combination of contour masks and filtered Local Binary Pattern operators. Comput. Electron. Agric. 2020, 9, giaa017. [Google Scholar]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Hogan, S.D.; Kelly, M.; Stark, B.; Chen, Y. Unmanned aerial systems for agriculture and natural resources. Calif. Agric. 2017, 71, 5–14. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, G.J.; Zhao, C.J.; Zhang, J.C.; Yang, X.D.; Pan, Y.C.; Huang, W.J.; Xu, B.; Li, M.; Zhu, X.C.; et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. Natl. Remote Sens. Bull. 2021, 25, 403–422. [Google Scholar]
- Shi, Z.; Liang, Z.Z.; Yang, Y.Y.; Guo, Y. Status and Prospect of Agricultural remote Sensing. Trans. Chin. Soc. Agric. Mach. 2015, 46, 247–260. [Google Scholar]
- Zhang, J.C.; Yuan, L.; Wang, J.H.; Luo, J.H.; Du, S.Z.; Huang, W.J. Research progress of crop diseases and pests monitoring based on remote sensing. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–11. [Google Scholar]
- Liu, S.Y.; Wang, X.Y.; Chen, X.A.; Hou, X.N.; Jiang, T.; Xie, P.F.; Zhang, X.M. Fruit tree row recognition with dynamic layer fusion and texture-gray gradient energy model. Trans. Chin. Soc. Agric. Eng. 2022, 38, 152–160. [Google Scholar]
- Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F. Efficient Framework for Palm Tree Detection in UAV Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4692–4703. [Google Scholar] [CrossRef]
- Surový, P.; Almeida Ribeiro, N.; Panagiotidis, D. Estimation of positions and heights from UA V-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [Google Scholar] [CrossRef]
- Goldbergs, G.; Maier, S.W.; Levick, S.R.; Edwards, A. Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [Google Scholar] [CrossRef]
- Luo, X.; Wu, Y.; Zhao, L. YOLOD: A Target Detection Method for UAV Aerial Imagery. Remote Sens. 2022, 14, 3240. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Wu, H.; Zhao, C.; Teng, G.; Yu, Y.; Zhu, H. A Two-Stage Low-Altitude Remote Sensing Papaver Somniferum Image Detection System Based on YOLOv5s+DenseNet121. Remote Sens. 2022, 14, 1834. [Google Scholar] [CrossRef]
- Guo, Y.G.; Li, Z.C.; He, H.; Wang, Z.Y. A simplex search algorithm for the optimal weight of common point of 3D coordinate transformation. Acta Geod. Cartogr. Sin. 2020, 49, 1004–1013. [Google Scholar]
- Li, G.Y.; Li, Z.C. The Principles and Applications of Industrial Measuring Systems; Surveying and Mapping Press: Beijing, China, 2011. [Google Scholar]
- Zeng, A.M.; Zhang, L.P.; Wu, F.M.; Qin, X.P. Adaptive collocation method to coordinate transformation from XAS80 to CGCS2000. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 1434–1437. [Google Scholar]
- Li, B.F.; Shen, Y.Z.; Li, W.X. The seamless model for three-dimensional datum transformation. Sci. China Earth Sci. 2012, 42, 1047–1054. [Google Scholar] [CrossRef]
- Peng, X.Q.; Gao, J.X.; Wang, J. Research of the coordinate conversion between WGS84 and CGCS2000. J. Geod. Geodyn. 2015, 35, 119–221. [Google Scholar]
- Liu, F.; Zhou, L.L.; Yi, J.F. Study on the practical method to transform GPS geodetic coordinates to coordinates of localsystem. J. East China Norm. Univ. Nat. Sci. 2005, 2005, 73–77. [Google Scholar]
- Pei, W.; Wang, X.L. The two-dimension coordinates extraction of tea shoots picking based on image information. Acta Agric. Zhejiangensis 2016, 28, 522–527. [Google Scholar]
- Deng, S.S.; Xia, L.H.; Wang, X.X.; Pan, Z.K. Fuzzy comprehensive evaluation for the tourism climate in Zhaoqing city. Guangdong Agric. Sci. 2010, 37, 242–246. [Google Scholar]
- PHANTOM 4 RTK Specs. Available online: https://www.dji.com/id/phantom-4-rtk/info#specs (accessed on 20 July 2022).
- Fang, J.Q. Discussion on several technical problems about producing DOM. Geomat. Spat. Inf. Technol. 2007, 3, 91–93. [Google Scholar]
- Li, D.; Liu, J.; Yu, D. Indent round detection of Brinell test images based on Snake model and shape similarity. Chin. J. Sci. Instrum. 2011, 32, 2734–2739. [Google Scholar]
- Li, Z.; Liu, M.; Sun, Y. Research on calculation method for the projection of circular target center in photogrammetry. Chin. J. Sci. Instrum. 2011, 32, 2235–2241. [Google Scholar]
- Lin, J.; Shi, Q. Circle Recognition Through a Point Hough Transformation. Comput. Eng. 2003, 29, 17–18. [Google Scholar]
- Daugman, J.G. High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Tran. Pattern Mach. Intell. 1993, 15, 1148–1161. [Google Scholar] [CrossRef]
- Davies, E.R. A Modified Hough Scheme for General Circle Location. Pattern Recognit. Lett. 1987, 7, 37–43. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, R. Circle detection using Hough transform. Comput. Eng. Des. 2008, 29, 1462–1464. [Google Scholar]
- Xiong, J.; Zhou, X.; Chen, L.; Cai, H.; Peng, H. Visual position of picking manipulator for disturbed litchi. Trans. Chin. Soc. Agric. Eng. 2012, 28, 36–41. [Google Scholar]
- Xiang, R.; Ying, B.; Jiang, H. Development of Real-time Recognition and Localization Methods for Fruits and Vegetables in Field. Trans. Chin. Soc. Agric. Mach. 2013, 44, 208–223. [Google Scholar]
- Cui, Y.; Su, S.; Wang, X.; Tian, Y.; Li, P.; Zhang, N. Recognition and Feature Extraction of Kiwifruit in Natural Environment Based on Machine Vision. Trans. Chin. Soc. Agric. Mach. 2013, 44, 247–252. [Google Scholar]
- Li, D.; Wu, Q.; Yang, H.S. Design and implementation of edge detection system based on improved Sobel operator. Inf. Technol. Netw. Secur. 2022, 41, 13–17. [Google Scholar]
- Chen, K.; Zhou, X.; Xiong, J.; Peng, H.; Guo, A.; Chen, L. Improved fruit fuzzy clustering image segmentation algorithm based on visual saliency. Trans. Chin. Soc. Agric. Eng. 2013, 29, 157–165. [Google Scholar]
- Zhao, D.A.; Wu, R.D.; Liu, X.Y.; Zhao, Y.Y. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background. Trans. Chin. Soc. Agric. Eng. 2019, 35, 164–173. [Google Scholar]
- Liu, F.; Liu, Y.K.; Lin, S.; Guo, W.Z.; Xu, F.; Zhang, B. Fast Recognition Method for Tomatoes under Complex Environments Based on Improved YOLO. Trans. Chin. Soc. Agric. Machiner. 2020, 51, 229–237. [Google Scholar]
- Tan, S.L.; Bei, X.B.; Lu, G.L.; Tan, X.H. Real-time detection for mask-wearing of personnel based onYOLOv5 network mode. Laser J. 2021, 42, 147–150. [Google Scholar]
- Cheng, Z.; Jia, J.M.; Jiang, Z.; Wang, X. Research on Stuttering Type Detection Based on YOLOv5. J. Yunnan Minzu Univ. Nat. Sci. Ed. 2022, 1, 1–11. [Google Scholar]
- Cheng, Q.; Li, J.; Du, J. Ship detection method of optical remote sensing image based on YOLOv5. Syst. Eng. Electron. 2022, 1, 1–9. [Google Scholar]
- Hou, Y.; Shi, G.; Zhao, Y.; Wang, F.; Jiang, X.; Zhuang, R.; Mei, Y.; Ma, X. R-YOLO: A YOLO-Based Method for Arbitrary-Oriented Target Detection in High-Resolution Remote Sensing Images. Sensors 2022, 22, 5716. [Google Scholar] [CrossRef]
- Cai, L.; Wang, S.; Liu, J.; Zhu, Y. Survey of data annotation. J. Softw. 2020, 31, 302–320. [Google Scholar]
- Wang, C.; Wang, Q.; Wu, H.; Zhao, C.; Teng, G.; Li, J. Low-Altitude Remote Sensing Opium Poppy Image Detection Based on Modified YOLOv3. Remote Sens. 2021, 13, 2130. [Google Scholar] [CrossRef]
- Sun, L.D. Gauss-Kruger Projection and Universal Transverse Mercator Projection of the Similarities and Differences. Port Eng. Technol. 2008, 5, 31–51. [Google Scholar]
- Guo, Y.; Tang, B.; Zhang, Q.; Zhang, W.; Hei, L. Research on Coordinate Transformation Method of High Accuracy Based on Space Rectangular Coordinates System. J. Geod. Geodyn. 2012, 32, 125–128. [Google Scholar]
- Ning, J.S.; Yao, Y.B.; Zhang, X.H. Review of the development of Global satellite Navigation System. J. Navig. Position. 2013, 1, 3–8. [Google Scholar]
- Cui, H.; Lin, Z.; Sun, J. Research on UAV Remote Sensing System. Bull. Surv. Mapp. 2005, 5, 11–14. [Google Scholar]
- XAG. Product Manual. Available online: https://www.xa.com/service/downloads (accessed on 20 July 2022).
- Wu, W.; Li, X.S.; Zhang, B. Probe of developing technology based on ArcGIS Engine. Sci. Technol. Eng. 2006, 2, 176–178. [Google Scholar]
- Li, Z.X.; Li, J.X. Quickly Calculate the Distance between Two Points and Measurement Error Based on Latitude and Longitude. Geomat. Spat. Inf. Technol. 2013, 36, 235–237. [Google Scholar]
- Li, L.; Jiang, L.; Zhang, J.; Wang, S.; Chen, F. A Complete YOLO-Based Ship Detection Method for Thermal Infrared Remote Sensing Images under Complex Backgrounds. Remote Sens. 2022, 14, 1534. [Google Scholar] [CrossRef]
- Han, S.; Zhao, Y.; Cheng, J.; Zhao, F.; Yang, H.; Feng, H.; Li, Z.; Ma, X.; Zhao, C.; Yang, G. Monitoring Key Wheat Growth Variables by Integrating Phenology and UAV Multispectral Imagery Data into Random Forest Model. Remote Sens. 2022, 14, 3723. [Google Scholar] [CrossRef]
- Lin, J.; Wang, M.; Ma, M.; Lin, Y. Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous Forest with UAV Oblique Photography. Remote Sens. 2018, 10, 1849. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Paraforos, D.; Rodrigues, F.; Cohene, Y.; Fountas, S.; Francisco, M.; Pezzuolo, A.; Grigolato, S.; Marinello, F. How many gigabytes per hectare are available in the digital agriculture era? A digitization footprint estimation. Comput. Electron. Agric. 2022, 198, 107080. [Google Scholar] [CrossRef]
Name | Parameter | Value |
---|---|---|
UAV | Takeoff Weight/g | 1391 |
Max Flight Time/min | 30 | |
Horizontal Hover Accuracy (RTK)/m | ±0.1 | |
Vertical Hover Accuracy (RTK)/m | ±0.1 | |
Sensor | Pixels/× 104 | 2000 |
Max Image Size | 5472 × 3648 (3:2) 4864 × 3648 (4:3) | |
Field Of View FOV/° | 84 |
Scene | Hough Transform | YOLOv5s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
step_r | step_angle | minr | maxr | Thresh | Input Size | Batch Size | Epoch | Weights | Optimizer | Score_Threhold | |
1 | 0.5 | 0.15 | 30 | 150 | 0.58 | 640 × 640 | 8 | 300 | s | SGD | 0.5 |
2 | 0.4 | 0.1 | 40 | 150 | 0.57 | 640 × 640 | 8 | 300 | s | SGD | 0.5 |
Image Number | Scene 1: After Weeding | Scene 2: Before Weeding | ||||||
---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 Score | FPS | Precision | Recall | F1 Score | FPS | |
1 | 0.96 | 0.94 | 0.95 | 0.0241 | 0.40 | 0.53 | 0.46 | 0.0135 |
2 | 0.87 | 0.86 | 0.86 | 0.0243 | 0.50 | 0.41 | 0.45 | 0.0717 |
3 | 0.88 | 0.84 | 0.86 | 0.0251 | 0.56 | 0.50 | 0.53 | 0.0349 |
4 | 0.87 | 0.87 | 0.87 | 0.0257 | 0.34 | 0.54 | 0.42 | 0.0547 |
5 | 0.88 | 0.90 | 0.89 | 0.0258 | 0.35 | 0.48 | 0.41 | 0.0371 |
6 | 0.86 | 0.87 | 0.87 | 0.0258 | 0.48 | 0.55 | 0.51 | 0.0371 |
7 | 0.93 | 0.80 | 0.86 | 0.0242 | 0.52 | 0.52 | 0.52 | 0.0389 |
8 | 0.83 | 0.93 | 0.88 | 0.0216 | 0.57 | 0.48 | 0.52 | 0.0456 |
9 | 0.81 | 0.80 | 0.81 | 0.0238 | 0.44 | 0.50 | 0.47 | 0.0337 |
10 | 0.92 | 0.82 | 0.87 | 0.0205 | 0.63 | 0.64 | 0.63 | 0.0608 |
Average | 0.88 | 0.87 | 0.87 | 0.0241 | 0.48 | 0.52 | 0.49 | 0.0428 |
Scene | Hough Transform | YOLOv5s | ||||||
---|---|---|---|---|---|---|---|---|
F1 Score | Recall | Precision | FPS | F1 Score | Recall | Precision | FPS | |
1 | 0.87 | 0.87 | 0.88 | 0.0241 | 0.92 | 0.97 | 0.89 | 63 |
2 | 0.49 | 0.52 | 0.48 | 0.0428 | 0.91 | 0.90 | 0.91 | 60 |
Sampling Point | Coordinate Information/(X, Y) | Horizontal Error/m | Euclidean Distance Error/m | |
---|---|---|---|---|
Actual Value | Measured Value | |||
5 | (655,123.054, 2,593,077.514) | (655,123.093, 2,593,077.607) | (0.041, 0.093) | 0.101 |
4 | (655,143.585, 2,593,080.156) | (655,143.669, 2,593,080.21) | (0.084, 0.054) | 0.099 |
3 | (655,101.704, 2,593,067.178) | (655,101.896, 2,593,067.318) | (0.192, 0.14) | 0.238 |
6 | (655,135.416, 2,592,983.677) | (655,135.616, 2,592,983.785) | (0.2, 0.118) | 0.227 |
12 | (655,143.153, 2,592,974.833) | (655,143.272, 2,592,974.714) | (0.119, 0.119) | 0.168 |
1 | (655,111.020, 2,593,050.100) | (655,111.049, 2,593,050.112) | (0.029, 0.012) | 0.031 |
Mean Euclidean distance error: 0.15 m, average horizontal distance error: (0.11, 0.089) |
Experimental Plot 1 | Experimental Plot 2 | Experimental Plot 3 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Longitude error/10−6 | 0.11 | 0.10 | 0.10 | 0.11 | 0.10 | 0.10 | 0.11 | 0.11 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.11 | 0.11 | 0.10 |
Latitude error/10−6 | −0.1 | −0.2 | −0.1 | −0.1 | −0.2 | −0.1 | −0.2 | −0.1 | −0.1 | −0.2 | −0.1 | −0.2 | −0.1 | −0.2 | −0.1 | −0.1 | −0.2 | −0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Fang, X.; Lan, Y.; Ma, C.; Huang, H.; Lu, X.; Zhao, D.; Liu, H.; Zhang, Y. Extraction of Citrus Trees from UAV Remote Sensing Imagery Using YOLOv5s and Coordinate Transformation. Remote Sens. 2022, 14, 4208. https://doi.org/10.3390/rs14174208
Tian H, Fang X, Lan Y, Ma C, Huang H, Lu X, Zhao D, Liu H, Zhang Y. Extraction of Citrus Trees from UAV Remote Sensing Imagery Using YOLOv5s and Coordinate Transformation. Remote Sensing. 2022; 14(17):4208. https://doi.org/10.3390/rs14174208
Chicago/Turabian StyleTian, Haoxin, Xipeng Fang, Yubin Lan, Chenyang Ma, Huasheng Huang, Xiaoyang Lu, Dehua Zhao, Hanchao Liu, and Yali Zhang. 2022. "Extraction of Citrus Trees from UAV Remote Sensing Imagery Using YOLOv5s and Coordinate Transformation" Remote Sensing 14, no. 17: 4208. https://doi.org/10.3390/rs14174208
APA StyleTian, H., Fang, X., Lan, Y., Ma, C., Huang, H., Lu, X., Zhao, D., Liu, H., & Zhang, Y. (2022). Extraction of Citrus Trees from UAV Remote Sensing Imagery Using YOLOv5s and Coordinate Transformation. Remote Sensing, 14(17), 4208. https://doi.org/10.3390/rs14174208