Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.1.1. CORS Network Data
2.1.2. Atmospheric Pressure Data
2.1.3. Sea Level Anomaly Data
2.1.4. Soil Water Data
2.2. GRACE-FO Mascon Solutions
2.3. Groundwater Monitoring Station Data
2.4. Precipitation Data from Weather Stations
3. Method
3.1. High-Resolution Surface Mass Load Based on the Remove–Restore Method
3.2. GWSA Inversion Using the Combined CORS and Surface Mass Load Method
3.3. GWSA Inversion Using GRACE Product Data
4. Results
4.1. GWSA Inversion Results Using CORS Data
4.2. Comparison with GRACE Data
4.3. Comparison with Groundwater Monitoring Data
5. Discussion
6. Conclusions
- The correlation coefficients between the CORS geodetic height time series and the vertical deformation of the surface mass loads were all above 0.8, indicating strong positive correlations. In addition, the percentage of WRMS decreased from 33.84 to 43.93% following the load removal, demonstrating the effectiveness of the data processing used in the present study and the feasibility of CORS inversion for GWSA. The vertical deformations caused by surface mass loads contributed significantly to the seasonal signals of CORS geodetic height changes. Among the three surface mass loads, atmospheric and soil water loads were more influential, with an amplitude ranging from −8 to 8 mm, while the non-tidal oceanic load showed the lowest influence with an amplitude range of −2–2 mm.
- The GWSA results exhibited clear seasonal variations in the study area from January 2018 to December 2020. In addition, GWS values decreased and increased from February to July and from July to September due to the significant decrease and increase in precipitation, respectively, observed during these periods. These findings indicated that precipitation is the major factor influencing GWS in the study region. In addition, the GWSA trends were similar in the different sub-study areas, while differences were mainly observed in the annual variation magnitude of GWSA. The largest annual variation was observed mainly in the eastern part of the study area, reaching 450 mm.
- After performing a 2-month phase delay correction for GRACE inverse results, the correlation coefficient between GRACE- and CORS-GWSA results was over 0.65. Both methods were able to reflect the dynamics of GWSA in the study area. However, the CORS-based GWSA results reflected more accurately the GWSA changes in the study area, with a higher spatiotemporal resolution than those obtained using the GRACE data product.
- The CORS-based GWSA showed high positive correlations with those determined using groundwater monitoring stations, with a correlation coefficient range of 0.62–0.82. The amplitudes of both GWSA results were on the same order of magnitude. These findings demonstrated the effectiveness and reliability of the CORS inversion for GWSA.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, C.; Liu, J.; Cao, G.; Kendy, E.; Wang, H.; Jia, Y. Can China cope with its water crisis?—Perspectives from the North China Plain. Groundwater 2010, 48, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Doell, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59, 143–156. [Google Scholar] [CrossRef]
- Andermann, C.; Longuevergne, L.; Bonnet, L.; Crave, A.; Davy, P.; Gloaguen, R. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat. Geosci. 2012, 5, 127–132. [Google Scholar] [CrossRef]
- Hodnett, M.G.; Vendrame, I.; Filho, A.O.M.; Oyama, M.D.; Tomasella, J. Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia: I. Comparisons between plateau, slope and valley floor. Hydrol. Earth Syst. Sci. 1997, 1, 265–277. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Sharda, V.N.; Kurothe, R.S.; Sena, D.R.; Pande, V.C.; Tiwari, S.P. Estimation of groundwater recharge from water storage structures in a semi-arid climate of India. J. Hydrol. 2006, 329, 224–243. [Google Scholar] [CrossRef]
- Kim, G.B.; Lee, K.K.; Lee, J.Y.; Yi, M.J. Case study for determination of a water level monitoring frequency for nationwide groundwater monitoring networks in Korea. J. Hydrol. 2007, 342, 223–237. [Google Scholar] [CrossRef]
- Strassberg, G. Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resour. Res. 2009, 45, W05410. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour. 2001, 37, 1327–1339. [Google Scholar] [CrossRef]
- Wei, F.; Wang, C.; Mu, D.; Min, Z.; Xu, H. Groundwater storage variations in the North China Plain from GRACE with spatial constraints. Chin. J. Geophys. 2017, 60, 1630–1642. [Google Scholar] [CrossRef]
- Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Güntner, A.; Raimondo, J.C.; Fagiolini, E. What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? Surv. Geophys. Int. Rev. J. Geophys. Planet. Sci. 2016, 37, 263–280. [Google Scholar]
- Zhang, C.Y.; Wang, W.; Gan, W.J. Monitoring temporal and spatial changes of crustal deformation and gravity field caused by environmental load in the Three Gorges Reservoir Region based on CORS network. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1287–1294. [Google Scholar] [CrossRef]
- Baniulis, R.; Galinauskas, K.; Marozas, L.; Parseliunas, E.; Puskorius, V. An Analysis of the Performance and Coordinates Time Series of CORS Network LitPOS. In Proceedings of the 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017; pp. 22–25. [Google Scholar]
- Métois, M.; Socquet, A.; Vigny, C.; Carrizo, D.; Peyrat, S.; Delorme, A.; Maureira, E.; Valderas-Bermejo, M.-C.; Ortega, I. Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys. J. Int. 2013, 194, 1283–1294. [Google Scholar] [CrossRef]
- Daniélyan, Y.S.; Yanitskii, P.A. Stability of the interphase surface in the freezing of moist ground. J. Eng. Phys. 1980, 39, 781–785. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Jiang, T.; Ke, B.G.; Wang, W. The Analysis of Height System Definition and the High Precision GNSS Replacing Leveling Method. Acta Geod. Cartogr. Sin. 2017, 46, 11–17. [Google Scholar] [CrossRef]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–791. [Google Scholar] [CrossRef]
- Blewitt, G.; Clarke, P. Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J. Geophys. Res. 2003, 108, 2311. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.Y.; Hu, M.Z.; Yang, Q.; Liang, S.M.; Kang, S.J. Monitoring and analysis of geological hazards in Three Gorges area based on load impact change. Nat. Hazards 2019, 97, 611–622. [Google Scholar] [CrossRef]
- Argus, D.F.; Fu, Y.; Landerer, F.W. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett. 2014, 41, 1971–1980. [Google Scholar] [CrossRef]
- He, S.Y.; Gu, Y.C.; Fan, D.M.; Zhao, H.; Zheng, R. Seasonal Variation of Terrestrial Water Storage in Yunnan Province lmferredfrom GPS Vertical Observations. Acta Geod. Cartogr. Sin. 2018, 47, 332–340. [Google Scholar] [CrossRef]
- Amos, C.B.; Audet, P.; Hammond, W.C.; Bürgmann, R.; Johanson, I.A.; Blewitt, G. Uplift and seismicity driven by groundwater depletion in central California. Nature 2014, 509, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Gross, R.S.; Blewitt, G.; Clarke, P.J.; Lavallée, D. Degree-2 harmonics of the Earth’s mass load estimated from GPS and Earth rotation data. Geophys. Res. Lett. 2004, 31, L07601. [Google Scholar] [CrossRef]
- Liu, R.L.; Zou, R.; Li, J.C.; Zhang, C.H.; Zhao, B.; Zhang, Y.K. Vertical Displacements Driven by Groundwater Storage Changes in the North China Plain Detected by GPS Observations. Remote Sens. 2018, 10, 259. [Google Scholar] [CrossRef]
- Chanard, K.; Avouac, J.P.; Ramillien, G.; Genrich, J. Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure. J. Geophys. Res. Solid Earth 2014, 119, 5097–5113. [Google Scholar] [CrossRef]
- Hew, C.C.; Small, E.E. Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies. Geophys. Res. Lett. 2014, 41, 6145–6151. [Google Scholar] [CrossRef]
- Davis, J.L. Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys. Res. Lett. 2004, 31, L24605. [Google Scholar] [CrossRef]
- Nahmani, S.; Bock, O.; Bouin, M.N.; Santamaría-Gómez, A.; Boy, J.P.; Collilieux, X.; Métivier, L.; Panet, I.; Genthon, P.; Linage, C.D.; et al. Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models. J. Geophys. Res. Solid Earth 2012, 117, 5409. [Google Scholar] [CrossRef]
- Dardanelli, G.; Brutto, M.L.; Pipitone, C. GNSS CORS network of the University of Palermo: Design and first analysis of data. Geogr. Tech. 2020, 15, 43–69. [Google Scholar] [CrossRef]
- Kenyeres, A.; Bellet, J.G.; Bruyninx, C.; Caporali, A.; Doncker, F.D.; Droscak, B.; Duret, A.; Franke, P.; Georgiec, I.; Bingley, R.; et al. Regional integration of long-term national dense GNSS network solutions. GPS Solut. 2019, 23, 122. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. Introduction to GAMIT/GLOBK; Massachusetts Institute of Technology: Cambridge, MA, USA, 2018; Available online: http://geoweb.mit.edu/gg/Intro_GG.pdf (accessed on 15 May 2021).
- Altamimi, Z.; Collilieux, X.; Métiver, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Sheng, C. Characteristics of non-tectonic crustal deformation from surface loads around Chinese mainland and correction model. Recent Dev. World Seism. 2014, 11, 45–48. [Google Scholar]
- Lombard, A.; Garcia, D.; Ramillien, G.; Cazenave, A.; Biancale, R.; Lemoine, J.M.; Flechtner, F.; Schmidt, R.; Ishii, M. Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet. Sci. Lett. 2007, 254, 194–202. [Google Scholar] [CrossRef]
- Rodell, M.; Beaudoing, H.K. NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 Monthly 0.25 × 0.25 Degree V2.1; Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2016. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.K. Anatomy of apparent seasonal variations from GPS-derived site position time series. J. Geophys. Res. Solid Earth 2002, 107, 2075. [Google Scholar] [CrossRef]
- Blais, J.A.R.; Provins, D.A.; Soofi, M.A. Spherical harmonic transforms for discrete multiresolution applications. J. Supercomput. 2006, 38, 173–187. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometric 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Wang, Z.J.; Ou, J.K. Determining the RidgeParameter in a Ridge Estimation Using L-curve Method. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 235–238. [Google Scholar] [CrossRef]
- Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Tao, R.; Li, B.-Z.; Wang, Y. Spectral Analysis and Reconstruction for Periodic Nonuniformly Sampled Signals in Fractional Fourier Domain. IEEE Trans. Signal Process. 2007, 55, 3541–3547. [Google Scholar] [CrossRef]
- Dam, T.V.; Wahr, J.; Lavallée, D. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J. Geophys. Res. Solid Earth 2007, 112, B03404. [Google Scholar] [CrossRef]
- Kostadinov, T.S.; Lookingbill, T.R. Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS Terra products. Remote Sens. Environ. 2015, 164, 55–169. [Google Scholar] [CrossRef]
- Muhuri, A.; Gascoin, S.; Menzel, L.; Kostadinov, T.; Moreno, J.I.L. Performance Assessment of Optical Satellite-Based Operational Snow Cover Monitoring Algorithms in Forested Landscapes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7159–7178. [Google Scholar] [CrossRef]
- Munekane, H.; Matsuzaka, S. Nontidal ocean mass loading detected by GPS observations in the tropical Pacific region. Geophys. Res. Lett. 2004, 31, 289–291. [Google Scholar] [CrossRef]
- Nordman, M.; Mäkinen, J.; Virtanen, H.; Johansson, J.; Bilker-Koivula, M.; Virtanen, J. Crustal loading in vertical GPS time series in Fennoscandia. J. Geodyn. 2009, 48, 144–150. [Google Scholar] [CrossRef]
- Han, Z.M.; Hhuang, S.Z.; Huang, Q.; Leng, G.Y.; Wang, H.; Bai, Q.J.; Zhao, J.; Ma, L.; Wang, L.; Du, M. Propagation dynamics from meteorological to groundwater drought and their possible influence factors. J. Hydrol. 2019, 578, 124102. [Google Scholar] [CrossRef]
- Feng, W.; Lemoine, J.M.; Zhong, M.; Tou-Tse, H. Terrestrial water storage changes in the Amazon basin measured by GRACE during 2002–2010. Chin. J. Geophys. 2012, 55, 814–821. (In Chinese) [Google Scholar] [CrossRef]
- Gehlin, S.E.A.; Hellstrm, G. Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew. Energy 2003, 28, 2221–2238. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; CHEN, X.; Zhang, Z.C. Numerical groundwater modeling in a small karst watershed of the Southwest China. Geotech. Investig. Surv. 2011, 4, 43–51. [Google Scholar]
IGS | Longitude and Latitude | IGS | Longitude and Latitude | IGS | Longitude and Latitude |
---|---|---|---|---|---|
AIRA | 130.59/31.82 | ARTU | 58.56/56.42 | BJFS | 115.89/39.60 |
DAEJ | 127.37/36.39 | HYDE | 78.55/17.41 | IISC | 77.57/13.02 |
IRKJ | 104.31/52.21 | KIT3 | 66.88/39.13 | LHAZ | 91.10/29.65 |
NVSK | 83.23/54.84 | PIMO | 121.07/14.63 | POL2 | 74.69/42.67 |
TCMS | 120.98/24.79 | TIXI | 128.86/71.63 | YSSK | 142.71/47.02 |
Parameters | Processing Modes |
---|---|
Sampling interval data | 15 s |
Satellite elevation cut-off angle (°) | 10 |
Baseline processing mode | BASELINE |
Ionosphere delay model | LC_AUTCLN |
Satellite clock error model | Precise clock offset and orbit products of IGS |
Tropospheric model | Saastamoinen + GPT2w + estimation |
Solar radiation pressure model | ECOMC model |
Solid tide model | IERS2010 |
Ocean tide model | FES2004(otl_FES2004.grid) |
Atmospheric mapping function | VMF1 |
Inertial framework | J2000 |
Framework of prior coordinates | ITRF2014 |
PCO/PCV | IGS14 atx |
Ambiguity resolution | LAMBDA method |
A priori IGS station coordinates | Coordinates under ITRF20008 |
Corrections | Processing Mode |
---|---|
C20 Replacement | C20 solutions from SLR in TN14 |
C30 Replacement | C30 solutions from SLR in TN14 |
Degree 1 Corrections | Estimated value in TN-13a |
GIA Correction | ICE6G-D Model |
CORS Stations | Atmospheric Load | Soil Water Load | Non-Tidal Ocean Load | Total Load | ||||
---|---|---|---|---|---|---|---|---|
R | WRMS (%) | R | WRMS (%) | R | WRMS (%) | R | WRMS (%) | |
XIAG | 0.60 | 11.03% | 0.66 | 24.08% | −0.62 | −4.31% | 0.82 | 37.70% |
YNCX | 0.62 | 12.80% | 0.64 | 20.50% | −0.66 | −5.10% | 0.84 | 34.31% |
YNGM | 0.61 | 12.63% | 0.67 | 21.27% | −0.54 | −3.24% | 0.81 | 33.84% |
YNJD | 0.58 | 8.53% | 0.69 | 24.99% | −0.58 | −3.81% | 0.82 | 34.04% |
YNLC | 0.66 | 10.26% | 0.71 | 25.91% | −0.52 | −4.25% | 0.86 | 38.74% |
YNLJ | 0.62 | 9.45% | 0.79 | 34.80% | −0.63 | −6.39% | 0.87 | 43.93% |
YNRL | 0.56 | 7.46% | 0.77 | 33.74% | −0.61 | −5.77% | 0.87 | 43.85% |
YNSD | 0.62 | 10.22% | 0.75 | 30.08% | −0.60 | −4.96% | 0.88 | 40.58% |
YNTC | 0.50 | 7.61% | 0.81 | 33.56% | −0.66 | −5.53% | 0.89 | 39.35% |
YNYA | 0.58 | 9.01% | 0.78 | 30.98% | −0.63 | −5.97% | 0.86 | 38.71% |
YNYL | 0.66 | 10.24% | 0.77 | 27.73% | −0.63 | −5.27% | 0.86 | 36.43% |
YNYS | 0.64 | 10.88% | 0.78 | 31.82% | −0.62 | −4.42% | 0.87 | 41.48% |
Max | Min | Mean | SD | |
---|---|---|---|---|
XIAG | 221.65 | −254.34 | 12.05 | 95.30 |
YNCX | 194.21 | −187.55 | 3.16 | 83.02 |
YNGM | 195.89 | −220.71 | 3.71 | 98.74 |
YNJD | 238.94 | −163.37 | 9.32 | 86.38 |
YNLC | 269.79 | −196.11 | 15.03 | 98.91 |
YNLJ | 177.70 | −117.27 | 8.25 | 61.45 |
YNRL | 247.96 | −106.43 | 12.97 | 55.87 |
YNSD | 184.97 | −141.54 | 9.58 | 65.27 |
YNTC | 228.84 | −129.08 | 12.70 | 69.09 |
YNYA | 234.34 | −251.67 | 3.17 | 110.39 |
YNYL | 184.23 | −179.98 | 6.39 | 76.58 |
YNYS | 269.98 | −222.53 | 7.96 | 106.81 |
Drought Ranges | Drought Severity | CORS-DSI Range Values |
---|---|---|
L1 | No drought | [−0.79, −0.50] |
L2 | Mild drought | [−1.29, −0.80] |
L3 | Moderate drought | [−1.59, −1.30] |
L4 | Severe drought | [−1.99, −1.60] |
L5 | Extreme drought | ≤2.0 |
CORS Stations | GRACE | CORS | GRACE | CORS | GRACE | |||
---|---|---|---|---|---|---|---|---|
Raw Data | Correction | Raw Data | Correction | Raw Data | Correction | |||
BAIS | 0.44 | 0.73 | FGON | 0.36 | 0.68 | LJGC | 0.23 | 0.69 |
XIAG | 0.57 | 0.76 | YNCX | 0.53 | 0.79 | YNGM | 0.66 | 0.75 |
YNJD | 0.56 | 0.85 | YNLC | 0.53 | 0.81 | YNLJ | 0.19 | 0.80 |
YNRL | 0.33 | 0.65 | YNSD | 0.59 | 0.74 | YNTC | 0.37 | 0.72 |
YNYA | 0.36 | 0.70 | YNYL | 0.61 | 0.72 | YNYS | 0.11 | 0.72 |
Station | Correlation Coefficient | Station | Correlation Coefficient | Station | Correlation Coefficient |
---|---|---|---|---|---|
Site 01 | 0.82 | Site 02 | 0.63 | Site 03 | 0.74 |
Site 04 | 0.82 | Site 05 | 0.62 | Site 06 | 0.62 |
Site 07 | 0.64 | Site 08 | 0.64 | Site 09 | 0.64 |
Site 10 | 0.69 | Site 11 | 0.66 | Site12 | 0.65 |
Site13 | 0.63 | Site14 | 0.67 | Site15 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Jiang, T.; Zhang, C.; Shi, K.; Li, W. Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan. Remote Sens. 2022, 14, 4032. https://doi.org/10.3390/rs14164032
Xu P, Jiang T, Zhang C, Shi K, Li W. Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan. Remote Sensing. 2022; 14(16):4032. https://doi.org/10.3390/rs14164032
Chicago/Turabian StyleXu, Pengfei, Tao Jiang, Chuanyin Zhang, Ke Shi, and Wanqiu Li. 2022. "Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan" Remote Sensing 14, no. 16: 4032. https://doi.org/10.3390/rs14164032
APA StyleXu, P., Jiang, T., Zhang, C., Shi, K., & Li, W. (2022). Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan. Remote Sensing, 14(16), 4032. https://doi.org/10.3390/rs14164032