
Citation: Xu, P.; Jiang, T.; Zhang, C.;

Shi, K.; Li, W. Recovering Regional

Groundwater Storage Anomalies by

Combining GNSS and Surface Mass

Load Data: A Case Study in Western

Yunnan. Remote Sens. 2022, 14, 4032.

https://doi.org/10.3390/rs14164032

Academic Editors: Gino Dardanelli

and Shuanggen Jin

Received: 27 June 2022

Accepted: 16 August 2022

Published: 18 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Recovering Regional Groundwater Storage Anomalies by
Combining GNSS and Surface Mass Load Data: A Case Study
in Western Yunnan
Pengfei Xu 1,2, Tao Jiang 2,* , Chuanyin Zhang 2, Ke Shi 3 and Wanqiu Li 4

1 School of Civil and Architectural Engineering, Shandong University of Technology, Zibo 255000, China
2 Chinese Academy of Surveying and Mapping, Beijing 100830, China
3 Yunnan Technical Center of Base Surveying and Mapping, Kunming 650032, China
4 School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China
* Correspondence: jiangtao@casm.ac.cn; Tel.: +86-010-63-880-705

Abstract: The redistribution of surface mass (e.g., atmosphere, soil water, oceans, and groundwater)
can cause load responses, resulting in vertical deformations of the crust. Indeed, the global navigation
satellite system (GNSS)-based continuously operating reference stations (CORS) are able to accurately
measure the vertical deformation caused by surface mass loads. In this study, the CORS was used to
invert groundwater storage anomalies (GWSA), represented by the equivalent water height (EWH),
after removing the effect of the non-groundwater surface mass load (atmospheric, groundwater, and
non-tidal oceanic loads) from the vertical deformation monitored by CORS. In addition, the global
and regional high-resolution surface mass models were combined to calculate the high-precision
load deformation field in in western Yunnan using the remove–restore method, thereby obtaining
more accurate surface mass load data and improving the accuracy of the inverted GWSA results.
In order to assess the feasibility of the CORS inversion for the GWSA used, 66 CORS stations in
western Yunnan Province were considered, presenting weekly GWSA data from 10 January 2018 to
31 December 2020. The results revealed significant seasonal variation in GWSA in the study area,
showing an amplitude range of −200–200 mm. This approach is based on the already-established
CORS network without requiring additional set-up costs. In addition, the reliability of CORS
inverse results was assessed using Gravity Recovery and Climate Experiment (GRACE) inverse
results and actual groundwater monitoring data. According to the obtained results, GWSA can be
monitored by both CORS and GRACE data; however, CORS provided a more effective spatiotemporal
resolution of GWSA. Therefore, the CORS network combined with surface mass load data is able
to effectively monitor the spatiotemporal dynamics of GWSA in small-scale areas and provides
important references for the study of hydrology.

Keywords: ground water storage; surface mass load; groundwater monitoring station; GNSS;
remove-restore method

1. Introduction

As a densely populated country, China is relatively poor in water resources per
capita [1]. Moreover, China is characterized by an uneven spatiotemporal distribution of
water resources due to the impacts of climatic and topographic characteristics. The GWSA
(groundwater storage anomalies) aims to estimate groundwater storage, thereby maintain-
ing the ecological balance of groundwater systems. The overexploitation of groundwater
resources has seriously restrained sustainable development in many regions [2,3]. There-
fore, the assessment of the spatiotemporal distribution of regional GWS (groundwater
storage) is of great scientific importance for studying water circulation and groundwater
allocation as well as for preventing groundwater droughts [4,5].
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At present, the two main GWS monitoring approaches consist of in situ monitoring
of groundwater level fluctuations and using Gravity Recovery and Climate Experiment
(GRACE) and Global Land Data Assimilation System (GLDAS) data to invert the spa-
tiotemporal characteristics of GWS [6,7]. In fact, consecutive groundwater level data, with
relatively high accuracies, can be obtained at monitoring well stations using the first ap-
proach. However, this approach is costly since it requires several monitoring stations
with high density to ensure accurate regional monitoring. Moreover, most well stations
can be located in plains regions, making it challenging to monitor groundwater storage
in mountainous areas. Meanwhile, due to the complex regional geological structures,
some parameters (e.g., specific yield) are difficult to determine, making it difficult to ef-
fectively assess GWSA using discretely distributed well stations. On the other hand, the
GRACE and GLDAS data-based approach is often applied to large-scale regional GWSA
monitoring [8,9]. Although the quality of gravity satellite data is relatively high, there is
considerable interference upon high-order spherical harmonic coefficients, resulting in low
spatial resolutions. Furthermore, these satellite data have been lacking since 2011, with a
data gap of nearly one year between GRACE/GRACE Follow-on (GRACE-FO), explaining
the inability of GRACE data to provide high-resolution continuous monitoring the GWSA
data in small-scale regions [10,11]. Therefore, given the complex physical conditions, high
cost of monitoring groundwater storage through well stations, and the low-resolution
GRACE monitoring data, the continuously operating reference system (CORS) inversion
method for GWSA in small-scale areas requires further study and discussion.

The CORS is a ground observation system based on the global navigation satellite sys-
tem (GNSS) observation system. These data are derived from long consecutive monitoring
data of satellite navigation signals, providing real-time and periodic data through commu-
nication facilities. The CORS can monitor the dynamics of regional geodetic heights and
their consecutive long-time series [12,13]. Indeed, several researchers have demonstrated
the ability of the CORS network to obtain real-time information from selected monitoring
stations in certain regions, providing references for monitoring spatial dynamics as well
as comprehensive continuous regional observation data [14–16]. In addition, the load-
deformation theory demonstrated that changes in the surface environmental mass (e.g.,
atmosphere, surface water, groundwater, and ocean) lead to load vertical deformation,
thereby influencing the seasonal periodic signals in the geodesic height variations of CORS
stations [17–19]. Argus [20] used the seasonal signals of GNSS vertical data to invert the
terrestrial water storage anomalies (TWSA) in California, showing consistent spatial dis-
tribution data with that inverted using GRACE. In addition, He [21] inverted the changes
in the TWSA in Yunnan Province from 2010 to 2014 and compared the GNSS data with
those of GRACE and GLDAS, discussing the possibility of GNSS to separately operate and
monitor the TWSA. Several studies have revealed consistent findings with the hypothesis
that the seasonal vertical displacement of GNSS is strongly related to the load-deformation
caused by TWSA and have assessed the reliability of GNSS data to invert the TWSA [22–28].
However, studies on groundwater inversion have only assessed the correlation between
seasonal GNSS and GWSA data due to the complexity of seasonal signals of GNSS vertical
displacements, while only a few studies have inverted GWSA data using the CORS.

To address this challenge, this study aims to verify the feasibility and reliability
of the combined CORS high-resolution surface mass load inversion for GWSA based
on an already-established CORS network, thus avoiding additional establishment costs.
Moreover, the density of CORS stations and their continuous and immediate high-precision
observation make it possible to perform high-resolution GWSA monitoring in a small-
scale region. Yunnan Province in China has experienced a severe water shortage and
continuous drought. Indeed, the GWSAs have directly affected the regional economy and
local ecological environment in Yunnan Province. Therefore, assessing the spatiotemporal
distribution characteristics of the GWSA can provide important reference significance for
human production activities as well as for relevant decision-makers in the regions. In
order to improve the precision and stability of the CORS inversion, the global and regional
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high-resolution surface mass models were combined in this study to calculate the high-
precision load deformation field in Yunnan Province based on the remove-restore method.
Indeed, researchers have eliminated three surface mass loads (atmospheric, soil water,
and non-tidal oceanic loads) from the non-linear time series of CORS geodetic heights
through data processing, and then the CORS data were used to invert the GWSAs based
on load deformation theory and inversion models [29,30]. To assess the applicability of the
method, researchers have used data from 66 CORS stations in Western Yunnan Province and
high-resolution surface mass load results and performed a weekly GWSA grid in the study
area from 10 January 2018 to 31 December 2020 to assess the effectiveness and reliability of
CORS inverse results using GRACE inverse results and groundwater monitoring station data.

2. Materials and Methods
2.1. Data Used
2.1.1. CORS Network Data

As is shown in Figure 1, the study region is circled by red lines. The data were collected
from 66 CORS stations located in the study region, covering the 2018–2020 period. In
addition, 15 international GNSS service (IGS) stations were selected in this study to obtain
high-precision CORS coordinate time series and to resolve the solution of CORS data. The
longitude and latitude coordinates of the IGS stations are reported in Table 1. GAMIT and
GLOBK were also used in this study to process the collected data [31]. On the other hand,
by correcting the daily errors of GNSS data for each station, a solution was achieved in
some zones of the study region through GAMIT (Table 2). GLOBK was used for a global
adjustment of the network and to present the time series of station coordinates in the
international terrestrial reference frame (ITRF) [32]. As is shown in Table 2, the CORS data
solution removed the influences of the solid, sea, and atmospheric tides, while the influences
of non-tidal elements (e.g., atmosphere pressure, soil water, and sea level) were maintained.
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Table 1. The 15 IGS sites used for the calculation of the CORS network in Western Yunnan Province.

IGS Longitude
and Latitude IGS Longitude

and Latitude IGS Longitude
and Latitude

AIRA 130.59/31.82 ARTU 58.56/56.42 BJFS 115.89/39.60
DAEJ 127.37/36.39 HYDE 78.55/17.41 IISC 77.57/13.02
IRKJ 104.31/52.21 KIT3 66.88/39.13 LHAZ 91.10/29.65

NVSK 83.23/54.84 PIMO 121.07/14.63 POL2 74.69/42.67
TCMS 120.98/24.79 TIXI 128.86/71.63 YSSK 142.71/47.02

Table 2. The main parameters used in the GAMIT calculation.

Parameters Processing Modes

Sampling interval data 15 s
Satellite elevation cut-off angle (◦) 10
Baseline processing mode BASELINE
Ionosphere delay model LC_AUTCLN
Satellite clock error model Precise clock offset and orbit products of IGS
Tropospheric model Saastamoinen + GPT2w + estimation
Solar radiation pressure model ECOMC model
Solid tide model IERS2010
Ocean tide model FES2004(otl_FES2004.grid)
Atmospheric mapping function VMF1
Inertial framework J2000
Framework of prior coordinates ITRF2014
PCO/PCV IGS14 atx
Ambiguity resolution LAMBDA method
A priori IGS station coordinates Coordinates under ITRF20008

2.1.2. Atmospheric Pressure Data

In order to calculate the effect of atmospheric load, the global atmospheric pres-
sure data were derived in this study from ECMWF’s (European Centre for Medium-
Range Weather Forecasts) re-analysis of the 0.25◦ × 0.25◦ ERA-interim surface pres-
sure product data (https://www.ecmwf.int/, accessed on 15 May 2021), covering the
3 January 2018–30 December 2020 period [33]. The original data were averaged by week,
which is reported by Wednesday of each week. Similar to the solutions of non-tidal oceanic
and soil water loadings, the weekly grid time series of atmospheric loading were obtained
using Equations (1) and (2).

On the other hand, the regional high-resolution atmospheric pressure data were down-
loaded from the CLDAS-V2.0 data (CLDAS Atmospheric Driving Field) product of the
China Meteorological Administration Land Data Assimilation System (CLDAS) from the
China Meteorological Data Network (http://data.cma.cn/, accessed on 15 May 2021). The
product data consist of temperature, pressure, humidity, wind speed, precipitation, and
other meteorological parameter data. The hourly product data cover the Asian region
(0◦~65◦N, 60◦~160◦E), with a spatial resolution of 0.0625◦ × 0.0625◦. The dataset includes
data observed at over 2400 and 40,000 national and regional automatic meteorological
stations, respectively, for operational assessment. By combining global and regional at-
mospheric pressure data, a high-resolution atmospheric loading deformation field of the
study area was determined using the remove–restore method. The soil water loading was
calculated using the same method.

2.1.3. Sea Level Anomaly Data

In order to calculate the effect of Non-tidal ocean load, the daily global sea-level
anomaly (SLA) data were derived from the 0.25◦ × 0.25◦ archiving validation and interpre-
tation of satellite oceanography (AVISO) data (https://www.aviso.altimetry.fr/, accessed
on 15 May 2021), covering the 2 January 2018–30 December 2020 period. The AVISO data

https://www.ecmwf.int/
http://data.cma.cn/
https://www.aviso.altimetry.fr/
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integrate not only multi-satellite-derived sea-level data (e.g., TOPEX/Poseidon, Jason-1/2,
and Envisat) but also the associated geophysical correction, including tidal and inverse
barometer corrections, thereby representing the effects of non-tidal ocean loading [34,35].

2.1.4. Soil Water Data

Calculation of soil water load requires soil water data. In this study, the V2.1 GLDAS/
Noah model, provided by the National Aeronautics and Space Administration (NASA) and
National Centers for Environmental Prediction (NCEP), was used to obtain the soil water
data, with a spatial resolution of 0.25◦ × 0.25◦ (https://mirador.gsfc.nasa.gov, accessed on
15 May 2021) [36]. The GLDAS model takes into account soil water, canopy water, and snow
water (ranging from 0 to 200 cm), while groundwater is excluded. The temporal resolutions
of the data are 3-hourly and monthly. In this study, the 3-hourly resolution GLDAS data,
from 3 January 2018 to 30 December 2020, were first downloaded, then averaged by week
to obtain weekly soil water data. These data were used to determine the influence of soil
water loading, whereas the monthly soil water data covered the January 2018–December
2020 period. Indeed, the monthly GLDAS data combined with the monthly GRACE data
can be used to determine GWSA as well as to assess the validity and feasibility of the CORS
inversion for GWSA.

On the other hand, the regional high-resolution surface water height data were
downloaded in this study from the CLDAS data product of the China Meteorological
Data Network, which consists of hourly soil moisture data covering the Asian region
(0◦–65◦N, 60◦–160◦E), with a spatial resolution of 0.0625◦ × 0.0625◦.

2.2. GRACE-FO Mascon Solutions

To compare and analyze the CORS and GRACE inverse results for GWSA, GRACE-FO
RL06 mascon solutions, provided by the Center for Space Research (CSR) with a spatial reso-
lution of 0.25◦ × 0.25◦, were used to reflect the monthly changes in terrestrial water storage
(http://www2.csr.utexas.edu/grace/RL06_mascons.html, accessed on 15 May 2021) [37].
The data covered the October 2018–December 2020 period. The collected data were cor-
rected for degree-1, C20 (degree 2 order 0), C30 (degree 3 order 0), and GIA to reflect the
dynamics of terrestrial water storage (Table 3). It should be noted that in comparison
with GRACE, the GRACE-FO data processing added the C30 correction into its procedure.
Therefore, the regional GWSA could be calculated through the combination of monthly
data of terrestrial water storage and the monthly data of soil water provided by GLDAS.

Table 3. The main corrections used in Mascon solutions.

Corrections Processing Mode

C20 Replacement C20 solutions from SLR in TN14
C30 Replacement C30 solutions from SLR in TN14

Degree 1 Corrections Estimated value in TN-13a
GIA Correction ICE6G-D Model

2.3. Groundwater Monitoring Station Data

The daily data observed at 15 groundwater monitoring stations (Figure 1) from
26 September 2018 to 25 November 2020 were used in this study to assess the accuracy of
the CORS inverse results for the GWSA. The collected data were averaged by week. The
applicability and reliability of the integrated solution method can be assessed by comparing
the observed data with those of the CORS inversion for the GWSA.

2.4. Precipitation Data from Weather Stations

To analyze the influences of precipitation on the spatiotemporal distribution of GWSA
in the study region, daily precipitation data observed at eight weather stations in Yunnan
Province from (Figure 1) 1 January 2018 to 31 December 2020 were used in this study
(http://data.cma.cn, accessed on 15 May 2021).

https://mirador.gsfc.nasa.gov
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://data.cma.cn
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3. Method
3.1. High-Resolution Surface Mass Load Based on the Remove–Restore Method

The spherical harmonic analysis method was expressed using Equation (1), reflecting
the medium- and long-wave components at global scales, while Equation (2) is the load
Green’s function method, which mainly reflects the short-wave components at small scales.
Since equivalent water height (EWH) can reflect the changes in the mass of the surface
environment (e.g., atmosphere, soil water, oceans, and groundwater) based on the load
theory of spherical harmonic coefficients, the changes in geodetic heights caused by loads
can be calculated using the following equation [17,38]:

H(ϕ, λ, t) = 3
ρw

ρe

GM
γR ∑L

l=2

h′l
2l + 1∑l

m=0

[
∆Cq

lm cos mλ + ∆Sq
lm sin mλ

]
Plm(sin ϕ) (1)

where ρe ≈ 5.5 × 103 kg·m−3 denotes the average density of the solid earth; G is the
gravitational constant; and γ is the average gravity of the ground.

On the other hand, the changes in the geodetic heights of CORS stations resulting
from the changes in surface mass load can be expressed using the load Green’s function
equation [17,38]:

H(ϕ, λ, t) =
∫ 2π

0
dλ′

∫ π

0
ρw∆hwG(ψ)a2 sin λ′dϕ′ (2)

where H(ϕ, λ, t) denotes the geodetic height; t represents time; (ϕ, λ) denotes the longitude
and latitude of the calculated point; and (ϕ′, λ′) denotes the load point on the ground.
The density of water was considered as ρw ≈ 103 kg·m−3; ψ denotes the spherical angular
distance between the calculated and load points; G(ψ) denotes the green function of the
radial loads; and R denotes the average earth radius.

The green function of the radial loads can be expressed as follows [17,38]:

G(ψ) =
Rh′∞

2M sin(ψ/2)
+

a
M

N

∑
n=0

(h′l − h′∞)Pn(cos ψ) (3)

where h′l is radial load Love number; M denotes the earth mass; and Pn denotes the
Legendre function.

In this study, the global and regional high-resolution models were combined to calcu-
late the high-precision load deformation field in the study area using the remove–restore
method. Figure 2 shows the procedure used in this study [12,19].

First, the global EWH model was used to estimate the reference EWH and load vertical
deformation in the study area using the spherical harmonic analysis method, thus obtaining
the spatial long-wave component information. Second, the high-resolution regional EWH
model was encrypted into a 1′ × 1′ grid before removing the reference EWH grid from the
regional high-resolution EWH grid to obtain the residual EWH using the remove method.
Third, the load impact of the residual EWH change on the geodetic height was estimated
using the load Green’s function method, introducing the short wave components of the
study area. Finally, the load impacts obtained in the first and third steps were added using
the restore method. By using these steps, the high-resolution and high-precision load
deformation field of the study area was obtained. This approach not only introduces the
short-wave component of the study area and improves the applicability of the model in the
small-scale study area but also effectively removes the truncation error generated during
the spherical harmonic expansion and reduces the calculation uncertainties.
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3.2. GWSA Inversion Using the Combined CORS and Surface Mass Load Method

EWH was used in this study to reflect the mass changes in the surface environment
(atmospheric pressure, sea level, soil water, and groundwater levels) [17]. Based on load
deformation theory, the normalized expansion formula of the spherical harmonic load was
determined using the load-deformation theory, according to the following equations [17,38,39]:

∆hw(ϕ, λ) = R∑L
l=1 ∑l

m=0

[
∆Cq

lm cos mλ + ∆Sq
lm sin mλ

]
Plm(sin ϕ) (4)

where (ϕ, λ) denotes the geocentric latitude and longitude of the ground calculation point;
∆Cq

lm, ∆Sq
lm are the load sphere harmonic coefficients, with l degree and m order; and

Plm(sin ϕ) denotes the associated Legendre function, with l degree and m order.
Different thicknesses and radius disks of the same mass were placed on the surface.

Figure 3 shows the related load deformation and its relationship with distance, indicating
clear load responses near fields. The load-deformation was 1/10 of that of the center
at a distance from the center of the disk equal to three times its radius, while no load-
deformation was observed at a distance from the center of disk equation to 10 times its
radius. Therefore, the vertical displacement and load-deformation were mainly influenced
by the load points within a limited distance range. The use of GNSS in the inversion of the
regional GWS showed that stations on the edges of the study area tended to be simultaneously
influenced by the inside and outside loads of the study area. By neglecting the influence
of the outside mass changes, the outside loads can be restrained to the border region, thus
leading to false inversion on the edges of the study area, explaining the larger inverted region
than the study area. The expansion should consider the sensitive range of load responses.
Therefore, the 66 CORS stations covered the study region and its peripheral areas.
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The inversion model of Argus [20] used in this paper:

((Ax− b)/σ)2 + β2(L(x))2 → min (5)

where σ denotes the standard deviation of the observation value vector of geodetic height
changes; A denotes the coefficient matrix of the green function, which can be calculated
using Equation (3); x is the EWH of the corresponding grid point; b denotes the observation
value of the GNSS geodetic height changes of CORS stations; β denotes the smoothing
factor; and L denotes the Laplace operator.

Due to the limited number of GPS observation stations in the study area, the number of
equations is smaller than the number of unknowns, resulting in a rank loss of the coefficient
matrix of the normal equation. The inversion of the equivalent water height changes
using GNSS observation data is, therefore, an ill-posed equation problem. To address this
challenge, the ridge estimation reported by Hoerl [40] was used in this study, which is a
classical regularized approach, to determine the solution of β in Equation (5). Indeed, the
L-curve method was used in previous studies to select the best-regularized parameters [41].

The influence of surface mass changes was calculated using the load-deformation
theory in Equation (1). Besides the impact of groundwater changes, atmospheric pressure,
sea level, and soil water changes were considered in the present study, while other less
influential factors (e.g., rivers, lakes, and reservoirs) were neglected. Based on the weekly
geodetic height values, the non-linear time series of each CORS station were obtained.
After removing the influences of the non-groundwater data, the residual time series were
obtained, including load and non-load vertical deformations of groundwater. Afterward,
Equations (2) and (5) were used to invert GWSA from the residual time series. The method
used is illustrated in Figure 4. In this study, the integral radius of the load Green’s function
and the smoothing factor (β) were set to 2◦ and 0.01, respectively.
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3.3. GWSA Inversion Using GRACE Product Data

The terrestrial water storages (TWS) are the summation of soi l water, groundwater,
surface runoff, snow, and canopy water. Contrary to soil water and groundwater, the contri-
butions of surface runoff and canopy water changes to TWS are minor, and thus they can be
neglected. Indeed, TWS in the study region is mainly affected by soil water, snow water, and
groundwater [10]. ∆GWS was calculated in this study using the following formula:

∆GWS = ∆TWS− (∆SM + ∆SWE) (6)

where ∆GWS is the groundwater storage; ∆TWS denotes the changes in TWS obtained
from GRACE data; ∆SM and ∆SWE denote the changes in soil water and snow water,
respectively, obtained from GLDAS product data.

4. Results
4.1. GWSA Inversion Results Using CORS Data

The time series of non-linear geodetic height changes were first processed using gross
error detection and linear item removal, as shown by the red points in Figure 5. The black
curve in Figure 5 shows the time series of geodetic heights after the periodic fast Fourier
transformation (FFT) reconstruction. According to the magnitude of the power spectral
density, this paper uses the first eight periodic signals to reconstruct [42,43]. Indeed, the
periodic FFT reconstruction is a low-pass filtering method used to decrease or inhibit the
high-frequency noise of the time series, thus improving the stability of the inversion results.
The geodetic heights of CORS stations corresponded to the temporal resolution of surface
mass loads. In order to improve the accuracy of the CORS inversion, the influences of
high-resolution surface mass loads, including atmospheric, soil water, and non-tidal oceanic
loads, were removed from the reconstructed time series of non-linear geodetic heights, as
shown by the purple, blue and green curves in Figure 5. The residual time series obtained
after the removal process, according to Equations (2) and (5), can therefore be used to invert
GWSA within the coverage of the CORS network, which is reflected by EWH.
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Figure 6 shows the annual differences between the maximum and minimum values of
the reconstructed geodetic height time series at the 66 CORS stations, ranging from 15 to
35 mm. According to Figure 5, the atmospheric and soil water loads revealed the highest
effects among the three types of loads. The results revealed that the vertical deformation,
caused by the soil water loads, ranged from −8 to 8 mm, while non-tidal oceanic load
showed the lowest effect, with a vertical deformation range of −2–2 mm.
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Surface mass loads, namely atmospheric, non-tidal oceanic, and soil water loads,
showed different correlations with the geodetic height time series of CORS stations, demon-
strating the influences of these surface mass loads. Therefore, in order to compare the
obtained results, the influences of loads were first removed, then the WRMS ratio of the
GNSS time series was calculated according to the following formula [44]:

WRMS(%) =
WRMSGNSS −WRMSGNSS−load

WRMSGNSS
(7)
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where WRMSGNSS is the WRMS of the reconstructed GNSS geodetic height time series.
Positive and negative values of WRMS(%) indicate a decrease and increase in the WRMS of
the GNSS time series, respectively. It should be noted that the absolute value of WRMS(%)
can reflect the load influences on the GNSS’s non-linear geodetic height time series.

On the other hand, the Pearson correlation coefficient (R) was computed in this study
according to the following equation. It is widely used to measure the degree of correlation
between two variables [45,46]:

R =
Cov(X, Y)√

Var(X), Var(Y)
(8)

where X = (x1, x2, · · · , xN) denotes the reconstructed time series of the observed GNSS
geodetic heights; Y = (y1, y2, · · · , yN) denotes the time series of the vertical deformation
caused by surface mass loads. The R values range from −1 to 1, indicating strong negative
and positive correlations, respectively, between the periodic phases of the two series.

In total, 12 stations were selected to assess the influences of the three surface mass
loads on the reconstructed time series of CORS geodetic heights using R and WRMS values
(Table 4). Unlike the non-tidal oceanic load, the R and WRMS values of atmospheric and
soil water loads were all positive. According to the obtained results, the R and WRMS
values of the atmospheric load ranged from 0.50 and 0.66 and 7.61 to 12.80%, respectively,
whereas the R and WRMS values of the soil water load ranged from 0.64 to 0.81 and
20.54 to 34.80%, respectively. On the other hand, the non-tidal oceanic load was negatively
correlated with the reconstructed time series of the CORS geodetic heights, which is
consistent with the reported by Munekane and Nordman [47,48]. However, the absolute
WRMS value of the non-tidal oceanic load ranged from 3.24 to 6.39%, suggesting a low
influence on the CORS geodetic heights. This result was due to the offsetting effects
of the atmospheric and soil water loads, making the influence of the non-tidal oceanic
load difficult to reflect in the time series of the CORS geodetic heights. In other words,
atmospheric and soil water loads exhibited stronger influences than that of the non-tidal
oceanic load. The R and WRMS values of total loads ranged from 0.81 to 0.89 and 33.84
and 43.93%, respectively (Table 4). On the other hand, by removing the surface mass loads,
decreases in the WRMSGNSS−load values were observed. This finding demonstrates not
only the reliability of the reconstructed CORS geodetic height time series and surface mass
load deformations but also the effectiveness of the integrated solving process used in the
present study.

Table 4. Correlation coefficient and WRMS values between different loads and the reconstructed
geodetic height time series.

CORS
Stations

Atmospheric Load Soil Water Load Non-Tidal Ocean Load Total Load

R WRMS (%) R WRMS (%) R WRMS (%) R WRMS (%)

XIAG 0.60 11.03% 0.66 24.08% −0.62 −4.31% 0.82 37.70%
YNCX 0.62 12.80% 0.64 20.50% −0.66 −5.10% 0.84 34.31%
YNGM 0.61 12.63% 0.67 21.27% −0.54 −3.24% 0.81 33.84%
YNJD 0.58 8.53% 0.69 24.99% −0.58 −3.81% 0.82 34.04%

YNLC 0.66 10.26% 0.71 25.91% −0.52 −4.25% 0.86 38.74%
YNLJ 0.62 9.45% 0.79 34.80% −0.63 −6.39% 0.87 43.93%
YNRL 0.56 7.46% 0.77 33.74% −0.61 −5.77% 0.87 43.85%
YNSD 0.62 10.22% 0.75 30.08% −0.60 −4.96% 0.88 40.58%
YNTC 0.50 7.61% 0.81 33.56% −0.66 −5.53% 0.89 39.35%

YNYA 0.58 9.01% 0.78 30.98% −0.63 −5.97% 0.86 38.71%
YNYL 0.66 10.24% 0.77 27.73% −0.63 −5.27% 0.86 36.43%
YNYS 0.64 10.88% 0.78 31.82% −0.62 −4.42% 0.87 41.48%
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In order to ensure the reliability of the inversion and reduce the influence of the low-
quality CORS data, the quality of each CORS dataset was first evaluated before inversion,
and then different weights were assigned to CORS stations. The initial weight of every
station was set at 1, while the weight of the low-quality stations was decreased based on
the entire time series data and their RMS values.

It was demonstrated earlier that the integration solution of the CORS data revealed
a weekly GWSA grid over the 3 January 2018–30 December 2020 period was established,
with the GWSA expressed in EWH. As is shown in Figure 7, the GWSA showed significant
spatial and seasonal variations. The results revealed decreases in GWS from February to
June each year, which might be due to the significant seasonal and spatial decreases in
groundwater recharge (e.g., rainfall infiltration). From August to the next January, however,
increases in GWS were observed in the study area from August to January due to the
increase in rainfall amounts. In addition, the inverted GWS using the CORS network
showed a relatively high spatial resolution (Figure 7).
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The errors generated from the GNSS data processing, the surface mass model, and the
uncertainty in the CORS inversion model may affect the accuracy of the GWSA inversion.
The inverse distance weight interpolation method was used in this study to map the time
series of the GWSA of CORS stations. Table 5 shows the statistical results of the interpolated
GWSA time series of 12 CORS stations. The maximum and minimum values of the inverted
GWSA were−200 and 200 mm, respectively. In addition, there were some differences in the
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amplitude variation of GWSA at different CORS stations, indicating that the CORS inverse
results had a high resolution. The mean and standard deviation (SD) values of GWSA
at all CORS stations ranged from 3.16 to 15.03 mm and 55.87 to 110.39 mm, respectively.
The reliability of the CORS inverse results was assessed in the subsequent part using the
GRACE inverse results and groundwater monitoring station data.

Table 5. Statistics of CORS inverse results for GWSA (mm).

Max Min Mean SD

XIAG 221.65 −254.34 12.05 95.30
YNCX 194.21 −187.55 3.16 83.02
YNGM 195.89 −220.71 3.71 98.74
YNJD 238.94 −163.37 9.32 86.38
YNLC 269.79 −196.11 15.03 98.91
YNLJ 177.70 −117.27 8.25 61.45
YNRL 247.96 −106.43 12.97 55.87
YNSD 184.97 −141.54 9.58 65.27
YNTC 228.84 −129.08 12.70 69.09
YNYA 234.34 −251.67 3.17 110.39
YNYL 184.23 −179.98 6.39 76.58
YNYS 269.98 −222.53 7.96 106.81

In order to further analyze the temporal features of GWSA based on the sequence
data of the GWSA grids, the study area was first divided into four sub-study areas, namely
the eastern (BCHU, SYUN, and NJIA), northern (BAIS, YNYL, and JCHU), western (SUDI,
YINJ, and TOBG), and southern (CHA3, MENT, and YNSD) sub-study areas, and then four
CORS stations were selected randomly as examples. In Figure 8, the curves show the time
series of GWSA at the corresponding stations, while the bar charts indicate the precipitation
amounts in certain sub-study areas observed at nearby weather stations (Figure 1). In
comparison with Figure 7, Figure 8 more directly reflects the temporal features of GWSA.
The GWSA dynamics in different sub-study areas were relatively similar. Indeed, since
groundwater recharge is derived mainly from precipitation in the study region, GWSA
was strongly correlated with precipitation and exhibited significant seasonal differences.
According to the obtained results, GWS exhibited main wave crest shapes. From February
and March of each year, GWS showed the lowest values from February/March to June/July,
then increased significantly from July to October due to the significant increase in the
precipitation amounts, followed by a decrease in GWS in December and January. Therefore,
precipitation was the main influencing factor on the GWSA in the study region.

In order to quantitatively analyze the groundwater drought in the study area within 3
years, the groundwater severity index (DSI) [49] was used in this study. This index was
calculated using the following formula:

CORS− DSIi,j =
GWSAi,j − GWSAj

σj
(9)

where i denotes the year from 2018 to 2020; j represents the month from January to Decem-
ber; CORS−DSIi,j represents the groundwater drought index DSI; GWSAj and σj represent
the mean and standard deviation of GWSA, respectively. The classification results of ground-
water drought, derived from DSI, are reported in Table 6. As reported above, the monthly
GWSA data were obtained from the monthly average of the weekly GWSA time series.
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Figure 8. GWSA at Different CORS stations and precipitation amounts in different sub-study areas.

Figure 9 shows the temporal variation of CORS-DSI in the study area from 2018 to 2020.
The results showed a significant seasonal variation in CORS-DSI. In addition, the CORS-DSI
values in the eastern and northern sub-regions of the study area were above 0.8 in most
months, while only a few months showed CORS-DSI values slightly below 0.8, indicating a
mild groundwater drought (Figure 9a,b). On the other hand, the western and southern sub-
regions of the study area showed several months with CORS-DSI values below −0.8, while
the southern sub-region exhibited relatively significant groundwater drought, with CORS-
DSI close to −1.3 over the November 2018–February 2019 and April 2020–August 2020
periods (Figure 9c,d). It is worth noting that the groundwater drought analysis requires
more than 10 years of observation data, while only 3 years of CORS station data were
used in this study to invert the GWSA. Therefore, to obtain more detailed and accurate
drought analysis results, it is suggested to consider long-term observation data in future
groundwater drought analyses.
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Table 6. Correlation coefficients and WRMS (%) between different mass surface loads and the
reconstructed geodetic height time series.

Drought Ranges Drought Severity CORS-DSI Range Values

L1 No drought [−0.79, −0.50]
L2 Mild drought [−1.29, −0.80]
L3 Moderate drought [−1.59, −1.30]
L4 Severe drought [−1.99, −1.60]
L5 Extreme drought ≤2.0

4.2. Comparison with GRACE Data

In order to assess the reliability of the CORS inverse results for GWSA, the GRACE
inverse results for GWSA and the observed groundwater level data were used in this study.
EWH is considered in the GRACE data to reflect the TWS. GWSA can be computed by
removing soil water storage provided by the GLDAS data product. In this study, the period
between October 2018 and December 2020 was considered due to the loss of data between
GRACE and GRACE-FO. The monthly GRACE data were compared in this study with the
monthly inverted CORS-based GWSA data during the year 2019. The obtained results are
shown in Figure 10.
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Feng [50] showed a delay in the GRACE-based land water storage changes by 2 months
compared to precipitation changes. Therefore, a 2-month phase delay was performed for
the GRACE time series. As can be seen from Figure 10, relatively consistent GRACE- and
CORS-based GWSA trends were obtained following the phase delay correction.

In total, 15 CORS were selected randomly as examples. The values in Table 7 indicate
the correlation coefficients of the CORS- and GRACE-based GWSA results. Due to the
missing data in 2018, the correlation coefficients were computed in this study based on the
2019 data. Compared with the inversion CORS-based data, the GRACE data had a 2-month
phase delay. After phase delay correction, the coefficients were significantly improved.
Except for FGON, LJGC, and YNRL, showing correlation coefficients of 0.68, 0.69, and 0.65,
respectively, the correlation coefficients of all other stations were above 0.7. The highest
correlation coefficient was 0.85 in YNJD, indicating a strong correlation. The computed
correlation coefficients showed a spatial variation due to the low spatial resolution of the
inversion GRACE-based on data. As is shown in Figure 10, the interpolation method
used in this study resulted in relatively consistent trends of GRACE monitoring results at
different sites without showing significant spatial differences. In addition, the CORS-based
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GWSA results were based on long-term monitoring GNSS data. Indeed, the density of the
CORS stations in the study region allowed us to obtain a higher spatial resolution (Figure 7),
showing clear differences in the GWSA time series that are also clearer (Figure 10).

Table 7. Correlation coefficients between CORS and GRACE inverse results.

CORS
Stations

GRACE
CORS

GRACE
CORS

GRACE

Raw Data Correction Raw Data Correction Raw Data Correction

BAIS 0.44 0.73 FGON 0.36 0.68 LJGC 0.23 0.69
XIAG 0.57 0.76 YNCX 0.53 0.79 YNGM 0.66 0.75
YNJD 0.56 0.85 YNLC 0.53 0.81 YNLJ 0.19 0.80
YNRL 0.33 0.65 YNSD 0.59 0.74 YNTC 0.37 0.72
YNYA 0.36 0.70 YNYL 0.61 0.72 YNYS 0.11 0.72

Figure 11 shows the annual variation in CORS- and GRACE-based GWSA from 2018
to 2020. The spatial distribution characteristics of the two monitoring results were slightly
consistent, showing relatively large annual changes in GWSA in the eastern and southern
parts of the study area. The main spatial differences between the two monitoring results
were observed in the south-central part of the study area. Overall, the amplitude of the
annual variation in CORS-based GWSA was greater than that of GRACE-based GWSA.
This finding may be due to the different monitoring methods of the two data products.
Indeed, GRACE measures the integrated regional effect of mass redistribution. Its low
spatial resolution makes it difficult to comprehensively reflect the effective information of
the small-scale region, whereas the CORS data product is based on GNSS measurement
methods, which provides real-time geometric deformation information at different locations
in the study area, thereby fully reflecting the signal changes in the region.
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In summary, both inverse results reflected the changes in GWSA. The results indicate
that the GNSS-based CORS data are more sensitive to GWSA, showing obvious local spatial
characteristics compared to those of the GRACE data.

4.3. Comparison with Groundwater Monitoring Data

In order to further assess the reliability of CORS-based GWSA results, the inverted
GWSA data were interpolated and compared to groundwater levels observed at groundwa-
ter monitoring stations. The daily groundwater level data were collected from September
2018 to December 2020. These data were processed for gross error detection and weekly
averaging. In order to quantitatively compare the groundwater level data with GWSA, it is
necessary to convert the groundwater level data to equivalent water height by considering
the specific yield of the area [10]. The specific yield value for the study area was set to
0.05 [51,52].

The blue curves in Figure 12 indicate the CORS-based GWSA results observed in four
stations, while the red line indicates the result of multiplying the groundwater level by the
specific yield value. Both results are the average values of data observed over the year 2019.
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The results revealed consistent trends of CORS-based GWSA and groundwater levels,
showing the same order of amplitude changes. On the other hand, the correlation coeffi-
cients between the two data ranged from 0.62 to 0.82, indicating strong positive correlations
(Table 8). Therefore, the results demonstrated that the combined CORS and high-resolution
surface mass load data effectively invert GWSA in small-scale areas, providing accurate
seasonal trends for GWSA.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

levels, showing the same order of amplitude changes. On the other hand, the correlation 
coefficients between the two data ranged from 0.62 to 0.82, indicating strong positive 
correlations (Table 8). Therefore, the results demonstrated that the combined CORS and 
high-resolution surface mass load data effectively invert GWSA in small-scale areas, 
providing accurate seasonal trends for GWSA. 

 
Figure 12. Comparison between CORS-based GWSA and groundwater monitoring results. 

Table 8. Correlation coefficients between CORS-based GWSA and observed GWSA at groundwater 
monitoring stations. 

Station  Correlation 
Coefficient Station  Correlation 

Coefficient Station  Correlation 
Coefficient 

Site 01 0.82 Site 02 0.63 Site 03 0.74 
Site 04 0.82 Site 05 0.62 Site 06 0.62 
Site 07 0.64 Site 08 0.64 Site 09 0.64 
Site 10 0.69 Site 11 0.66 Site12 0.65 
Site13 0.63 Site14 0.67 Site15 0.66 

5. Discussion 
Considering the difficult physical conditions and high cost of constructing 

groundwater monitoring stations, as well as the low-resolution problem of the GRACE 
inversion results, the present study aims to assess the feasibility and reliability of CORS 
for GWSA inversion. Numerous studies have analyzed the correlation of TWSA or GWSA 
with GNSS vertical displacement [24,26,27]. In addition, He [21] inverted TWSA using 
GNSS vertical displacement. However, few studies have directly inverted GWSA using 
the CORS data product. Therefore, to improve the accuracy and stability of the inversion 
results, global and regional high-resolution surface mass models were combined to 
determine the high-precision load deformation field in western Yunnan using the 
remove–restore method. In addition, the reliability of CORS-based GWSA results was 
assessed using the observed groundwater levels. Although the obtained results showed 
accurate GWSA and demonstrated the validity and reliability of the methods used in this 
study, there are still some challenges to address. Data covering a period longer than 2.5 
years were observed only at 15 stations among the 66 CORS stations, thereby affecting the 
accuracy of the inverse results for some months. Since the data processing is complicated, 
the study period considered in this study was only 3 years, resulting in non-obvious 
drought characteristics and trends. Therefore, this study focused mainly on the seasonal 

Figure 12. Comparison between CORS-based GWSA and groundwater monitoring results.

Table 8. Correlation coefficients between CORS-based GWSA and observed GWSA at groundwater
monitoring stations.

Station Correlation
Coefficient Station Correlation

Coefficient Station Correlation
Coefficient

Site 01 0.82 Site 02 0.63 Site 03 0.74
Site 04 0.82 Site 05 0.62 Site 06 0.62
Site 07 0.64 Site 08 0.64 Site 09 0.64
Site 10 0.69 Site 11 0.66 Site12 0.65
Site13 0.63 Site14 0.67 Site15 0.66

5. Discussion

Considering the difficult physical conditions and high cost of constructing ground-
water monitoring stations, as well as the low-resolution problem of the GRACE inversion
results, the present study aims to assess the feasibility and reliability of CORS for GWSA
inversion. Numerous studies have analyzed the correlation of TWSA or GWSA with GNSS
vertical displacement [24,26,27]. In addition, He [21] inverted TWSA using GNSS verti-
cal displacement. However, few studies have directly inverted GWSA using the CORS
data product. Therefore, to improve the accuracy and stability of the inversion results,
global and regional high-resolution surface mass models were combined to determine
the high-precision load deformation field in western Yunnan using the remove–restore
method. In addition, the reliability of CORS-based GWSA results was assessed using the
observed groundwater levels. Although the obtained results showed accurate GWSA and
demonstrated the validity and reliability of the methods used in this study, there are still
some challenges to address. Data covering a period longer than 2.5 years were observed
only at 15 stations among the 66 CORS stations, thereby affecting the accuracy of the
inverse results for some months. Since the data processing is complicated, the study period
considered in this study was only 3 years, resulting in non-obvious drought characteristics
and trends. Therefore, this study focused mainly on the seasonal variation in GWSA in the
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study area. In addition, the specific yield in this study was set to 0.05 for the entire study
area. It should be noted that the specific yield can vary significantly depending on the
depth of groundwater wells and the lithological characteristic of the aquifers. Therefore,
different specific yield values need to be provided for different groundwater wells to obtain
more accurate GWSA results using groundwater monitoring data.

The correlation coefficients between GRACE- and CORS-based GWSA were above
0.65 following the 2-month delay phase correction. The variation in the EWH of GRACE-
and CORS-based GWSA showed a consistent magnitude of variation. In addition, the
annual variation in CORS-based GWSA results was slightly larger than that of GRACE-
based GWSA results. Although the principles of GRACE and CORS methods used in
the GWSA inversion are different, the results suggested that both methods can effectively
reflect the seasonal trend of GWSA in the study area. Indeed, GRACE product data
are based on remote sensing techniques to comprehensively reflect the regional effects
with redistributed mass, resulting in a low spatial resolution and difficulties in effectively
transmitting small-scale regional information. Moreover, the filtering process used in the
GRACE data processing might affect the real signal. On the other hand, the CORS data
product is derived from GNSS-based monitoring data, allowing us to obtain in real time
the geodetic height changes at a certain location, thus assuring faster response and better
performance in reflecting the inter-region signal dynamics. Both methods can reflect the
GWSA trends. However, the signal intensity and GRACE trend monitoring results at
different locations can be basically the same in small-scale areas, while the differences in
CORS network monitoring results are more obvious. GRACE is ineffective in determining
features of small-scale study areas due to its limited spatial resolution, while CORS network
monitoring results exhibit higher spatiotemporal resolution, with continuous and high-
precision observation data, making the CORS method advantageous. Moreover, the CORS
method can capture local area signals that are difficult to monitor by remote sensing
techniques (e.g., GRACE). In summary, the CORS-based GWSA results revealed higher
spatiotemporal resolution than that of GRACE-based GWSA results and are more sensitive
to groundwater storage changes.

6. Conclusions

The present study aims to invert GWSA in western Yunnan using CORS and high-
precision surface mass load data. This approach is based on the already-established CORS
network without requiring extra construction costs. This approach is, indeed, able to
provide a high-resolution GWSA grid sequence within the coverage of the CORS network
due to the high density of CORS stations and consecutive high-precision GNSS monitoring
data. Western Yunnan Province was considered in the present study to assess the validity
of the approach used. The results demonstrated that the approach is able to independently
and effectively invert a high-resolution GWSA grid within the CORS network. In addition,
the spatiotemporal distribution characteristics of GWSA were analyzed in this study using
the precipitation data observed at meteorological stations in western Yunnan. Moreover, to
test the reliability of the obtained results, the GRACE and groundwater monitoring data
were used in the present study. The main conclusions are as follows:

1. The correlation coefficients between the CORS geodetic height time series and the
vertical deformation of the surface mass loads were all above 0.8, indicating strong
positive correlations. In addition, the percentage of WRMS decreased from 33.84
to 43.93% following the load removal, demonstrating the effectiveness of the data
processing used in the present study and the feasibility of CORS inversion for GWSA.
The vertical deformations caused by surface mass loads contributed significantly
to the seasonal signals of CORS geodetic height changes. Among the three surface
mass loads, atmospheric and soil water loads were more influential, with an ampli-
tude ranging from −8 to 8 mm, while the non-tidal oceanic load showed the lowest
influence with an amplitude range of −2–2 mm.



Remote Sens. 2022, 14, 4032 19 of 21

2. The GWSA results exhibited clear seasonal variations in the study area from January
2018 to December 2020. In addition, GWS values decreased and increased from
February to July and from July to September due to the significant decrease and
increase in precipitation, respectively, observed during these periods. These findings
indicated that precipitation is the major factor influencing GWS in the study region.
In addition, the GWSA trends were similar in the different sub-study areas, while
differences were mainly observed in the annual variation magnitude of GWSA. The
largest annual variation was observed mainly in the eastern part of the study area,
reaching 450 mm.

3. After performing a 2-month phase delay correction for GRACE inverse results, the
correlation coefficient between GRACE- and CORS-GWSA results was over 0.65. Both
methods were able to reflect the dynamics of GWSA in the study area. However, the
CORS-based GWSA results reflected more accurately the GWSA changes in the study
area, with a higher spatiotemporal resolution than those obtained using the GRACE
data product.

4. The CORS-based GWSA showed high positive correlations with those determined using
groundwater monitoring stations, with a correlation coefficient range of 0.62–0.82. The
amplitudes of both GWSA results were on the same order of magnitude. These findings
demonstrated the effectiveness and reliability of the CORS inversion for GWSA.
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