3DVAR Aerosol Data Assimilation and Evaluation Using Surface PM2.5, Himawari-8 AOD and CALIPSO Profile Observations in the North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF-Chem Model and Data
2.2. 3DVAR DA System
2.3. Experimental Design and Evaluation Method
3. Results
3.1. Consistency of PM2.5, H-8 AOD, and CALIPSO AEC
3.2. Comparison to PM2.5
3.3. Comparison to AOD
3.4. Comparison to CALIPSO AEC
3.5. Effects of DA on the Forecast Performance for PM2.5 and AOD
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, Y.; Gong, D.Y.; Fan, J.W.; Leung, L.R.; Bennartz, R.; Chen, D.L.; Wang, W.G. Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res. 2009, 114, D00K02. [Google Scholar] [CrossRef]
- Wang, Z.F.; Li, J.; Wang, Z.; Yang, W.Y.; Tang, X.; Ge, B.Z.; Yan, P.Z.; Zhu, L.L.; Chen, X.S.; Chen, H.S.; et al. Modeling study of regional severe hazes over Mid-Eastern China in January 2013 and its implications on pollution prevention and control. Sci. China. Earth. Sci. 2014, 57, 3–13. [Google Scholar] [CrossRef]
- Zhang, X.Y. Characteristics of the chemical components of aerosol particles in the vatious regions over China. Acta. Meteorol. Sin. 2014, 72, 1108–1117. [Google Scholar] [CrossRef]
- Wu, G.X.; Li, Z.Q.; Fu, C.B.; Zhang, X.Y.; Zhang, R.H.; Zhou, T.J.; Li, J.P.; Li, J.D.; Zhou, D.G.; Wu, L.; et al. Advances in studying interactions between aerosols and monsoon in China. Sci. China. Earth. Sci. 2016, 59, 1–16. [Google Scholar] [CrossRef]
- Guo, J.P.; Deng, M.J.; Lee, S.S.; Wang, F.; Li, Z.Q.; Zhai, P.M.; Liu, H.; Lv, W.T.; Yao, W.; Li, X.M. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res.-Atmos. 2016, 121, 6472–6488. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, Y.; Guo, J.P.; Zhao, C.F.; Cribb, M.C.; Dong, X.Q.; Fan, J.W.; Gong, F.Y.; Huang, J.P.; Jiang, M.J.; et al. East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC). J. Geophys. Res.-Atmos. 2019, 124, 13026–13054. [Google Scholar] [CrossRef]
- Marina-Montes, C.; Pérez-Arribas, L.V.; Escudero, M.; Anzano, J.; Cáceres, J.O. Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Sci. Total Environ. 2020, 721, 137702. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Grell, G.; Baklanov, A. Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ. 2011, 45, 6845–6851. [Google Scholar] [CrossRef]
- Liao, H.; Henze, D.K.; Seinfeld, J.H.; Wu, S.; Mickley, L.J. Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Han, Z. A regional air quality model: Evaluation and simulation of O3 and relevant gaseous species in East Asia during spring 2001. Environ. Model. Softw. 2007, 22, 1328–1336. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, C.; Huang, J.; Leung, L.R.; Qian, Y.; Yu, H.; Huang, L.; Kalashnikova, O.V. Trans-pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations. Geosci. Model Dev. 2016, 9, 1725–1746. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Qian, Y.; Leung, L.R.; Ma, Y.; Bi, J.; Ma, J. Trans-Pacific transport and evolution of aerosols: Analysis of characteristics and source contributions. Atmos. Chem. Phys. 2019, 19, 12709–12730. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, C.; Leung, L.R.; Du, Q.; Ma, Y.; Hagos, S.; Qian, Y.; Dong, W. Characterizing the impact of atmospheric rivers on aerosols in the western U.S. Geophys. Res. Lett. 2022, 49, e2021GL096421. [Google Scholar] [CrossRef]
- Zhang, H.; Sharma, G.; Dhawan, S.; Dhanraj, D.; Li, Z.; Biswas, P. Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations. Aerosol Sci. Technol. 2020, 54, 739–760. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Liu, Q.H.; Lin, H.C.; Schwartz, C.S.; Lee, Y.H.; Wang, T.J. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia. J. Geophys. Res.-Atmos. 2011, 116, D23206. [Google Scholar] [CrossRef]
- Li, Z.J.; Zang, Z.L.; Li, Q.B.; Chao, Y.; Chen, D.; Ye, Z.; Liu, Y.; Liou, K.N. A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction. Atmos. Chem. Phys. 2013, 13, 4265–4278. [Google Scholar] [CrossRef]
- Saide, P.E.; Kim, J.; Song, C.H.; Choi, M.; Cheng, Y.F.; Carmichael, G.R. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations. Geophys. Res. Lett. 2015, 41, 9188–9196. [Google Scholar] [CrossRef]
- Zang, Z.L.; Hao, Z.L.; Li, Y.; Pan, X.B.; You, W.; Li, Z.J.; Chen, D. Background error covariance with balance constraints for aerosol species and applications in variational data assimilation. Geosci. Model Dev. 2016, 9, 2623–2638. [Google Scholar] [CrossRef]
- Yumimoto, K.; Nagao, T.M.; Kikuchi, M.; Sekiyama, T.T.; Murakami, H.; Tanaka, T.Y.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, Z.Q.; Chen, D.; Ban, J.M. Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter. Atmos. Chem. Phys. 2017, 17, 4837–4855. [Google Scholar] [CrossRef]
- Pang, J.M.; Liu, Z.Q.; Wang, X.M.; Bresch, J.; Ban, J.M.; Chen, D.; Kim, J. Assimilating AOD retrievals from GOCI and VIIRS to forecast surface PM 2.5 episodes over Eastern China. Atmos. Environ. 2018, 179, 288–304. [Google Scholar] [CrossRef]
- Cheng, X.H.; Liu, Y.L.; Xu, X.D.; You, W.; Zang, Z.Z.; Gao, L.N.; Chen, Y.B.; Su, D.B.; Yan, P. Lidar data assimilation method based on CRTM and WRF-Chem models and its application in PM2.5 forecasts in Beijing. Sci. Total. Environ. 2019, 682, 541–552. [Google Scholar] [CrossRef]
- Wang, D.C.; You, W.; Zang, Z.L.; Pan, X.B.; He, H.R.; Liang, Y.F. A three-dimensional variational data assimilation system for a size-resolved aerosol model: Implementation and application for particulate matter and gaseous pollutant forecasts across China. Sci. China. Earth. Sci. 2020, 63, 1366–1380. [Google Scholar] [CrossRef]
- Liang, Y.F.; Zang, Z.L.; Liu, D.; Yan, P.; Hu, Y.W.; Zhou, Y.; You, W. Development of a three-dimensional variational assimilation system for lidar profile data based on a size-resolved aerosol model in WRF–Chem model v3.9.1 and its application in PM2.5 forecasts across China. Geosci. Model. Dev. 2020, 13, 6285–6301. [Google Scholar] [CrossRef]
- Wang, D.C.; You, W.; Zang, Z.L.; Pan, X.B.; Hu, Y.W.; Liang, Y.F. A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem: Design, development, and application of assimilating Himawari-8 aerosol observations. Geosci. Model. Dev. 2022, 15, 1821–1840. [Google Scholar] [CrossRef]
- Hu, Y.W.; Zang, Z.L.; Chen, D.; Ma, X.Y.; Liang, Y.F.; You, W.; Pan, X.B.; Wang, L.; Wang, D.C.; Zhang, Z.D. Optimization and Evaluation of SO2 Emissions Based on WRF-Chem and 3DVAR Data Assimilation. Remote Sens. 2022, 14, 220. [Google Scholar] [CrossRef]
- Elbern, H.; Schmidt, H.; Ebel, A. Variational data assimilation for tropospheric chemistry modeling. J. Geophys. Res.-Atmos. 1997, 102, 15967–15985. [Google Scholar] [CrossRef]
- Elbern, H.; Schmidt, H. Ozone episode analysis by four-dimensional variational chemistry data assimilation. J. Geophys. Res. 2001, 106, 3569–3590. [Google Scholar] [CrossRef]
- Niu, T.; Gong, S.L.; Zhu, G.F.; Liu, H.L.; Hu, X.Q.; Zhou, C.H.; Wang, Y.Q. Data assimilation of dust aerosol observations for the CUACE/dust forecasting system. Atmos. Chem. Phys. 2007, 7, 3473–3482. [Google Scholar] [CrossRef]
- Errera, Q.; Daerden, F.; Chabrillat, S.; Lambert, J.C.; Lahoz, W.A.; Viscardy, S.; Bonjean, S.; Fonteyn, D. 4D-Var Assimilation of MIPAS chemical observations: Ozone and nitrogen dioxide analyses. Atmos. Chem. Phys. 2008, 8, 6169–6187. [Google Scholar] [CrossRef]
- Ye, H.C.; Pan, X.B.; You, W.; Zhu, Z.Q.; Zang, Z.L.; Wang, D.C.; Zhang, X.H.; Hu, Y.W.; Jin, S.H. Impact of CALIPSO profile data assimilation on 3-D aerosol improvement in a size-resolved aerosol model. Atmos. Res. 2021, 264, 105877. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Liu, Z.Q.; Wang, T.J.; Schwartz, C.S.; Lin, H.C.; Jiang, F. Probing into the impact of 3-DVAR assimilation of surface PM10 observations over China using process analysis. J. Geophys. Res.-Atmos. 2013, 118, 6738–6749. [Google Scholar] [CrossRef]
- Tang, Y.H.; Pagowski, M.; Chai, T.F.; Pan, L.; Lee, P.; Baker, B.; Kumar, R.; Monache, L.D.; Tong, D.; Kim, H.C. A case study of aerosol data assimilation with the community multi-scale air quality model over the contiguous United States using 3D-Var and optimal interpolation methods. Geosci. Model Dev. 2017, 10, 4743–4758. [Google Scholar] [CrossRef]
- Feng, S.Z.; Jiang, F.; Jiang, Z.Q.; Wang, H.M.; Cai, Z.; Zhang, L. Impact of 3DVAR assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime. Atmos. Environ. 2018, 187, 34–49. [Google Scholar] [CrossRef]
- Xia, X.L.; Min, J.Z.; Shen, F.F.; Wang, Y.B.; Yang, C. Aerosol data assimilation using data from Fengyun-3A and MODIS: Application to a dust storm over East Asia in 2011. Adv. Atmos. Sci. 2019, 36, 1–14. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.Q.; Fast, J.; Ban, J.M. Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmos. Chem. Phys. 2016, 16, 10707–10724. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Z.Q.; Chen, D.; Zhao, P.S.; Chen, M. Development and application of the WRFDA-Chem three-dimensional variational (3DVAR) system: Aiming to improve air quality forecasting and diagnose model deficiencies. Atmos. Chem. Phys. 2020, 20, 9311–9329. [Google Scholar] [CrossRef]
- Dai, T.; Cheng, Y.; Suzuki, K.; Goto, D.; Kikuchi, M.; Schutgens, N.A.J.; Yoshida, M.; Zhang, P.; Husi, L.; Shi, G.; et al. Hourly aerosol assimilation of Himawari-8 AOT using the four-dimensional local ensemble transform Kalman filter. J. Adv. Modeling Earth Syst. 2019, 11, 680–711. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: New York, NY, USA, 2003; p. 341. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Z.; You, W.; Ye, H.; Liang, Y.; Li, Y.; Wang, D.; Hu, Y.; Yan, P. 3DVAR Aerosol Data Assimilation and Evaluation Using Surface PM2.5, Himawari-8 AOD and CALIPSO Profile Observations in the North China. Remote Sens. 2022, 14, 4009. https://doi.org/10.3390/rs14164009
Zang Z, You W, Ye H, Liang Y, Li Y, Wang D, Hu Y, Yan P. 3DVAR Aerosol Data Assimilation and Evaluation Using Surface PM2.5, Himawari-8 AOD and CALIPSO Profile Observations in the North China. Remote Sensing. 2022; 14(16):4009. https://doi.org/10.3390/rs14164009
Chicago/Turabian StyleZang, Zengliang, Wei You, Hancheng Ye, Yanfei Liang, Yi Li, Daichun Wang, Yiwen Hu, and Peng Yan. 2022. "3DVAR Aerosol Data Assimilation and Evaluation Using Surface PM2.5, Himawari-8 AOD and CALIPSO Profile Observations in the North China" Remote Sensing 14, no. 16: 4009. https://doi.org/10.3390/rs14164009