Validation and Analysis of MISR and POLDER Aerosol Products over China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. MISR V23 Aerosol Products
2.1.2. POLDER-3/GRASP Aerosol Products
2.1.3. AERONET Measurements
2.2. Matching Methods
2.2.1. Temporal and Spatial Windows
2.2.2. Statistical Indicators
3. Results
3.1. MISR V23 Aerosol Properties
3.2. POLDER-3/GRASP Aerosol Properties
4. Discussion
4.1. Comparison with Other Aerosol Products
4.2. Temporal Variation
4.2.1. Interannual Variation Characteristics
4.2.2. Seasonal Variation Characteristics
4.2.3. Heavy Pollution Event in Beijing-Tianjin-Hebei Region
4.3. Spatial Variation
5. Conclusions
- The AOD inversion accuracy of MISR V23 product and POLDER-3/GRASP is high; their correlation coefficient values are 0.903 and 0.902, respectively. The numbers of matched pairs within EE lines are 80.60% and 40.71%, respectively. MISR V23 AOD is obviously underestimated in high aerosol loadings, with a certain deviation. POLDER-3/GRASP AOD is overestimated in low aerosol loadings, but it is closer to the 1:1 line as a whole. For AAOD, since the calculation is related to AOD and SSA, the possibility of error is greater. The accuracy of two products is poor; their correlation coefficient values are 0.173 and 0.396, the slope of the linear regression is 0.028 and 0.374, respectively. The correlation of POLDER-3/GRASP AAOD is higher, indicating that there is still great uncertainty in the inversion of AAOD. In terms of the inversion accuracy of AE products, POLDER-3/GRASP AE also has a higher correlation coefficient of 0.661 compared with that of MISR V23 AE (0.334). At the same time, AOD and AE were evaluated for different land cover types. The results show that the inversion results of the two AOD products are good in the five land cover types. Specifically, MISR V23 products perform better under forest and water types while POLDER-3/GRASP products have higher inversion accuracy under urban and croplands types.
- AOD spatiotemporal distribution figures and annual line figures of three aerosol parameters were drawn for two products. The variation of AOD and AE from 2000–2020 was 0.202–0.280 and 0.972–1.128, respectively. The average values of AOD, AAOD, and AE were 0.238, 0.078, and 1.045, respectively. Under the influence of natural change and emission controlling measures, three aerosol parameters fluctuated in some years. AOD changed significantly in four seasons. Due to factors such as climate and economic development, there were great differences in AOD trends in different regions, and the proportion of human factors had gradually become higher, showing the great contribution of human activities to aerosols.
- Compared with the inversion results of other traditional scalar satellite data, the results show that the accuracy of multi-angle polarization data is high. Multi-angle polarization observations increase observation information and help to decouple surface and atmosphere. However, there are some uncertainties in polarization bands setting and radiometric calibration accuracy, which have a certain impact on the inversion accuracy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prather, K.A.; Hatch, C.D.; Grassian, V.H. Analysis of Atmospheric Aerosols. Annu. Rev. Anal. Chem. 2008, 1, 485–514. [Google Scholar] [CrossRef] [PubMed]
- Mahowald, N.; Ward, D.S.; Kloster, S.; Flanner, M.G.; Heald, C.L.; Heavens, N.G.; Hess, P.G.; Lamarque, J.-F.; Chuang, P.Y. Aerosol Impacts on Climate and Biogeochemistry. Annu. Rev. Environ. Resour. 2011, 36, 45–74. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Tuck, A. The Role of Atmospheric Aerosols in the Origin of Life. Surv. Geophys. 2002, 23, 379–409. [Google Scholar] [CrossRef]
- Alves, C. Atmospheric aerosols: Historical perspective, sources, chemical formation processes and organic composition. Quim. Nova 2005, 28, 859–870. [Google Scholar] [CrossRef]
- Kanakidou, M.; Myriokefalitakis, S.; Tsigaridis, K. Aerosols in Atmospheric Chemistry and Biogeochemical Cycles of Nutrients. Environ. Res. Lett. 2018, 13, 063004. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.-H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in Satellite Remote Sensing of Aerosols and Impact on Monitoring Its Long-Term Trend: A Review and Perspective. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Wen, J.; Wu, X.; Wang, J.; Tang, R.; Ma, D.; Zeng, Q.; Gong, B.; Xiao, Q. Characterizing the Effect of Spatial Heterogeneity and the Deployment of Sampled Plots on the Uncertainty of Ground “Truth” on a Coarse Grid Scale: Case Study for Near-Infrared (NIR) Surface Reflectance. JGR Atmos. 2022, 127. [Google Scholar] [CrossRef]
- Hong, G.; Xing-fa, G.; Dong-hai, X.; Tao, Y.; Qing-yan, M. A Review of Atmospheric Aerosol Research by Using Polarization Remote Sensing. Spectrosc. Spectr. Anal. 2014, 34, 1873–1880. [Google Scholar] [CrossRef]
- Garay, M.J.; Witek, M.L.; Kahn, R.A.; Seidel, F.C.; Limbacher, J.A.; Bull, M.A.; Diner, D.J.; Hansen, E.G.; Kalashnikova, O.V.; Lee, H.; et al. Introducing the 4.4 Km Spatial Resolution Multi-Angle Imaging SpectroRadiometer (MISR) Aerosol Product. Atmos. Meas. Tech. 2020, 13, 593–628. [Google Scholar] [CrossRef] [Green Version]
- Tanré, D.; Bréon, F.M.; Deuzé, J.L.; Dubovik, O.; Ducos, F.; François, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote Sensing of Aerosols by Using Polarized, Directional and Spectral Measurements within the A-Train: The PARASOL Mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Chen, H.; Lin, L.; Han, Z.; Goloub, P. Retrieval of Aerosol Optical Properties over the Beijing Area Using POLDER/PARASOL Satellite Polarization Measurements. Adv. Atmos. Sci. 2009, 26, 1099–1107. [Google Scholar] [CrossRef]
- Ge, B.Y.; Li, Z.Q.; Hou, W.Z.; Zhang, Y.; Li, K.T. Validation And Comparison Of Fine-Mode Aerosol Optical Depth Products Between Modis And Polder. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-3/W9, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Torres, B.; Fuertes, D. Characterization of Aerosol Size Properties from Measurements of Spectral Optical Depth: A Global Validation of the GRASP-AOD Code Using Long-Term AERONET Data. Atmos. Meas. Tech. 2021, 14, 4471–4506. [Google Scholar] [CrossRef]
- Hasekamp, O.P.; Landgraf, J. Retrieval of Aerosol Properties over Land Surfaces: Capabilities of Multiple-Viewing-Angle Intensity and Polarization Measurements. Appl. Optics 2007, 46, 3332–3344. [Google Scholar] [CrossRef]
- Chen, C.; Dubovik, O.; Fuertes, D.; Litvinov, P.; Lapyonok, T.; Lopatin, A.; Ducos, F.; Derimian, Y.; Herman, M.; Tanré, D.; et al. Validation of GRASP Algorithm Product from POLDER/PARASOL Data and Assessment of Multi-Angular Polarimetry Potential for Aerosol Monitoring. Earth Syst. Sci. Data 2020, 12, 3573–3620. [Google Scholar] [CrossRef]
- Ge, B.; Mei, X.; Li, Z.; Hou, W.; Xie, Y.; Zhang, Y.; Xu, H.; Li, K.; Wei, Y. An Improved Algorithm for Retrieving High Resolution Fine-Mode Aerosol Based on Polarized Satellite Data: Application and Validation for POLDER-3. Remote Sens. Environ. 2020, 247, 111894. [Google Scholar] [CrossRef]
- He, Q.; Zhang, M.; Huang, B.; Tong, X. MODIS 3 Km and 10 Km Aerosol Optical Depth for China: Evaluation and Comparison. Atmos. Environ. 2017, 153, 150–162. [Google Scholar] [CrossRef]
- Eibedingil, I.G.; Gill, T.E.; Van Pelt, R.S.; Tong, D.Q. Comparison of Aerosol Optical Depth from MODIS Product Collection 6.1 and AERONET in the Western United States. Remote Sens. 2021, 13, 2316. [Google Scholar] [CrossRef]
- Qin, W.; Fang, H.; Wang, L.; Wei, J.; Zhang, M.; Su, X.; Bilal, M.; Liang, X. MODIS High-Resolution MAIAC Aerosol Product: Global Validation and Analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational Remote Sensing of Tropospheric Aerosol over Land from EOS Moderate Resolution Imaging Spectroradiometer. J. Geophys. Res. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, M.; Ma, Y.; Gong, W.; Chen, C.; Yang, L.; Hu, X.; Liu, B.; Chen, N.; Du, B.; et al. Adapting the Dark Target Algorithm to Advanced MERSI Sensor on the FengYun-3-D Satellite: Retrieval and Validation of Aerosol Optical Depth Over Land. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8781–8797. [Google Scholar] [CrossRef]
- Nichol, J.; Bilal, M. Validation of MODIS 3 Km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sens. 2016, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol Properties over Bright-Reflecting Source Regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 Aerosol Optical Depth Products over Land and Ocean: Validation and Comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle Implementation of Atmospheric Correction (MAIAC): 1. Radiative Transfer Basis and Look-up Tables. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lyapustin, A.I.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.G.; Sellers, P.J.; Tucker, C.J.; Korkin, S.V. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC): 3. Atmospheric Correction. Remote Sens. Environ. 2012, 127, 385–393. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Wei, J.; Tan, Y.; Wang, Q. Evaluation of MAIAC Aerosol Retrievals over China. Atmos. Environ. 2019, 202, 8–16. [Google Scholar] [CrossRef]
- Hou, W.; Li, Z.; Wang, J.; Xu, X.; Goloub, P.; Qie, L. Improving Remote Sensing of Aerosol Microphysical Properties by Near-Infrared Polarimetric Measurements Over Vegetated Land: Information Content Analysis. J. Geophys. Res. Atmos. 2018, 123, 2215–2243. [Google Scholar] [CrossRef]
- Waquet, F.; Cairns, B.; Knobelspiesse, K.; Chowdhary, J.; Travis, L.D.; Schmid, B.; Mishchenko, M.I. Polarimetric Remote Sensing of Aerosols over Land. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Li, E.; Zhang, Z.; Lin, X.; Chi, Y.; Zhou, L.; Wu, C.; Wang, Q. Validation of POLDER-3/GRASP Aerosol Products Using AERONET Measurements over China. Atmos. Environ. 2019, 215, 116893. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Zhang, Y.; Chen, C.; Dubovik, O.; Zhang, Y.; Xu, H.; Li, K.; Chen, J.; Wang, H.; et al. Validation of POLDER GRASP Aerosol Optical Retrieval over China Using SONET Observations. J. Quant. Spectrosc. Radiat. Transf. 2020, 246, 106931. [Google Scholar] [CrossRef]
- Tao, M.; Wang, J.; Li, R.; Chen, L.; Xu, X.; Wang, L.; Tao, J.; Wang, Z.; Xiang, J. Characterization of Aerosol Type Over East Asia by 4.4 Km MISR Product: First Insight and General Performance. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J. An Analysis of Global Aerosol Type as Retrieved by MISR: MISR Aerosol Type. J. Geophys. Res. Atmos. 2015, 120, 4248–4281. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy Assessments of Aerosol Optical Properties Retrieved from Aerosol Robotic Network (AERONET) Sun and Sky Radiance Measurements. J. Geophys. Res.-Atmos. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Tanre, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res.-Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Li, Y.; Shi, G.; Sun, Z. Evaluation and Improvement of MODIS Aerosol Optical Depth Products over China. Atmos. Environ. 2020, 223, 117251. [Google Scholar] [CrossRef]
- Che, Y.; Xue, Y.; Guang, J.; She, L.; Guo, J. Evaluation of the AVHRR DeepBlue Aerosol Optical Depth Dataset over Mainland China. ISPRS J. Photogramm. Remote Sens. 2018, 146, 74–90. [Google Scholar] [CrossRef]
- He, L.; Wang, L.; Li, Z.; Jiang, D.; Sun, L.; Liu, D.; Liu, L.; Yao, R.; Zhou, Z.; Wei, J. VIIRS Environmental Data Record and Deep Blue Aerosol Products: Validation, Comparison, and Spatiotemporal Variations from 2013 to 2018 in China. Atmos. Environ. 2021, 250, 118265. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Tao, M.; Wei, J.; Jin, J.; Tan, Y.; Wang, Q. Validation of Himawari-8 Aerosol Optical Depth Retrievals over China. Atmos. Environ. 2019, 199, 32–44. [Google Scholar] [CrossRef]
- Fougnie, B. Improvement of the PARASOL Radiometric In-Flight Calibration Based on Synergy Between Various Methods Using Natural Targets. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2140–2152. [Google Scholar] [CrossRef]
- Gupta, P.; Remer, L.A.; Levy, R.C.; Mattoo, S. Validation of MODIS 3 Km Land Aerosol Optical Depth from NASA’s EOS Terra and Aqua Missions. Atmos. Meas. Tech. 2018, 11, 3145–3159. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Liu, L.; He, L.; Qin, W.; Cribb, M. MODIS Collection 6.1 3 Km Resolution Aerosol Optical Depth Product: Global Evaluation and Uncertainty Analysis. Atmos. Environ. 2020, 240, 117768. [Google Scholar] [CrossRef]
- Choi, M.; Lim, H.; Kim, J.; Lee, S.; Eck, T.F.; Holben, B.N.; Garay, M.J.; Hyer, E.J.; Saide, P.E.; Liu, H. Validation, Comparison, and Integration of GOCI, AHI, MODIS, MISR, and VIIRS Aerosol Optical Depth over East Asia during the 2016 KORUS-AQ Campaign. Atmos. Meas. Tech. 2019, 12, 4619–4641. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Guo, J.; Zhao, D. Characteristics of Aerosol Transport and Distribution in East Asia. Atmos. Res. 2013, 132, 185–198. [Google Scholar] [CrossRef]
- Thompson, A.J.; Skinner, C.B.; Poulsen, C.J.; Zhu, J. Modulation of Mid-Holocene African Rainfall by Dust Aerosol Direct and Indirect Effects. Geophys. Res. Lett. 2019, 46, 3917–3926. [Google Scholar] [CrossRef]
- Zhao, N.; Cao, F.; Tian, Q.; Chen, Y.; Liu, Q.; Huang, Y.; Wang, Y. Spatial-Temporal Distribution of Absorptive Aerosols in the Yangtze River Delta. Environ. Sci. 2019, 40, 3898–3907. [Google Scholar] [CrossRef]
- Dai, Z.X.; Zhang, Y.Z.; Hu, Y.F.; Yu, D. Spatial-Temporal Characteristics of PM2.5 in Yangtze River Delta (YRD) Region Based on the Ground Monitoring Data from 2013 to 2015. Res. Environ. Sci. 2022, 35, 813–821. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, J.; Zhao, C.; Fang, W.; Xue, W.; Yang, W.; Ji, D.; Dang, J.; Duan, J.; Sun, J.; et al. A Study on the Characteristics of Ice Nucleating Particles Concentration and Aerosols and Their Relationship in Spring in Beijing. Atmos. Res. 2021, 247, 105196. [Google Scholar] [CrossRef]
- Ren, H.; Li, A.; Xie, P.; Hu, Z.; Xu, J.; Huang, Y.; Li, X.; Zhong, H.; Zhang, H.; Tian, X.; et al. The Characterization of Haze and Dust Processes Using MAX-DOAS in Beijing, China. Remote Sens. 2021, 13, 5133. [Google Scholar] [CrossRef]
- Tao, M.; Wang, J.; Li, R.; Wang, L.; Wang, L.; Wang, Z.; Tao, J.; Che, H.; Chen, L. Performance of MODIS High-Resolution MAIAC Aerosol Algorithm in China: Characterization and Limitation. Atmos. Environ. 2019, 213, 159–169. [Google Scholar] [CrossRef]
Parameters | Value/Comparison Methodology |
---|---|
Wavelength | AOD/AAOD at 558 nm; AE at 550–860 nm |
Spatial Resolution | 4.4 km × 4.4 km |
Aerosol optical depth (AOD) | Interpolated AERONET AOD at 558 nm by using AE |
Absorbing aerosol optical depth (AAOD) | Interpolated AERONET AAOD at 558 nm by using AAE |
Ångström exponent (AE) | Compared with AERONET AE at 500–870 nm |
Parameters | Value/Comparison Methodology |
---|---|
Wavelength | AOD/AAOD at 565 nm; AE at 443–865 nm |
Spatial Resolution | 10 km × 10 km |
AOD | Interpolated AERONET AOD at 565 nm by using AE |
AAOD | Interpolated AERONET AAOD at 565 nm by using AAE |
AE | Compared with AERONET AE at 440–870 nm |
Land Cover Type | Number | Site Name | Longitude (°) | Latitude (°) | Period | Data Level |
---|---|---|---|---|---|---|
Urban | 1 | AOE_Baotou | 109.629 | 40.852 | 2013/01~2020/08 | Level 2.0 |
2 | Beijing * | 116.381 | 39.977 | 2001/01~2020/08 | Level 2.0 | |
3 | Beijing-CAMS * | 116.317 | 39.933 | 2012/01~2020/08 | Level 2.0 | |
4 | Beijing_RADI * | 116.379 | 40.005 | 2010/01~2020/08 | Level 2.0 | |
5 | Yulin | 109.717 | 38.283 | 2001/01~2002/12 | Level 2.0 | |
6 | Hong_Kong_PolyU * | 114.180 | 22.303 | 2005/01~2020/08 | Level 2.0 | |
7 | Hong_Kong_Sheung * | 114.117 | 22.483 | 2012/01~2020/08 | Level 2.0 | |
8 | Beijing_PKU | 116.310 | 39.992 | 2016/01~2020/08 | Level 1.5 | |
9 | City_GZ | 113.158 | 23.081 | 2006/01~2006/12 | Level 2.0 | |
10 | Dunhuang_LZU * | 94.955 | 40.492 | 2012/01~2012/12 | Level 2.0 | |
11 | Hangzhou_City | 120.157 | 30.290 | 2008/01~2009/12 | Level 1.5 | |
12 | Hefei | 117.162 | 31.905 | 2005/01~2008/12 | Level 1.5 | |
13 | Ningbo | 121.547 | 29.860 | 2007/01~2008/12 | Level 1.5 | |
14 | Shanghi_Minhang | 121.397 | 31.130 | 2008/01~2009/12 | Level 1.5 | |
15 | Shijiazhuang-CHEY | 114.550 | 38.000 | 2013/01~2014/12 | Level 1.5 | |
16 | Shijiazhuang-SZF | 114.458 | 38.017 | 2013/01~2014/12 | Level 1.5 | |
17 | SONET_Harbin | 126.614 | 45.705 | 2016/01~2016/12 | Level 1.5 | |
18 | XuZhou-CUMT | 117.142 | 34.217 | 2013/01~2019/12 | Level 1.5 | |
Grasslands | 19 | Jingtai | 104.100 | 37.333 | 2008/01~2008/12 | Level 2.0 |
20 | Lanzhou_City * | 103.853 | 36.048 | 2009/01~2010/12 | Level 2.0 | |
21 | QOMS_CAS * | 86.948 | 28.365 | 2009/01~2020/08 | Level 2.0 | |
22 | SACOL * | 104.137 | 35.946 | 2006/01~2013/12 | Level 2.0 | |
23 | Mt_WLG | 100.896 | 36.283 | 2009/01~2013/12 | Level 1.5 | |
24 | Muztagh_Ata | 75.039 | 38.408 | 2011/01~2011/12 | Level 2.0 | |
25 | NAM_CO | 90.962 | 30.773 | 2006/01~2020/08 | Level 2.0 | |
26 | SONET_Xingtai | 114.360 | 37.182 | 2016/01~2016/12 | Level 1.5 | |
27 | Yufa_PEK | 116.184 | 39.309 | 2006/01~2006/12 | Level 2.0 | |
28 | Zhangye | 100.276 | 39.079 | 2008/01~2008/12 | Level 2.0 | |
29 | Zhongshan_Univ | 113.390 | 23.060 | 2011/01~2012/12 | Level 2.0 | |
Water | 30 | Hong_Kong_Hok_Tsui * | 114.258 | 22.210 | 2007/01~2010/12 | Level 2.0 |
31 | Taihu * | 120.215 | 31.421 | 2005/01~2018/12 | Level 2.0 | |
Croplands | 32 | Shouxian * | 116.782 | 32.558 | 2008/01~2008/12 | Level 2.0 |
33 | XiangHe * | 116.962 | 39.754 | 2001/01~2020/08 | Level 2.0 | |
34 | Liangning | 122.701 | 41.512 | 2005/01~2005/12 | Level 2.0 | |
35 | Minqin | 102.959 | 38.607 | 2010/01~2010/12 | Level 2.0 | |
36 | NUIST | 118.717 | 32.206 | 2007/01~2010/12 | Level 2.0 | |
37 | PKU_PEK | 116.184 | 39.593 | 2006/01~2008/12 | Level 2.0 | |
Forest | 38 | Xinglong * | 117.578 | 40.396 | 2006/01~2014/12 | Level 2.0 |
39 | Hangzhou-ZFU | 119.727 | 30.257 | 2007/01~2009/12 | Level 2.0 | |
40 | Qiandaohu | 119.053 | 29.556 | 2007/01~2009/12 | Level 1.5 |
Land Cover | N | R | RMSE | MAE | =EE (%) | <EE (%) | >EE (%) | |
---|---|---|---|---|---|---|---|---|
AOD | Urban | 518 | 0.915 | 0.232 | 0.108 | 83.98 | 15.06 | 0.97 |
Grasslands | 108 | 0.921 | 0.096 | 0.070 | 67.59 | 6.48 | 25.93 | |
Croplands | 238 | 0.881 | 0.360 | 0.165 | 75.21 | 23.11 | 1.68 | |
Forest | 60 | 0.918 | 0.053 | 0.037 | 88.33 | 1.67 | 10.00 | |
Water | 40 | 0.957 | 0.158 | 0.083 | 92.50 | 0.00 | 7.50 | |
AE | Urban | 323 | 0.342 | 0.388 | 0.314 | 81.42 | 1.86 | 16.72 |
Grasslands | 86 | 0.041 | 0.498 | 0.405 | 68.60 | 11.63 | 19.77 | |
Croplands | 239 | 0.276 | 0.414 | 0.343 | 84.52 | 4.18 | 11.30 | |
Forest | 9 | 0.448 | 0.436 | 0.322 | 66.67 | 0 | 33.33 | |
Water | 40 | 0.610 | 0.288 | 0.234 | 100.00 | 0 | 0 |
Land Cover | N | R | RMSE | MAE | =EE (%) | <EE (%) | >EE (%) | |
---|---|---|---|---|---|---|---|---|
AOD | Urban | 1231 | 0.910 | 0.249 | 0.184 | 47.28 | 5.77 | 46.95 |
Grasslands | 938 | 0.815 | 0.202 | 0.158 | 34.54 | 5.33 | 60.13 | |
Croplands | 893 | 0.917 | 0.292 | 0.192 | 51.18 | 3.25 | 45.58 | |
Forest | 476 | 0.878 | 0.270 | 0.218 | 13.03 | 0.42 | 86.55 | |
Water | 392 | 0.820 | 0.353 | 0.244 | 44.64 | 3.57 | 51.79 | |
AE | Urban | 1259 | 0.631 | 0.302 | 0.225 | 95.55 | 2.62 | 1.83 |
Grasslands | 951 | 0.510 | 0.471 | 0.342 | 75.18 | 20.19 | 4.63 | |
Croplands | 906 | 0.584 | 0.304 | 0.231 | 94.92 | 1.88 | 3.20 | |
Forest | 476 | 0.601 | 0.381 | 0.303 | 89.92 | 8.61 | 1.47 | |
Water | 392 | 0.600 | 0.320 | 0.245 | 94.64 | 3.83 | 1.53 |
Products | R | RMSE | Expected Error Line | Within the EE Lines (%) | Region | Reference |
---|---|---|---|---|---|---|
MODIS DT | 0.85 | 0.15 | ±0.05 ± 0.2 × AOD | 56.47 | China | [45] |
MODIS DB | 0.84 | 0.22 | 60.30 | |||
MODIS DTB | 0.89 | 0.17 | 65.32 | |||
AVHRR DB | 0.30 | ±0.05 ± 0.25 × AOD | 51.21 | [46] | ||
VIIRS DB | 0.92 | 0.17 | ±0.05 ± 0.2 × AOD | 80.32 | [47] | |
MAIAC | 0.92 | 0.19 | ±0.05 ± 0.2 × AOD | 72.00 | [33] | |
AHI | 0.82 | 0.30 | ±0.05 ± 0.2 × AOD | 55.00 | [48] | |
MISR V23 | 0.90 | 0.25 | ±0.05 ± 0.2 × AOD | 80.60 | This paper | |
POLDER-3/GRASP | 0.90 | 0.26 | ±0.05 ± 0.2 × AOD | 40.71 | This paper | |
Terra MODIS DT C6.0 | 0.87 | 0.15 | ±0.05 ± 0.2 × AOD | 62.47 | Global | [50] |
Aqua MODIS DT C6.0 | 0.87 | 0.13 | ±0.05 ± 0.2 × AOD | 68.36 | ||
Terra MODIS DT C6.1 | 0.91 | 0.14 | ±0.05 ± 0.15 × AOD | 43.65 | [51] | |
MAIAC | 0.93 | 0.15 | ±0.05 ± 0.15 × AOD | 68.00 | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, S.; Li, M.; Fan, M.; Li, Z.; Xu, B.; Tao, J.; Chen, L. Validation and Analysis of MISR and POLDER Aerosol Products over China. Remote Sens. 2022, 14, 3697. https://doi.org/10.3390/rs14153697
Jiao S, Li M, Fan M, Li Z, Xu B, Tao J, Chen L. Validation and Analysis of MISR and POLDER Aerosol Products over China. Remote Sensing. 2022; 14(15):3697. https://doi.org/10.3390/rs14153697
Chicago/Turabian StyleJiao, Sunxin, Mingyang Li, Meng Fan, Zhongbin Li, Benben Xu, Jinhua Tao, and Liangfu Chen. 2022. "Validation and Analysis of MISR and POLDER Aerosol Products over China" Remote Sensing 14, no. 15: 3697. https://doi.org/10.3390/rs14153697
APA StyleJiao, S., Li, M., Fan, M., Li, Z., Xu, B., Tao, J., & Chen, L. (2022). Validation and Analysis of MISR and POLDER Aerosol Products over China. Remote Sensing, 14(15), 3697. https://doi.org/10.3390/rs14153697