Comparison of Long-Term Albedo Products against Spatially Representative Stations over Snow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Products
2.1.1. GLASS-AVHRR
2.1.2. MCD43C3
2.1.3. C3S Surface Albedo
2.2. In Situ Observations: FLUXNET and BSRN
2.3. Spatial Representativeness of the Stations
2.4. Processing In Situ Observations
2.5. Processing Satellite Products
2.6. Quality Indicators
3. Results
3.1. Spatial Representativeness Assessment
3.2. Point-to-Pixel Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Evaluation of C3S Abledo during the Overlap Period between SPOT/VGT and AVHRR
MBD | RMSD | ||||||
---|---|---|---|---|---|---|---|
Stations | Product | ||||||
Ru-Che, US-ivo, FPE, SXF, BOS, BOS | C3S-v1 AVHRR | 0.015 | −0.132 | −0.385 | 0.001 | 0.019 | 0.152 |
C3S-v2 AVHRR | 0.010 | −0.091 | −0.141 | 0.000 | 0.027 | 0.021 | |
C3S-v1 SPOT | 0.024 | −0.060 | −0.080 | 0.001 | 0.024 | 0.008 | |
C3S-v2 SPOT | 0.017 | −0.092 | −0.134 | 0.001 | 0.023 | 0.019 |
References
- Dickinson, R.E. Land Surface Processes and Climate—Surface Albedos and Energy Balance; In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar] [CrossRef]
- GCOS. The Global Observing System for Climate: Implementation Needs; Technical Report, GCOS- No. 200; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- Brown, R.; Vikhamar Schuler, D.; Bulygina, O.; Derksen, C.; Luojus, K.; Mudryk, L.; Wang, L. Arctic terrestrial snow cover. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017; pp. 25–55. [Google Scholar]
- Blunden, J.; Boyer, T. State of the Climate in 2020. Bull. Am. Meteorol. Soc. 2021, 102, S1–S475. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Carrer, D.; Pinault, F.; Bigeard, G.; Ramon, D.; Jolivet, D.; Kirches, G.; Brockmann, C.; Boettcher, M.; Bennhadj, I. Algorithm Theoretical Basis Document, Multi sensorCDR Surface Albedov2.0; Technical report; Copernicus Climate Change Service: Brussels, Belgium, 2021. [Google Scholar]
- NASA. Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43C3 Version 6; NASA: Washington, DC, USA, 2020. [Google Scholar]
- Garay, M.J.; Bull, M.A.; Witek, M.L.; Nastan, A.M.; Seidel, F.C.; Diner, D.J.; Kahn, R.A.; Limbacher, J.A.; Kalashnikova, O.V. Data Product Specification for the MISR Level 2 Land Surface Product; Technical report; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018. [Google Scholar]
- Bull, M.A.; Garay, M.J.; Nastan, A.M. Data Product Specification for the MISR Level 3 Component Global Land Surface Product; Technical report; Jet Propulsion Laboratory: Pasadena, CA, USA, 2018. [Google Scholar]
- Peng, J.; Yu, Y.; Yu, P.; Liang, S. The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation. Remote Sens. 2018, 10, 1826. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, K.G.; Anttila, K.; Trentmann, J.; Stengel, M.; Fokke Meirink, J.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef] [Green Version]
- Lewis, P.; Guanter, L.; Lopez Saldana, G.; Muller, J.P.; Watson, G.; Shane, N.; Kennedy, T.; Fisher, J.; Domenech, C.; Preusker, R.; et al. The ESA globAlbedo project: Algorithm. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5745–5748. [Google Scholar] [CrossRef] [Green Version]
- Danne, O.; Muller, J.; Kharbouche, S.; Lattanzio, A. Product User Guide for Land ECVs and Product Specification Document for Atmosphere ECV Precursors; Technical Report, QA4ECV Report, 2017. [Google Scholar]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X.; et al. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Cao, Y.; Gao, F.; Yu, Y.; Feng, M. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM +, and OLI data based on the unified direct estimation approach. Remote Sens. Environ. 2018, 204, 181–196. [Google Scholar] [CrossRef]
- Li, Z.; Erb, A.; Sun, Q.; Liu, Y.; Shuai, Y.; Wang, Z.; Boucher, P.; Schaaf, C. Preliminary assessment of 20-m surface albedo retrievals from sentinel-2A surface reflectance and MODIS/VIIRS surface anisotropy measures. Remote Sens. Environ. 2018, 217, 352–365. [Google Scholar] [CrossRef]
- Román, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strahler, A.H.; Yang, X.; Braswell, R.H.; Curtis, P.S.; Davis, K.J.; Dragoni, D.; Goulden, M.L. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 2009, 113, 2476–2498. [Google Scholar] [CrossRef] [Green Version]
- Cescatti, A.; Marcolla, B.; Santhana Vannan, S.K.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G.; et al. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Muller, J.P.; Kharbouche, S.; Woodgate, W. Intercomparison of Surface Albedo Retrievals from MISR, MODIS, CGLS Using Tower and Upscaled Tower Measurements. Remote Sens. 2019, 11, 644. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Muller, J.P.; Kharbouche, S.; Yin, F.; Woodgate, W.; Kitchen, M.; Roland, M.; Arriga, N.; Meyer, W.; Koerber, G.; et al. Validation of Space-Based Albedo Products from Upscaled Tower-Based Measurements Over Heterogeneous and Homogeneous Landscapes. Remote Sens. 2020, 12, 833. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Román, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 1–27. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo From MODIS Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Qin, W.; Herman, J.R.; Ahmad, Z. A fast, accurate algorithm to account for non-Lambertian surface effects on TOA radiance. J. Geophys. Res. Atmos. 2001, 106, 22671–22684. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Liu, S.; Tang, H.; Liang, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6, 69–95. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. 1995, 100, 21077. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; Li, X.; Feng, Y.; Liu, S. Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sens. Environ. 2016, 186, 32–46. [Google Scholar] [CrossRef]
- Qu, X.; Hall, A. What Controls the Strength of Snow-Albedo Feedback? J. Clim. 2007, 20, 3971–3981. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Liu, J.; Gao, F.; Strahler, A.H. Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products. In Land Remote Sensing and Global Environmental Change; Springer: New York, NY, USA, 2010; pp. 549–561. [Google Scholar] [CrossRef]
- Jiao, Z.; Ding, A.; Kokhanovsky, A.; Schaaf, C.; Bréon, F.M.; Dong, Y.; Wang, Z.; Liu, Y.; Zhang, X.; Yin, S.; et al. Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sens. Environ. 2019, 221, 198–209. [Google Scholar] [CrossRef]
- Carrer, D.; Pinault, F.; Lellouch, G.; Trigo, I.F.; Benhadj, I.; Camacho, F.; Ceamanos, X.; Moparthy, S.; Munoz-Sabater, J.; Schüller, L.; et al. Surface Albedo Retrieval from 40-Years of Earth Observations through the EUMETSAT/LSA SAF and EU/C3S Programmes: The Versatile Algorithm of PYALUS. Remote Sens. 2021, 13, 372. [Google Scholar] [CrossRef]
- Rahman, H.; Pinty, B.; Verstraete, M.M. Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data. J. Geophys. Res. 1993, 98, 20791–20801. [Google Scholar] [CrossRef]
- Sanchez-Zapero, J.; Martinez-Sanchez, E.; Camacho, F.; Leon-Tavares, J. Product Quality Assessment Report. Multi-Sensor Surface Albedo v2.0; Technical Report; Copernicus Climate Change Service: Brussels, Belgium, 2021. [Google Scholar]
- Copernicus Global Land Service. Ground-Based Observations for Validation (GBOV). 2022. Available online: https://gbov.acri.fr/overview/ (accessed on 10 March 2022).
- Wen, J.; Wu, X.; Wang, J.; Tang, R.; Ma, D.; Zeng, Q.; Gong, B.; Xiao, Q. Characterizing the Effect of Spatial Heterogeneity and the Deployment of Sampled Plots on the Uncertainty of Ground “Truth” on a Coarse Grid Scale: Case Study for Near-Infrared (NIR) Surface Reflectance. J. Geophys. Res. Atmos. 2022, 127, e2022JD036779. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.; Lattanzio, A.; Carrer, D.; Grant, I.; Roman, M.; Camacho, F.; Yu, Y.; Sanchez-Zapero, J.; Nickeson, J. Global Surface Albedo Product Validation Best Practices Protocol. Version 1.0. In Best Practice for Satellite Derived Land Product Validation; Wang, Z., Nickeson, J., Roman, M., Eds.; Product Validation Subgroup (WGCV/CEOS), 2019. [Google Scholar]
- Schwarz, M.; Folini, D.; Hakuba, M.Z.; Wild, M. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation. J. Geophys. Res. Atmos. 2017, 122, 13319–13337. [Google Scholar] [CrossRef]
- Chiu, J.; Paredes-Mesa, S.; Lakhankar, T.; Romanov, P.; Krakauer, N.; Khanbilvardi, R.; Ferraro, R. Intercomparison and Validation of MIRS, MSPPS, and IMS Snow Cover Products. Adv. Meteorol. 2020, 2020, 4532478. [Google Scholar] [CrossRef]
- Wu, J.; He, J.; Christakos, G. Classical geostatistics. In Quantitative Analysis and Modeling of Earth and Environmental Data; Elsevier: Amsterdam, The Netherlands, 2022; pp. 149–211. [Google Scholar] [CrossRef]
- Long, C.N.; Dutton, E.G. BSRN Global Network Recommended QC Tests, V2.0; Technical Report; BSRN, 2022. [Google Scholar]
- Perez, R.; Ineichen, P.; Seals, R.; Zelenka, A. Making full use of the clearness index for parameterizing hourly insolation conditions. Sol. Energy 1990, 45, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Ineichen, P.; Barroso, C.S.; Geiger, B.; Hollmann, R.; Marsouin, A.; Mueller, R. Satellite Application Facilities irradiance products: Hourly time step comparison and validation over Europe. Int. J. Remote Sens. 2009, 30, 5549–5571. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 2016, 128, 1–30. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horanyi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present; Technical Report: Copernicus Climate Change Service (C3S) Climate Data Store (CDS); 2018. In ERA5 Hourly Data on Single Levels from 1979 to Present; Technical Report: Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018. [Google Scholar]
- Stroeve, J.; Box, J.E.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ measurements. Remote Sens. Environ. 2005, 94, 46–60. [Google Scholar] [CrossRef]
- Lellouch, G.; Carrer, D.; Vincent, C.; Pardé, M.; C. Frietas, S.; Trigo, I.F. Evaluation of Two Global Land Surface Albedo Datasets Distributed by the Copernicus Climate Change Service and the EUMETSAT LSA-SAF. Remote Sens. 2020, 12, 1888. [Google Scholar] [CrossRef]
- Sánchez-Zapero, J.; Camacho, F.; Martínez-Sánchez, E.; Lacaze, R.; Carrer, D.; Pinault, F.; Benhadj, I.; Muñoz-Sabater, J. Quality Assessment of PROBA-V Surface Albedo V1 for the Continuity of the Copernicus Climate Change Service. Remote Sens. 2020, 12, 2596. [Google Scholar] [CrossRef]
Product | Sensor | Spatial Coverage | Temporal Coverage | Spatial Resolution | Temporal Coverage | Method |
---|---|---|---|---|---|---|
GLASS 4.2 | NOAA/AVHRR | global | 1982–2019 | 0.05 × 0.05 | 8 d (8 d) | direct estimation |
MCD43C3 6 & 6.1 | Terra-Aqua/MODIS | global | 2000/02–2020 | 0.05 × 0.05 | 1 d (16 d) | BRDF inversion RossThick-LiSparseReciprocal |
C3S albedo 1&2 | NOAA/AVHRR | 80N-60S | 1982/01–2005/12 | 1/30 × 1/30 | 10 d (20 d) | BRDF inversion RossThick-LiSparseReciprocal |
SPOT/VGT | 1998/04–2014/05 | 1/112 × 1/112 | ||||
PROBA-V | 2014/01–2020/06 | 1/112 × 1/112 |
ID | Name | IGBP | Lat () | Lon () | Elev (m) | Snow (days) | (m) | Footprint (m2) |
---|---|---|---|---|---|---|---|---|
GL-ZaH | Zackenberg Heath | GRA | 74.47 | −20.55 | 38 | 240 | 3/0.1 | 37 |
RU-Cok | Chokurdakh | OSH | 70.83 | 147.49 | 48 | 250 | 5/0.5 | 57 |
RU-Che | Cherski | WET | 68.61 | 161.34 | 6 | 248 | 6/0.5 | 70 |
US-Ivo | Ivotuk | WET | 68.49 | −155.75 | 568 | 280 | 4/0.3 | 47 |
CA-NS4 | UCI-1964 burn site wet | ENF | 55.91 | −98.38 | 260 | 176 | 10/2.0 | 101 |
CA-SF3 | Saskatchewan—W Boreal | OSH | 54.09 | −106.01 | 540 | 146 | 20/18.0 | 25 |
US-Los | Lost Creek | WET | 46.08 | −89.98 | 480 | 100 | 10.2/2.0 | 104 |
US-CRT | Curtice Walter-Berger | CRO | 41.63 | −83.35 | 180 | 60 | 2/0.4 | 20 |
FPE | Fort Peck | GRA | 48.32 | −105.10 | 634 | 85 | 10/0.2 | 123 |
SXF | Sioux Falls | CRO | 43.73 | −96.62 | 473 | 80 | 10/0.2 | 123 |
BOS | Boulder | CVM | 40.12 | −105.24 | 1689 | 81 | 10/0.2 | 123 |
BOU | Boulder | CVM | 40.05 | −105.01 | 1577 | 75 | 300/0.2 | 3785 |
GVN | Georg von Neumayer | SNO | −70.65 | −8.25 | 42 | 365 | 3/0.0 | 38 |
DOM | Concordia Dome C | SNO | −75.10 | 123.38 | 3233 | 365 | 3/0.0 | 38 |
SPO | South Pole | SNO | −89.98 | −24.80 | 2800 | 365 | 3/0.0 | 38 |
S2 Tile | Date | Side (km) | a | c | |||
---|---|---|---|---|---|---|---|
GL-ZaH | 27XWC | 07/04/2020 | 1.0 | 0.141 | 868.4 | ||
1.5 | 0.153 | 385.6 | |||||
4.0 | 0.166 | 487.8 | |||||
RU-Cok | 55WEU | 04/04/2020 | 1.0 | 0.069 | 95.0 | ||
1.5 | 0.063 | 125.9 | |||||
4.0 | 0.055 | 113.6 | |||||
RU-Che | 57WWS | 26/04/2020 | 1.0 | 0.093 | 133,845.9 | ||
1.5 | 0.130 | 1208.2 | |||||
4.0 | 0.132 | 1316.1 | |||||
US-Ivo | 04WFB | 20/04/2021 | 1.0 | 0.020 | 197.5 | ||
1.5 | 0.017 | 231.4 | |||||
4.0 | 0.117 | 919,642.0 | |||||
CA-NS4 | 14VNH | 06/05/2020 | 1.0 | 0.394 | 165.6 | ||
1.5 | 0.387 | 231.0 | |||||
4.0 | 0.463 | 319.9 | |||||
CA-SF3 | 13UDV | 06/03/2020 | 1.0 | 0.798 | 248.0 | ||
1.5 | 0.712 | 637.6 | |||||
4.0 | 0.735 | 452.5 | |||||
FPE | 13UDP | 20/01/2020 | 1.0 | 0.336 | 339.0 | ||
1.5 | 0.346 | 313.7 | |||||
4.0 | 0.318 | 498.0 | |||||
US-Los | 15TYM | 23/02/2020 | 1.0 | 0.610 | 651.2 | ||
1.5 | 0.743 | 662.5 | |||||
4.0 | 0.776 | 1248.2 | |||||
SXF | 14TPP | 02/01/2021 | 1.0 | 0.296 | 595.7 | ||
1.5 | 0.319 | 946.3 | |||||
4.0 | 0.261 | 411.7 | |||||
US-CRT | 16TGM | 29/02/2020 | 1.0 | 0.202 | 201.6 | ||
1.5 | 0.278 | 559.1 | |||||
4.0 | 0.286 | 440.5 | |||||
BOS | 13TDE | 11/02/2020 | 1.0 | 0.158 | 124.3 | ||
1.5 | 0.159 | 195.4 | |||||
4.0 | 0.159 | 401.9 | |||||
BOU | 13TDE | 08/02/2020 | 1.0 | 0.084 | 807.1 | ||
1.5 | 0.153 | 306,593.7 | |||||
4.0 | 0.205 | 666.0 | |||||
GVN | 29DNB | 04/01/2020 | 1.0 | 0.012 | 85.6 | ||
1.5 | 0.012 | 90.7 | |||||
4.0 | 0.018 | 85.4 | |||||
DOM | 51CWS | 01/01/2021 | 1.0 | 0.009 | 12.5 | ||
1.5 | 0.010 | 12.5 | |||||
4.0 | 0.018 | 419.1 |
MBD | RMSD | ||||||
---|---|---|---|---|---|---|---|
Stations | Product | ||||||
Ru-Cok, Ru-Che, US-ivo, FPE SXF, BOU, BOS | GLASS-AVHRR | 0.033 | 0.020 | −0.050 | 0.009 | 0.034 | 0.013 |
MCD43C3 v6 | −0.005 | −0.008 | −0.015 | 0.001 | 0.024 | 0.004 | |
MCD43C3 v61 | −0.006 | −0.013 | −0.017 | 0.001 | 0.023 | 0.004 | |
C3S-v1 SPOT | 0.023 | −0.027 | −0.117 | 0.001 | 0.021 | 0.018 | |
C3S-v2 SPOT | 0.018 | −0.072 | −0.132 | 0.001 | 0.018 | 0.018 | |
DOM, GVN, SPO | GLASS-AVHRR | - | - | −0.046 | - | - | 0.002 |
MCD43C3 v61 | - | - | 0.002 | - | - | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urraca, R.; Lanconelli, C.; Cappucci, F.; Gobron, N. Comparison of Long-Term Albedo Products against Spatially Representative Stations over Snow. Remote Sens. 2022, 14, 3745. https://doi.org/10.3390/rs14153745
Urraca R, Lanconelli C, Cappucci F, Gobron N. Comparison of Long-Term Albedo Products against Spatially Representative Stations over Snow. Remote Sensing. 2022; 14(15):3745. https://doi.org/10.3390/rs14153745
Chicago/Turabian StyleUrraca, Ruben, Christian Lanconelli, Fabrizio Cappucci, and Nadine Gobron. 2022. "Comparison of Long-Term Albedo Products against Spatially Representative Stations over Snow" Remote Sensing 14, no. 15: 3745. https://doi.org/10.3390/rs14153745
APA StyleUrraca, R., Lanconelli, C., Cappucci, F., & Gobron, N. (2022). Comparison of Long-Term Albedo Products against Spatially Representative Stations over Snow. Remote Sensing, 14(15), 3745. https://doi.org/10.3390/rs14153745