A Multi-Parametric and Multi-Layer Study to Investigate the Largest 2022 Hunga Tonga–Hunga Ha’apai Eruptions
Abstract
:1. Introduction
2. Geological and Geographical Setting
3. Materials and Methods
3.1. Lithospheric Data
3.2. Atmospheric Data
3.3. Ionospheric Data
4. Results
4.1. Investigation of the Preparation of the Volcanic Explosion of Hunga Tonga–Hunga Ha’apai of 15 January 2022
4.1.1. Seismological Data Analysis
4.1.2. Atmospheric Data Analysis
4.2. Results concerning the Effect of the Hunga Tonga Volcano Explosive Eruption of 15 January 2022 All around the Globe
4.2.1. Atmospheric Data Analysis
4.2.2. Geomagnetic Field and Ionospheric Electron Density Data Analysis
4.2.3. Ionosonde Analysis
4.2.4. TEC Data Analysis
4.2.5. Search Coil Magnetometer (SCM) Data Analysis
5. Discussion
6. Conclusions
- (a)
- The seismicity of the study area showed a weak increase from 120 days before the eruption;
- (b)
- The atmospheric parameters presented anomalies that seem to anticipate the explosion. The outgoing longwave radiation exhibits three anomalies (at 81, 75, and 58 days before the eruption), the first one was 4-day persistent while the last was two 2-day persistent. The 2-m and skin temperatures indicated anomalies 49 and 48 days, respectively, before the eruption;
- (c)
- The atmospheric pressure on the Italian territory increased in correspondence to the arrival of the pressure wave from Hunga Tonga, and, then, the back wave from the antipodal point. It is also identified a late wake from northern to southern stations of this arrival;
- (d)
- The spectral analysis of magnetic field components at Swarm satellite altitudes revealed fluctuations that were equatorially symmetric, more intense at lower altitudes, and local time independent in a large area around the volcano. Therefore, we believe that the observed ULF fluctuations are probably not directly related to external sources, which are mainly linked to the solar wind-magnetosphere interactions;
- (e)
- The first differences in the total intensity (mag-F) of the geomagnetic field of the three Swarm satellites showed a clear anomaly in correspondence to the volcanic position;
- (f)
- The electron density registered by CSES-01 LAP presented an anomaly around 8 min after the eruption; correlating with the arrival of the acoustic-gravity wave signal in the F2 ionospheric layer. Another anomaly at 6 h after the explosive event was detected by Swarm and CSES-01 satellites;
- (g)
- All the Finnish search coil magnetometers showed a higher total power at frequencies characteristic of the Schumann resonance and where we expect the effects of global lightning activities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell-Brown, M. A Nuclear-Test Monitor Calls Tonga Volcano Blast ‘Biggest Thing That We’ve Ever Seen’. 2022. Available online: https://www.gpb.org/news/2022/01/21/nuclear-test-monitor-calls-tonga-volcano-blast-biggest-thing-weve-ever-seen (accessed on 22 January 2022).
- Garvin, J.B.; Slayback, D.A.; Ferrini, V.; Frawley, J.; Giguere, C.; Asrar, G.R.; Andersen, K. Monitoring and Modeling the Rapid Evolution of Earth’s Newest Volcanic Island: Hunga Tonga Hunga Ha’apai (Tonga) Using High Spatial Resolution Satellite Observations. Geophys. Res. Lett. 2018, 45, 3445–3452. [Google Scholar] [CrossRef] [PubMed]
- Brenna, M.; Cronin, S.J.; Smith, I.E.; Pontesilli, A.; Tost, M.; Barker, S.; Tonga’Onevai, S.; Kula, T.; Vaiomounga, R. Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific. Lithos 2022, 412–413, 106614. [Google Scholar] [CrossRef]
- Global Volcanism Program. Report on Hunga Tonga-Hunga Ha’apai (Tonga). In Weekly Volcanic Activity Report, 12 January–18 January 2022; Sennert, S.K., Ed.; Smithsonian Institution and US Geological Survey; Available online: https://watchers.news/2022/01/21/the-weekly-volcanic-activity-report-january-12-18-2022/ (accessed on 22 January 2022).
- Carr, J.L.; Horváth, Á.; Wu, D.L.; Friberg, M.D. Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha’apai Eruption of 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL098131. [Google Scholar] [CrossRef]
- Poli, P.; Shapiro, N.M. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha’apai Explosion from Teleseismic Waves. Geophys. Res. Lett. 2022, 49, e2022GL098123. [Google Scholar] [CrossRef]
- Garvin, J.B. Dramatic Changes at Hunga Tonga-Hunga Ha’apai. 2022. Available online: https://earthobservatory.nasa.gov/images/149367/dramatic-changes-at-hungatonga-hunga-334 (accessed on 15 May 2022).
- Kulichkov, S.N.; Chunchuzov, I.P.; Popov, O.E.; Gorchakov, G.I.; Mishenin, A.A.; Perepelkin, V.G.; Bush, G.A.; Skorokhod, A.I.; Vinogradov, Y.A.; Semutnikova, E.G.; et al. Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure Appl. Geophys. 2022, 179, 1533–1548. [Google Scholar] [CrossRef]
- Astafyeva, E.; Maletckii, B.; Mikesell, T.D.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L. The 15 January 2022 Hunga Tonga Eruption History as Inferred from Ionospheric Observations. Geophys. Res. Lett. 2022, 49, e2022GL098827. [Google Scholar] [CrossRef]
- Duncombe, J. The Surprising Reach of Tonga’s Giant Atmospheric Waves. Eos 2022, 103. [Google Scholar] [CrossRef]
- Amores, A.; Monserrat, S.; Marcos, M.; Argüeso, D.; Villalonga, J.; Jordà, G.; Gomis, D. Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption. Geophys. Res. Lett. 2022, 49, e2022GL098240. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Vierinen, J.; Aa, E.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; Coster, A.J.; Spicher, A. 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci. 2022, 9, 871275. [Google Scholar] [CrossRef]
- Yuen, D.A.; Scruggs, M.A.; Spera, F.J.; Zheng, Y.; Hu, H.; McNutt, S.R.; Thompson, G.; Mandli, K.; Keller, B.R.; Wei, S.S.; et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthq. Res. Adv. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Matoza, R.S.; Fee, D.; Assink, J.D.; Iezzi, A.M.; Green, D.N.; Kim, K.; Toney, L.; Lecocq, T.; Krishnamoorthy, S.; Lalande, J.-M.; et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022, 337, 95–100. [Google Scholar] [CrossRef]
- Wright, C.; Hindley, N.; Alexander, M.J.; Barlow, M.; Hoffmann, L.; Mitchell, C.; Prata, F.; Bouillon, M.; Carstens, J.; Clerbauz, C.; et al. Tonga eruption triggered waves propagating globally from surface to edge of space. Earth Space Sci. Open Arch. 2022. [Google Scholar] [CrossRef]
- Burt, S. Multiple airwaves crossing Britain and Ireland following the eruption of Hunga Tonga–Hunga Ha’apai on 15 January 2022. Weather 2022, 77, 76–81. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric signatures of repeated passages of atmospheric waves by the 2022 Jan. 15 Hunga Tonga-Hunga Ha’apai eruption detected by QZSS-TEC observations in Japan. Earth Planets Space 2022, 74, 112. [Google Scholar] [CrossRef]
- Lin, J.; Rajesh, P.K.; Lin, C.C.H.; Chou, M.; Liu, J.; Yue, J.; Hsiao, T.; Tsai, H.; Chao, H.; Kung, M. Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere After Hunga-Tonga Volcano Eruptions. Geophys. Res. Lett. 2022, 49, e2022gl098222. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Vierinen, J.; Coster, A.J.; Goncharenko, L.P.; Spicher, A.; Rideout, W. Significant equatorial plasma bubbles and global ionospheric disturbances after the 2022 Tonga volcano eruption. Space Weather. Earth Space Sci. Open Arch. 2022. [Google Scholar] [CrossRef]
- Sun, W.; Kuriakose, A.K.; Li, G.; Li, Y.; Zhao, X.; Hu, L.; Yang, S.; Xie, H.; Li, Y.; Ning, B.; et al. Unseasonal super ionospheric plasma bubble and scintillations seeded by the 2022 Tonga Volcano Eruption related perturbations. J. Space Weather Space Clim. 2022, 12, 25. [Google Scholar] [CrossRef]
- Kataoka, R.; Winn, S.D.; Touber, E. Meteotsunamis in Japan Associated with the Tonga Eruption in January 2022. SOLA 2022, 18, 116–121. [Google Scholar] [CrossRef]
- Themens, D.R.; Watson, C.; Žagar, N.; Vasylkevych, S.; Elvidge, S.; McCaffrey, A.; Prikryl, P.; Reid, B.; Wood, A.; Jayachandran, P.T. Global Propagation of Ionospheric Disturbances Associated With the 2022 Tonga Volcanic Eruption. Geophys. Res. Lett. 2022, 49, e2022gl098158. [Google Scholar] [CrossRef]
- Verhulst, T.; Altadill, D.; Barta, V.; Belehaki, A.; Buresova, D.; Cesaroni, C.; Galkin, I.; Guerra, M.; Ippolito, A.; Herekakis, T.; et al. Multi-instrument detection in Europe of ionospheric disturbances caused by the 15 January 2022 eruption of the Hunga volcano. J. Space Weather. Space Clim. 2022. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T.; Coca, O.; Vargas-Espinosa, V. Tsunami Effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha’apai Volcano Eruption, Tonga. Pure Appl. Geophys. 2022, 179, 1117–1137. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, Y.; Yamanaka, Y.; Nakagaki, T. Characteristics of tsunamis observed in Japan due to the air wave from the 2022 Tonga eruption. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Omira, R.; Ramalho, R.S.; Kim, J.; González, P.J.; Kadri, U.; Miranda, J.M.; Carrilho, F.; Baptista, M.A. Global Tonga tsunami explained by a fast-moving atmospheric source. Nature 2022. [Google Scholar] [CrossRef] [PubMed]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Southeast Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Dautermann, T.; Calais, E.; Mattioli, G.S. Lithosphere—atmosphere—ionosphere coupling after the 2003 explosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int. 2009, 179, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Dehn, J.; Harris, A.J.L. Thermal anomalies at volcanoes. In Monitoring Volcanoes in the North Pacific; Springer Praxis Books: Berlin/Heidelberg, Germany, 2015; pp. 49–78. [Google Scholar] [CrossRef]
- Cimarelli, C.; Genareau, K. A review of volcanic electrification of the atmosphere and volcanic lightning. J. Volcanol. Geotherm. Res. 2021, 422, 107449. [Google Scholar] [CrossRef]
- Global Volcanism Program. Report on Hunga Tonga-Hunga Ha’apai (Tonga). Bulletin Global Volcanism Network. 2015, Volume 40. Available online: https://volcano.si.edu/showreport.cfm?doi=10.5479/si.GVP.BGVN201501-24304 (accessed on 15 June 2022).
- Cronin, S.J.; Brenna, M.; Smith, I.E.M.; Barker, S.; Tost, M.; Ford, M.; Tonga’Onevai, S.; Kula, T.; Vaiomounga, R. New Volcanic Island Unveils Explosive Past. Eos 2017. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Di Giovambattista, R. Accelerating moment release revisited: Examples of application to Italian seismic sequences. Tectonophysics 2015, 639, 82–98. [Google Scholar] [CrossRef]
- Reasenberg, P. Second-order moment of central California seismicity, 1969–1982. J. Geophys. Res. Earth Surf. 1985, 90, 5479–5495. [Google Scholar] [CrossRef]
- Wiemer, S. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bull. Seism. Soc. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Wiemer, S.; Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Benioff, H. SEISMIC EVIDENCE FOR THE FAULT ORIGIN OF OCEANIC DEEPS. GSA Bull. 1949, 60, 1837–1856. [Google Scholar] [CrossRef]
- Bowman, D.D.; Ouillon, G.; Sammis, C.G.; Sornette, A.; Sornette, D. An observational test of the critical earthquake concept. J. Geophys. Res. Solid Earth 1998, 103, 24359–24372. [Google Scholar] [CrossRef] [Green Version]
- Cianchini, G.; De Santis, A.; Di Giovambattista, R.; Abbattista, C.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; Cesaroni, C.; De Santis, A.; Marchetti, D.; et al. Revised Accelerated Moment Release Under Test: Fourteen Worldwide Real Case Studies in 2014–2018 and Simulations. Pure Appl. Geophys. 2020, 177, 4057–4087. [Google Scholar] [CrossRef]
- Selitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bègue, N.; et al. The unexpected radiative impact of the Hunga Tonga eruption of January 15th, 2022. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A new multi-parametric climatological approach to the study of the earthquake preparatory phase: The 2016 Amatrice-Norcia (Central Italy) seismic sequence. In Proceedings of the 19th EGU General Assembly, Vienna, Austria, 23–28 April 2017; Volume 19, p. 14105. [Google Scholar]
- Piscini, A.; Marchetti, D.; De Santis, A. Multi-Parametric Climatological Analysis Associated with Global Significant Volcanic Eruptions During 2002–2017. Pure Appl. Geophys. 2019, 176, 3629–3647. [Google Scholar] [CrossRef]
- Schnepf, N.R.; Minami, T.; Toh, H.; Nair, M.C. Magnetic Signatures of the 15 January 2022 Hunga Tonga–Hunga Ha’apai Volcanic Eruption. Geophys. Res. Lett. 2022, 49, e2022GL098454. [Google Scholar] [CrossRef]
- Francia, P.; De Lauretis, M.; Regi, M. ULF fluctuations observed along the SEGMA array during very low solar wind density conditions. Planet. Space Sci. 2013, 81, 74–81. [Google Scholar] [CrossRef]
- Regi, M.; Francia, P.; De Lauretis, M.; Glassmeier, K.H.; Villante, U. Coherent transmission of upstream waves to polar latitudes through magnetotail lobes. J. Geophys. Res. Space Phys. 2013, 118, 6955–6963. [Google Scholar] [CrossRef]
- Regi, M.; De Lauretis, M.; Francia, P. The occurrence of upstream waves in relation with the solar wind parameters: A statistical approach to estimate the size of the foreshock region. Planet. Space Sci. 2014, 90, 100–105. [Google Scholar] [CrossRef]
- Regi, M.; De Lauretis, M.; Francia, P.; Villante, U. The propagation of ULF waves from the Earth’s foreshock region to ground: The case study of 15 February 2009. Earth Planets Space 2014, 66, 43. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; De Franceschi, G.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Yan, R.; Guan, Y.; Miao, Y.; Zhima, Z.; Xiong, C.; Zhu, X.; Liu, C.; Shen, X.; Yuan, S.; Liu, D.; et al. The Regular Features Recorded by the Langmuir Probe Onboard the Low Earth Polar Orbit Satellite CSES. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029289. [Google Scholar] [CrossRef]
- Kumar, S.; Chen, W.; Liu, Z.; Singh, R.P. Thunderstorm-/lightning-induced ionospheric perturbation: An observation from equatorial and low-latitude stations around Hong Kong. J. Geophys. Res. Space Phys. 2017, 122, 9032–9044. [Google Scholar] [CrossRef]
- Nickolaenko, A.P.; Schekotov, A.Y.; Hayakawa, M.; Romero, R.; Izutsu, J. Electromagnetic manifestations of Tonga eruption in Schumann resonance band. J. Atmos. Solar-Terr. Phys. 2022, 237, 105897. [Google Scholar] [CrossRef]
Station | Latitude | Longitude | Ionosonde | URSI Code |
---|---|---|---|---|
Canberra | −35.32 | 149.00°E | 4D 5A CADI 5D | CB53N |
Darwin | −12.45 | 130.95°E | 4D 5C CADI 5D | DW41K |
Khabarovsk | 48.50 | 135.10°E | - | KB547 |
Learmonth | −22.25 | 114.08°E | Lowell 5D | LM42B |
Norfolk Island | −29.03 | 167.97°E | 4D 5A CADI 5D | NI63_ |
Niue | 19.65 | 190.07°E | 5D | ND61R |
Perth | −31.94 | 115.95°E | 5D | PE43K |
Townsville | −19.63 | 148.85°E | 4D 5A CADI 5D | TV51R |
Wake Island | 19.26 | 166.65°E | - | WA619 |
Station | Start Operation Month/Year | Geographic Coordinates |
---|---|---|
NURMIJÄRVI | 12/2019 | 62.42°N 25.28°E |
OULU | 08/2020 | 65.08°N 25.90°E |
SODANKYLÄ | 06/2018 | 67.43°N 26.39°E |
KEVO | 11/2018 | 69.75°N 27.02°E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Arcangelo, S.; Bonforte, A.; De Santis, A.; Maugeri, S.R.; Perrone, L.; Soldani, M.; Arena, G.; Brogi, F.; Calcara, M.; Campuzano, S.A.; et al. A Multi-Parametric and Multi-Layer Study to Investigate the Largest 2022 Hunga Tonga–Hunga Ha’apai Eruptions. Remote Sens. 2022, 14, 3649. https://doi.org/10.3390/rs14153649
D’Arcangelo S, Bonforte A, De Santis A, Maugeri SR, Perrone L, Soldani M, Arena G, Brogi F, Calcara M, Campuzano SA, et al. A Multi-Parametric and Multi-Layer Study to Investigate the Largest 2022 Hunga Tonga–Hunga Ha’apai Eruptions. Remote Sensing. 2022; 14(15):3649. https://doi.org/10.3390/rs14153649
Chicago/Turabian StyleD’Arcangelo, Serena, Alessandro Bonforte, Angelo De Santis, Salvatore Roberto Maugeri, Loredana Perrone, Maurizio Soldani, Giovanni Arena, Federico Brogi, Massimo Calcara, Saioa A. Campuzano, and et al. 2022. "A Multi-Parametric and Multi-Layer Study to Investigate the Largest 2022 Hunga Tonga–Hunga Ha’apai Eruptions" Remote Sensing 14, no. 15: 3649. https://doi.org/10.3390/rs14153649
APA StyleD’Arcangelo, S., Bonforte, A., De Santis, A., Maugeri, S. R., Perrone, L., Soldani, M., Arena, G., Brogi, F., Calcara, M., Campuzano, S. A., Cianchini, G., Del Corpo, A., Di Mauro, D., Fidani, C., Ippolito, A., Lepidi, S., Marchetti, D., Nardi, A., Orlando, M., ... Yan, R. (2022). A Multi-Parametric and Multi-Layer Study to Investigate the Largest 2022 Hunga Tonga–Hunga Ha’apai Eruptions. Remote Sensing, 14(15), 3649. https://doi.org/10.3390/rs14153649