Spatial–Temporal Variability of Global GNSS-Derived Precipitable Water Vapor (1994–2020) and Climate Implications
Abstract
:1. Introduction
2. PWV Data and Analysis Methods
2.1. PWV Retrieval
2.1.1. Radiosonde PWV Retrieval
2.1.2. GNSS PWV Retrieval
2.2. RS and GNSS PWV
2.2.1. IGRA2 RS PWV
2.2.2. NGL GNSS PWV
2.3. Product Validation and Analysis Methods
2.3.1. Comparison with RS PWV
2.3.2. Acquisition of PWV Spatial–Temporal Distribution Features
3. Results
3.1. Spatial Analysis
3.2. Seasonal Cycle
3.3. Trend Analysis
4. Discussion
5. Conclusions
- Compared with the RS data, the global average bias of NGL GNSS PWV was ~0.72 ± 1.29 mm, and the global average RMSE was ~2.56 ± 1.13 mm. This result showed that GNSS PWV had a very high agreement with RS PWV, and together with the advantages of GNSS, such as high temporal resolution and all-weather operation, GNSS is becoming one of the most important methods of PWV acquisition, which should be valuable for water vapor synthesis and reanalysis.
- On a global scale, the PWV value tended to increase year by year, and the global average growth rate was ~0.64 ± 0.81 mm·decade−1. PWV growth showed strong correlations with temperature anomalies and sea height variation. For each 1 °C and 1 mm change, PWV responded with ~2.075 ± 0.765 mm and ~0.015 ± 0.005 mm, respectively.
- The PWV mean value tended to decrease in segments with increasing latitude and decreased more rapidly below 35° latitude than above 35° latitude. The PWV STD value reached a maximum at low latitudes and did not show the same complete negative correlation as PWV.
- The mean value of GNSS PWV was between 0 and 50 mm and was negatively correlated with latitude. The annual cycle amplitude of PWV was also negatively correlated with latitude but reached its maximum near the Tropic of Cancer, especially in the coastal areas of the region, which can be explained by the eddy transport being more efficient there and frontal systems mixing polar air with tropical air.
- PWV levels in the Northern and Southern Hemispheres reached their peak around August 1 and January 3 each year, respectively, and reached troughs around January 31 and August 5 each year, respectively. There was a delay of approximately 40 days relative to the time of year when the solar radiation reached its maximum (the summer solstice).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cassel, D.; Thapa, B. Water Cycle. Encyc. Soil. Environ. 2005, 258–264. [Google Scholar] [CrossRef]
- Li, X.; Long, D. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach. Remote Sens. Environ. 2020, 248, 111966. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y. Precipitable water vapor fusion based on a generalized regression neural network. J. Geod. 2020, 95, 1–14. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res.-Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Wallace, J.; Hobbs, P. Atmospheric Science: An Introductory Survey, 2nd ed.; Academic Press: New York, NY, USA, 2006; pp. 15–36. [Google Scholar]
- Vey, S.; Dietrich, R.; Rulke, A.; Fritsche, M.; Steigenberger, P.; Rothacher, M. Validation of Precipitable Water Vapor within the NCEP/DOE Reanalysis Using Global GPS Observations from One Decade. J. Clim. 2010, 23, 1675–1695. [Google Scholar] [CrossRef]
- Smith, T.M.; Arkin, P.A. Improved Historical Analysis of Oceanic Total Precipitable Water. J. Clim. 2015, 34, 4693–4710. [Google Scholar] [CrossRef]
- Pacione, R.; Fionda, E.; Lanotte, R.; Sciarretta, C.; Vespe, F. Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy. Phys. Chem. Earth Part A/B/C 2002, 27, 309–316. [Google Scholar] [CrossRef]
- Kern, A.; Bartholy, J.; Borbás, E.; Barcza, Z.; Pongrácz, R.; Ferencz, C. Estimation of vertically integrated water vapor in Hungary using MODIS imagery. Adv. Space Res. 2008, 41, 1933–1945. [Google Scholar] [CrossRef]
- Renju, R.; Raju, C.; Mathew, N.; Antony, T.; Moorthy, K. Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station. J. Geophys. Res.-Atmos. 2015, 120, 4585–4599. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Zhang, W.; Lou, Y.; Huang, J.; Zheng, F.; Cao, Y.; Liang, H.; Shi, C.; Liu, J. Multiscale Variations of Precipitable Water over China Based on 1999–2015 Ground-Based GPS Observations and Evaluations of Reanalysis Products. J. Clim. 2018, 31, 945–962. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Ma, X.W.; Yao, W.Q.; Liu, Y.; Yao, Y.B. A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation. J. Clim. 2020, 33, 10727–10741. [Google Scholar] [CrossRef]
- Zhao, T.B.; Dai, A.G.; Wang, J.H. Trends in Tropospheric Humidity from 1970 to 2008 over China from a Homogenized Radiosonde Dataset. J. Clim. 2012, 25, 4549–4567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, J.; Na, Y.; Lan, P. Variability and Trends in Global Precipitable Water Vapor Retrieved from COSMIC Radio Occultation and Radiosonde Observations. Atmosphere 2018, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wang, J.H.; Dai, A.G.; Thorne, P.W. A New Approach to Homogenize Global Subdaily Radiosonde Temperature Data from 1958 to 2018. J. Clim. 2021, 34, 1163–1183. [Google Scholar] [CrossRef]
- Wang, M. The Assessment and Meteorological Applications of High Spatiotemporal Resolution GPS ZTD/PW Derived by Precise Point Positioning. Ph.D. Thesis, Tongji University, Shanghai, China, 2019; p. 4. [Google Scholar]
- Chrysoulakis, N.; Proedrou, M.; Cartalis, C. Variations and trends in annual and seasonal means of precipitable water in Greece as deduced from radiosonde measurements. Toxicol Environ. Chem. 2001, 84, 1–6. [Google Scholar] [CrossRef]
- Pralungo, R.L.; Haimberger, L.; Stickler, A.; Brönnimann, S. A global radiosonde and tracked balloon archive on 16 pressure levels (GRASP) back to 1905–Part 1: Merging and interpolation to 00:00 and 12:00 GMT. Earth Syst. Sci. Data. 2014, 6, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Rocken, C.; Hove, T.; Johnson, J.; Solheim, F.; Ware, R.; Bevis, M.; Chiswell, S.; Businger, S. GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Ocean. Technol. 1995, 12, 468–478. [Google Scholar] [CrossRef]
- Haase, J.; Vedel, H.; Ge, M.; Calais, E. GPS zenith tropospheric delay (ZTD) variability in the Mediterranean. Phys. Chem. Earth Pt. A-Solid Earth Geod. 2001, 26, 439–443. [Google Scholar] [CrossRef]
- Haase, J.; Ge, M.; Vedel, H.; Calais, E. Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteorol. 2003, 42, 1547–1568. [Google Scholar] [CrossRef]
- Zhang, F.; Barriot, J.; Xu, G.; The, T. Metrology Assessment of the Accuracy of Precipitable Water Vapor Estimates from GPS Data Acquisition in Tropical Areas: The Tahiti Case. Remote Sens. 2018, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, W.; Yan, H.; Cheng, Z.; Ding, J. Preliminary Results of Precipitable Water Vaopr Monitored by Ground-Based GPS. Chinese J. Atmos. Sci. 1999, 23, 605–612. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhang, L.Y. Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements. J. Clim. 2008, 21, 2218–2238. [Google Scholar] [CrossRef]
- Roman, J.A.; Knuteson, R.O.; Ackerman, S.A.; Tobin, D.C.; Revercomb, H.E. Assessment of Regional Global Climate Model Water Vapor Bias and Trends Using Precipitable Water Vapor (PWV) Observations from a Network of Global Positioning Satellite (GPS) Receivers in the U.S. Great Plains and Midwest. J. Clim. 2012, 25, 5471–5493. [Google Scholar] [CrossRef]
- Isioye, O.; Combrinck, L.; Botai, J. Retrieval and analysis of precipitable water vapour based on GNSS, AIRS, and reanalysis models over Nigeria. Int. J. Remote Sens. 2017, 38, 5710–5735. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Fei, L.; Guo, J. Estimation and Evaluation of the Precipitable Water Vapor from GNSS PPP in Asia Region; China Satellite Navigation Office: Beijing, China, 2017; pp. 85–95. [Google Scholar]
- Wang, R.; Fu, Y.F.; Xian, T.; Chen, F.J.; Yuan, R.M.; Li, R.; Liu, G.S. Evaluation of Atmospheric Precipitable Water Characteristics and Trends in Mainland China from 1995 to 2012. J. Clim. 2017, 30, 8673–8688. [Google Scholar] [CrossRef]
- Chen, B.; Dai, W.; Liu, Z.; Wu, L.; Xia, P. Assessments of GMI-Derived Precipitable Water Vapor Products over the South and East China Seas Using Radiosonde and GNSS. Adv. Meteorol. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Chen, Y.; Li, L.; Hong, Y. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Nio–Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 1980, 108, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.; Jin, X.; Liu, Z.; Nichol, J.; Chan, P. Multi-sensors study of precipitable water vapour over mainland China. Int. J. Climatol. 2015, 35, 3146–3159. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Kouba, J. Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). J. Geod. 2008, 82, 193–205. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Pires, N.; Lázaro, C.; Nunes, A.L. Tropospheric delays from GNSS for application in coastal altimetry. Adv. Space Res. 2013, 51, 1352–1368. [Google Scholar] [CrossRef]
- Urquhart, L.; Santos, M.C.; Nievinski, F.G.; Böhm, J. Generation and Assessment of VMF1-Type Grids Using North-American Numerical Weather Models. In Earth on the Edge: Science for a Sustainable Planet; Rizos, C., Willis, P., Eds.; International Association of Geodesy Symposia; Springer: Berlin, Heidelberg, 2014; Volume 139, pp. 3–9. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; He, C.; Cheng, Y.; Li, X. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor. Atmospheric Meas. Tech. 2017, 10, 2807–2820. [Google Scholar] [CrossRef] [Green Version]
- Durre, I.; Vose, R.; Wuertz, D. Overview of the integrated global radiosonde archive. J. Clim. 2006, 19, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Chen, J. Assessment of Empirical Troposphere Model GPT3 Based on NGL’s Global Troposphere Products. Sensors 2020, 20, 3631. [Google Scholar] [CrossRef]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res.-Solid Earth. 2006, 111, 2006. [Google Scholar] [CrossRef]
- Bertiger, W.; Bar-Sever, Y.; Dorsey, A.; Haines, B.; Harvey, N.; Hemberger, D.; Heflin, M.; Lu, W.; Miller, M.; Angelyn, W.; et al. GipsyX/RTGx, a new tool set for space geodetic operations and research. Adv. Space Res. 2020, 66, 469–489. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Chen, R.; Fu, W.; Xu, B.; Jiang, P.; Liu, J.; Zhou, H.; Han, Y. Refining the empirical global pressure and temperature model with the ERA5 reanalysis and radiosonde data. J. Geod. 2021, 95, 31. [Google Scholar] [CrossRef]
- Benestad, R.E.; Erlandsen, H.B.; Mezghani, A.; Parding, K.M. Geographical Distribution of Thermometers Gives the Appearance of Lower Historical Global Warming. Geophys. Res. Lett. 2019, 46, 7654–7662. [Google Scholar] [CrossRef] [Green Version]
- Blesić, S.; Zanchettin, D.; Rubino, A. Heterogeneity of Scaling of the Observed Global Temperature Data. J. Clim. 2019, 32, 349–367. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Zhang, H.M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 28, 911–930. [Google Scholar] [CrossRef] [Green Version]
- Rinke, A.; Segger, B.; Crewell, S.; Maturilli, M.; Naakka, T.; Nygard, T.; Vihma, T.; Alshawaf, F.; Dick, G.; Wickert, J.; et al. Trends of Vertically Integrated Water Vapor over the Arctic during 1979–2016: Consistent Moistening All Over? J. Clim. 2019, 32, 6097–6116. [Google Scholar] [CrossRef]
- Imke, D.; Williams, C.N., Jr.; Yin, X.; Russell, S.V. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res. Atmos. 2009, 115, 162009. [Google Scholar] [CrossRef]
- Kwon, C.; Lee, D.; Lee, K.-S.; Seo, M.; Seong, N.-H.; Choi, S.; Jin, D.; Kim, H.; Han, K.-S. Long-term variability of Total Precipitable Water using a MODIS over Korea. Korean J. Remote Sens. 2016, 32, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Ziv, S.Z.; Alpert, P.; Reuveni, Y. Long-term variability and trends of precipitable water vapour derived from GPS tropospheric path delays over the Eastern Mediterranean. Int. J. Climatol. 2021, 41, 6433–6454. [Google Scholar] [CrossRef]
- Ma, X.; Yao, Y.; Zhang, B.; He, C. Retrieval of high spatial resolution precipitable water vapor maps using heterogeneous earth observation data. Remote Sens. Environ. 2022, 278, 113100. [Google Scholar] [CrossRef]
- Rohde, R.A.; Hausfather, Z. The Berkeley Earth Land/Ocean Temperature Record. Earth Syst. Sci. Data 2020, 12, 3469–3479. [Google Scholar] [CrossRef]
- Beckley, B.; Yang, X.; Zelensky, N.P.; Holmes, S.A.; Lemoine, F.G.; Ray, R.D.; Mitchum, G.T.; Desai, S.; Brown, S.T. GSFC 2020, Global Mean Sea Level Trend from Integrated Multi-Mission Ocean Altimeters TOPEX/Poseidon, Jason-1, OSTM/Jason-2, and Jason-3 Version 5.0 Ver. 5.0. PO.DAAC: Pasadena, CA, USA. [CrossRef]
Items | Properties |
---|---|
Service time | 5 November 2017—present |
Timespan | 1 January 1994—present |
Sampling interval | 5 min |
Elevation cutoff angle | 7 degrees |
Trop mapping function | VMF1 [42] |
Elements | total zenith delay, north gradient, east gradient, water vapor, and weighted mean temperature |
Orbit | JPL’s Repro 3.0 orbits |
Clock | JPL’s Repro 3.0 clocks |
Software | JPL’s GipsyX 1.0 [43] |
System | GPS-only |
Data amount | >46 million days |
Number of stations | >19,000 |
Update frequency | 1 week (with new incoming data, as well as newly discovered stations) |
Station growth rate | About 1000 per year |
Spring | Summer | Autumn | Winter | All Seasons | |
---|---|---|---|---|---|
positive | 82.72% | 70.72% | 78.22% | 82.77% | 45.73% |
negative | 17.28% | 29.28% | 21.78% | 17.23% | 2.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Chen, J.; Tang, W.; Song, Z. Spatial–Temporal Variability of Global GNSS-Derived Precipitable Water Vapor (1994–2020) and Climate Implications. Remote Sens. 2022, 14, 3493. https://doi.org/10.3390/rs14143493
Ding J, Chen J, Tang W, Song Z. Spatial–Temporal Variability of Global GNSS-Derived Precipitable Water Vapor (1994–2020) and Climate Implications. Remote Sensing. 2022; 14(14):3493. https://doi.org/10.3390/rs14143493
Chicago/Turabian StyleDing, Junsheng, Junping Chen, Wenjie Tang, and Ziyuan Song. 2022. "Spatial–Temporal Variability of Global GNSS-Derived Precipitable Water Vapor (1994–2020) and Climate Implications" Remote Sensing 14, no. 14: 3493. https://doi.org/10.3390/rs14143493
APA StyleDing, J., Chen, J., Tang, W., & Song, Z. (2022). Spatial–Temporal Variability of Global GNSS-Derived Precipitable Water Vapor (1994–2020) and Climate Implications. Remote Sensing, 14(14), 3493. https://doi.org/10.3390/rs14143493