Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,930)

Search Parameters:
Keywords = satellite meteorology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

21 pages, 14469 KiB  
Article
The Downscaled GOME-2 SIF Based on Machine Learning Enhances the Correlation with Ecosystem Productivity
by Chenyu Hu, Pinhua Xie, Zhaokun Hu, Ang Li and Haoxuan Feng
Remote Sens. 2025, 17(15), 2642; https://doi.org/10.3390/rs17152642 - 30 Jul 2025
Viewed by 227
Abstract
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, [...] Read more.
Sun-induced chlorophyll fluorescence (SIF) is an important indicator of vegetation photosynthesis. While remote sensing enables large-scale monitoring of SIF, existing products face the challenge of trade-offs between temporal and spatial resolutions, limiting their applications. To select the optimal model for SIF data downscaling, we used a consistent dataset combined with vegetation physiological and meteorological parameters to evaluate four different regression methods in this study. The XGBoost model demonstrated the best performance during cross-validation (R2 = 0.84, RMSE = 0.137 mW/m2/nm/sr) and was, therefore, selected to downscale GOME-2 SIF data. The resulting high-resolution SIF product (HRSIF) has a temporal resolution of 8 days and a spatial resolution of 0.05° × 0.05°. The downscaled product shows high fidelity to the original coarse SIF data when aggregated (correlation = 0.76). The reliability of the product was ensured through cross-validation with ground-based and satellite observations. Moreover, the finer spatial resolution of HRSIF better matches the footprint of eddy covariance flux towers, leading to a significant improvement in the correlation with tower-based gross primary productivity (GPP). Specifically, in the mixed forest vegetation type with the best performance, the R2 increased from 0.66 to 0.85, representing an increase of 28%. This higher-precision product will support more effective ecosystem monitoring and research. Full article
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 290
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

29 pages, 32010 KiB  
Article
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Viewed by 778
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using [...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

22 pages, 5937 KiB  
Article
CSAN: A Channel–Spatial Attention-Based Network for Meteorological Satellite Image Super-Resolution
by Weiliang Liang and Yuan Liu
Remote Sens. 2025, 17(14), 2513; https://doi.org/10.3390/rs17142513 - 19 Jul 2025
Viewed by 417
Abstract
Meteorological satellites play a critical role in weather forecasting, climate monitoring, water resource management, and more. These satellites feature an array of radiative imaging bands, capturing dozens of spectral images that span from visible to infrared. However, the spatial resolution of these bands [...] Read more.
Meteorological satellites play a critical role in weather forecasting, climate monitoring, water resource management, and more. These satellites feature an array of radiative imaging bands, capturing dozens of spectral images that span from visible to infrared. However, the spatial resolution of these bands varies, with images at longer wavelengths typically exhibiting lower spatial resolutions, which limits the accuracy and reliability of subsequent applications. To alleviate this issue, we propose a channel–spatial attention-based network, named CSAN, designed to super-resolve all low-resolution (LR) bands to the available maximal high-resolution (HR) scale. The CSAN consists of an information fusion unit, a feature extraction module, and an image restoration unit. The information fusion unit adaptively fuses LR and HR images, effectively capturing inter-band spectral relationships and spatial details to enhance the input representation. The feature extraction module integrates channel and spatial attention into the residual network, enabling the extraction of informative spectral and spatial features from the fused inputs. Using these deep features, the image restoration unit reconstructs the missing spatial details in LR images. Extensive experiments demonstrate that the proposed network outperforms other state-of-the-art approaches quantitatively and visually. Full article
Show Figures

Figure 1

15 pages, 4848 KiB  
Communication
Practical Performance Assessment of Water Vapor Monitoring Using BDS PPP-B2b Service
by Linghao Zhou, Enhong Zhang, Hong Liang, Zuquan Hu, Meifang Qu, Xinxin Li and Yunchang Cao
Appl. Sci. 2025, 15(14), 8033; https://doi.org/10.3390/app15148033 - 18 Jul 2025
Viewed by 210
Abstract
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service [...] Read more.
BeiDou navigation satellite system (BDS) precise point positioning (PPP)-B2b has significant potential for application in meteorological fields, such as standalone water vapor monitoring in depopulated area without Internet. In this study, the practical ability of water vapor monitoring using the BDS PPP-B2b service is illustrated through a continuously operated water vapor monitoring system in Wuhan, China, with a 25-day experiment in 2025. Original observations from the Global Positioning System (GPS) and BDS are collected and processed in the near real-time (NRT) mode using ephemeris from the PPP-B2b service. Precipitable water vapor PWV monitored with B2b ephemeris are evaluated with radiosonde and ERA5 reanalysis, respectively. Taking PWV from radiosonde observations as the reference, RMS of PWV based on B2b ephemeris varies from 3.71 to 4.66 mm for different satellite combinations. While those values are with a range from 3.95 to 4.55 mm when compared with ERA5 reanalysis. These values are similar to those processed with the real-time ephemeris from the China Academy of Science (CAS). In general, this study demonstrates that the practical accuracy of water vapor monitored based on the BDS PPP-B2b service can meet the basic demand for operational meteorology for the first time. This will provide a scientific reference for its wide promotion to meteorological applications in the near future. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Viewed by 272
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

37 pages, 7235 KiB  
Article
New Challenges for Tropical Cyclone Track and Intensity Forecasting in an Unfavorable External Environment in the Western North Pacific—Part II: Intensifications near and North of 20° N
by Russell L. Elsberry, Hsiao-Chung Tsai, Wen-Hsin Huang and Timothy P. Marchok
Atmosphere 2025, 16(7), 879; https://doi.org/10.3390/atmos16070879 - 17 Jul 2025
Viewed by 279
Abstract
Part I of this two-part documentation of the ECMWF ensemble (ECEPS) new tropical cyclone track and intensity forecasting challenges during the 2024 western North Pacific season described four typhoons that started well to the south of an unfavorable external environment north of 20° [...] Read more.
Part I of this two-part documentation of the ECMWF ensemble (ECEPS) new tropical cyclone track and intensity forecasting challenges during the 2024 western North Pacific season described four typhoons that started well to the south of an unfavorable external environment north of 20° N. In this Part II, five other 2024 season typhoons that formed and intensified near and north of 20° N are documented. One change is that the Cooperative Institute for Meteorological Satellite Studies ADT + AIDT intensities derived from the Himawari-9 satellite were utilized for initialization and validation of the ECEPS intensity forecasts. Our first objective of providing earlier track and intensity forecast guidance than the Joint Typhoon Warning Center (JTWC) five-day forecasts was achieved for all five typhoons, although the track forecast spread was large for the early forecasts. For Marie (06 W) and Ampil (08 W) that formed near 25° N, 140° E in the middle of the unfavorable external environment, the ECEPS intensity forecasts accurately predicted the ADT + AIDT intensities with the exception that the rapid intensification of Ampil over the Kuroshio ocean current was underpredicted. Shanshan (11 W) was a challenging forecast as it intensified to a typhoon while being quasi-stationary near 17° N, 142° E before turning to the north to cross 20° N into the unfavorable external environment. While the ECEPS provided accurate guidance as to the timing and the longitude of the 20° N crossing, the later recurvature near Japan timing was a day early and 4 degrees longitude to the east. The ECEPS provided early, accurate track forecasts of Jebi’s (19 W) threat to mainland Japan. However, the ECEPS was predicting extratropical transition with Vmax ~35 kt when the JTWC was interpreting Jebi’s remnants as a tropical cyclone. The ECEPS predicted well the unusual southward track of Krathon (20 W) out of the unfavorable environment to intensify while quasi-stationary near 18.5° N, 125.6° E. However, the rapid intensification as Krathon moved westward along 20° N was underpredicted. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

22 pages, 1797 KiB  
Article
Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield
by Anna Pelosi, Angeloluigi Aprile, Oscar Rosario Belfiore and Giovanni Battista Chirico
Remote Sens. 2025, 17(14), 2464; https://doi.org/10.3390/rs17142464 - 16 Jul 2025
Viewed by 205
Abstract
The continuous development of both numerical weather model outputs and remote sensing-derived products has enabled a wide range of applications across various fields, such as agricultural water management, where the need for robust gridded weather data and recurring Earth Observations (EO) is fundamental [...] Read more.
The continuous development of both numerical weather model outputs and remote sensing-derived products has enabled a wide range of applications across various fields, such as agricultural water management, where the need for robust gridded weather data and recurring Earth Observations (EO) is fundamental for estimating crop water requirements (CWR) and yield. This study used the latest reanalysis dataset, AgERA5, combined with the up-to-date CM SAF SARAH-3 Satellite-Based Radiation Data as meteorological inputs of the SAFY dynamic crop growth model and a one-step evapotranspiration formula for CWR and yield estimates at the farm scale of tomato crops. The Sentinel-2 (S2) estimates of Leaf Area Index (LAI) were used to force the SAFY model as soon as they became available during the growing stage, according to the satellite passages over the area of interest. The SAFY model was calibrated with ground-based weather observations and S2 LAI data on tomato crops that were collected in several farms in Campania Region (Southern Italy) during the irrigation season, which spans from April to August. To validate the method, the model estimates were compared with field observations of irrigation volumes and harvested yield from a monitored farm in the same region for the year 2021. Results demonstrated that integrating AgERA5 and CM SAF weather datasets with S2 imagery for assimilation into the SAFY model enables accurate estimates of both CWR and yield. Full article
Show Figures

Figure 1

31 pages, 7444 KiB  
Article
Meteorological Drivers and Agricultural Drought Diagnosis Based on Surface Information and Precipitation from Satellite Observations in Nusa Tenggara Islands, Indonesia
by Gede Dedy Krisnawan, Yi-Ling Chang, Fuan Tsai, Kuo-Hsin Tseng and Tang-Huang Lin
Remote Sens. 2025, 17(14), 2460; https://doi.org/10.3390/rs17142460 - 16 Jul 2025
Viewed by 366
Abstract
Agriculture accounts for 29% of the Gross Domestic Product of the Nusa Tenggara Islands (NTIs). However, recurring agricultural droughts pose a major threat to the sustainability of agriculture in this region. The interplay between precipitation, solar radiation, and surface temperature as meteorological factors [...] Read more.
Agriculture accounts for 29% of the Gross Domestic Product of the Nusa Tenggara Islands (NTIs). However, recurring agricultural droughts pose a major threat to the sustainability of agriculture in this region. The interplay between precipitation, solar radiation, and surface temperature as meteorological factors plays a key role in affecting vegetation (Soil-Adjusted Vegetation Index) and agricultural drought (Temperature Vegetation Dryness Index) in the NTIs. Based on the analyses of interplay with temporal lag, this study investigates the effect of each factor on agricultural drought and attempts to provide early warnings regarding drought in the NTIs. We collected surface information data from Moderate-Resolution Imaging Spectroradiometer (MODIS). Meanwhile, rainfall was estimated from Himawari-8 based on the INSAT Multi-Spectral Rainfall Algorithm (IMSRA). The results showed reliable performance for 8-day and monthly scales against gauges. The drought analysis results reveal that the NTIs suffer from mild-to-moderate droughts, where cropland is the most vulnerable, causing shifts in the rice cropping season. The driving factors could also explain >60% of the vegetation and surface-dryness conditions. Furthermore, our monthly and 8-day TVDI estimation models could capture spatial drought patterns consistent with MODIS, with coefficient of determination (R2) values of more than 0.64. The low error rates and the ability to capture the spatial distribution of droughts, especially in open-land vegetation, highlight the potential of these models to provide an estimation of agricultural drought. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

23 pages, 10215 KiB  
Article
A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018
by Jiahui Fan, Yunjun Yao, Yajie Li, Lu Liu, Zijing Xie, Xiaotong Zhang, Yixi Kan, Luna Zhang, Fei Qiu, Jingya Qu and Dingqi Shi
Forests 2025, 16(7), 1157; https://doi.org/10.3390/f16071157 - 13 Jul 2025
Viewed by 271
Abstract
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the [...] Read more.
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the nonlinear relationship between relative humidity and ET. Unlike conventional approaches such as the Penman–Monteith or Priestley–Taylor models, the Sigmoid-RH model requires fewer inputs and is better suited for large-scale applications where data availability is limited. In this study, we applied the Sigmoid-RH model to estimate ET over mainland China from 2001 to 2018 by using satellite remote sensing and meteorological reanalysis data. Key driving inputs included air temperature (Ta), net radiation (Rn), relative humidity (RH), and the normalized difference vegetation index (NDVI), all of which are readily available from public datasets. Validation at 20 flux tower sites showed strong performance, with R-square (R2) ranging from 0.26 to 0.93, Root Mean Squard Error (RMSE) from 0.5 to 1.3 mm/day, and Kling-Gupta efficiency (KGE) from 0.16 to 0.91. The model performed best in mixed forests (KGE = 0.90) and weakest in shrublands (KGE = 0.27). Spatially, ET shows a clear increasing trend from northwest to southeast, closely aligned with climatic zones, with national mean annual ET of 560 mm/yr, ranging from less than 200 mm/yr in arid zones to over 1100 mm/yr in the humid south. Seasonally, ET peaked in summer due to monsoonal rainfall and vegetation growth, and was lowest in winter. Temporally, ET declined from 2001 to 2009 but increased from 2009 to 2018, influenced by changes in precipitation and NDVI. These findings confirm the applicability of the Sigmoid-RH model and highlight the importance of hydrothermal conditions and vegetation dynamics in regulating ET. By improving the accuracy and scalability of ET estimation, this model can provide practical implications for drought early warning systems, forest ecosystem management, and agricultural irrigation planning under changing climate conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

20 pages, 10137 KiB  
Article
A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
by Shuyuan Yang, Yuzhu Tang, Zeming Zhou, Xiaofeng Zhao, Pinglv Yang, Yangfan Hu and Ran Bo
Remote Sens. 2025, 17(14), 2409; https://doi.org/10.3390/rs17142409 - 12 Jul 2025
Viewed by 219
Abstract
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the [...] Read more.
Sea fog is a natural phenomenon that significantly reduces visibility, posing navigational hazards for ships and impacting coastal activities. Geostationary meteorological satellite data have proven to be indispensable for sea fog monitoring due to their large spatial coverage and spatiotemporal consistency. However, the spectral similarities between sea fog and low clouds result in omissions and misclassifications. Furthermore, high clouds obscure certain sea fog regions, leading to under-detection and high false alarm rates. In this paper, we present a novel sea fog detection method to alleviate the challenges. Specifically, the approach leverages a fusion of spectral, motion, and spatiotemporal texture consistency features to effectively differentiate sea fog and low clouds. Additionally, a multi-scale self-attention module is incorporated to recover the sea fog region obscured by clouds. Based on the spatial distribution characteristics of sea fog and clouds, we redesigned the loss function to integrate total variation loss, focal loss, and dice loss. Experimental results validate the effectiveness of the proposed method, and the detection accuracy is compared with the vertical feature mask produced by the CALIOP and exhibits a high level of consistency. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Graphical abstract

19 pages, 5180 KiB  
Article
In-Flight Calibration of Geostationary Meteorological Imagers Using Alternative Methods: MTG-I1 FCI Case Study
by Ali Mousivand, Christoph Straif, Alessandro Burini, Mounir Lekouara, Vincent Debaecker, Tim Hewison, Stephan Stock and Bojan Bojkov
Remote Sens. 2025, 17(14), 2369; https://doi.org/10.3390/rs17142369 - 10 Jul 2025
Viewed by 471
Abstract
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI [...] Read more.
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI offers more spectral bands, higher spatial resolution, and faster imaging capabilities, supporting a wide range of applications in weather forecasting, climate monitoring, and environmental analysis. On 13 January 2024, the FCI onboard MTG-I1 (renamed Meteosat-12 in December 2024) experienced a critical anomaly involving the failure of its onboard Calibration and Obturation Mechanism (COM). As a result, the use of the COM was discontinued to preserve operational safety, leaving the instrument dependent on alternative calibration methods. This loss of onboard calibration presents immediate challenges, particularly for the infrared channels, including image artifacts (e.g., striping), reduced radiometric accuracy, and diminished stability. To address these issues, EUMETSAT implemented an external calibration approach leveraging algorithms from the Global Space-based Inter-Calibration System (GSICS). The inter-calibration algorithm transfers stable and accurate calibration from the Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral instrument aboard Metop-B and Metop-C satellites to FCI’s infrared channels daily, ensuring continued data quality. Comparisons with Cross-track Infrared Sounder (CrIS) data from NOAA-20 and NOAA-21 satellites using a similar algorithm is then used to validate the radiometric performance of the calibration. This confirms that the external calibration method effectively compensates for the absence of onboard blackbody calibration for the infrared channels. For the visible and near-infrared channels, slower degradation rates and pre-anomaly calibration ensure continued accuracy, with vicarious calibration expected to become the primary source. This adaptive calibration strategy introduces a novel paradigm for in-flight calibration of geostationary instruments and offers valuable insights for satellite missions lacking onboard calibration devices. This paper details the COM anomaly, the external calibration process, and the broader implications for future geostationary satellite missions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

17 pages, 2928 KiB  
Article
Hybrid Machine Learning Model for Hurricane Power Outage Estimation from Satellite Night Light Data
by Laiyin Zhu and Steven M. Quiring
Remote Sens. 2025, 17(14), 2347; https://doi.org/10.3390/rs17142347 - 9 Jul 2025
Viewed by 341
Abstract
Hurricanes can cause massive power outages and pose significant disruptions to society. Accurately monitoring hurricane power outages will improve predictive models and guide disaster emergency management. However, many challenges exist in obtaining high-quality data on hurricane power outages. We systematically evaluated machine learning [...] Read more.
Hurricanes can cause massive power outages and pose significant disruptions to society. Accurately monitoring hurricane power outages will improve predictive models and guide disaster emergency management. However, many challenges exist in obtaining high-quality data on hurricane power outages. We systematically evaluated machine learning (ML) approaches to reconstruct historical hurricane power outages based on high-resolution (1 km) satellite night light observations from the Defense Meteorological Satellite Program (DMSP) and other ancillary information. We found that the two-step hybrid model significantly improved model prediction performance by capturing a substantial portion of the uncertainty in the zero-inflated data. In general, the classification and regression tree-based machine learning models (XGBoost and random forest) demonstrated better performance than the logistic and CNN models in both binary classification and regression models. For example, the xgb+xgb model has 14% less RMSE than the log+cnn model, and the R-squared value is 25 times larger. The Interpretable ML (SHAP value) identified geographic locations, population, and stable and hurricane night light values as important variables in the XGBoost power outage model. These variables also exhibit meaningful physical relationships with power outages. Our study lays the groundwork for monitoring power outages caused by natural disasters using satellite data and machine learning (ML) approaches. Future work should aim to improve the accuracy of power outage estimations and incorporate more hurricanes from the recently available Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Technical Note
Precipitable Water Vapor Retrieval Based on GNSS Data and Its Application in Extreme Rainfall
by Tian Xian, Ke Su, Jushuo Zhang, Huaquan Hu and Haipeng Wang
Remote Sens. 2025, 17(13), 2301; https://doi.org/10.3390/rs17132301 - 4 Jul 2025
Viewed by 396
Abstract
Water vapor plays a crucial role in maintaining global energy balance and water cycle, and it is closely linked to various meteorological disasters. Precipitable water vapor (PWV), as an indicator of variations in atmospheric water vapor content, has become a key parameter for [...] Read more.
Water vapor plays a crucial role in maintaining global energy balance and water cycle, and it is closely linked to various meteorological disasters. Precipitable water vapor (PWV), as an indicator of variations in atmospheric water vapor content, has become a key parameter for meteorological and climate monitoring. However, due to limitations in observation costs and technology, traditional atmospheric monitoring techniques often struggle to accurately capture the distribution and variations in space–time water vapor. With the continuous advancement of Global Navigation Satellite System (GNSS) technology, ground-based GNSS monitoring technology has shown rapid development momentum in the field of meteorology and is considered an emerging monitoring tool with great potential. Hence, based on the GNSS observation data from July 2023, this study retrieves PWV using the Global Pressure and Temperature 3 (GPT3) model and evaluates its application performance in the “7·31” extremely torrential rain event in Beijing in 2023. Research has found the following: (1) Tropospheric parameters, including the PWV, zenith tropospheric delay (ZTD), and zenith wet delay (ZWD), exhibit high consistency and are significantly affected by weather conditions, particularly exhibiting an increasing-then-decreasing trend during rainfall events. (2) Through comparisons with the PWV values through the integration based on fifth-generation European Centre for Medium-Range Weather Forecasts (ERA-5) reanalysis data, it was found that results obtained using the GPT3 model exhibit high accuracy, with GNSS PWV achieving a standard deviation (STD) of 0.795 mm and a root mean square error (RMSE) of 3.886 mm. (3) During the rainfall period, GNSS PWV remains at a high level (>50 mm), and a strong correlation exists between GNSS PWV and peak hourly precipitation. Furthermore, PWV demonstrates the highest relative contribution in predicting extreme precipitation, highlighting its potential value for monitoring and predicting rainfall events. Full article
Show Figures

Figure 1

Back to TopTop